電子回路論第10回 Electric Circuits for Physicists

東京大学理学部・理学系研究科 物性研究所 勝本信吾 Shingo Katsumoto

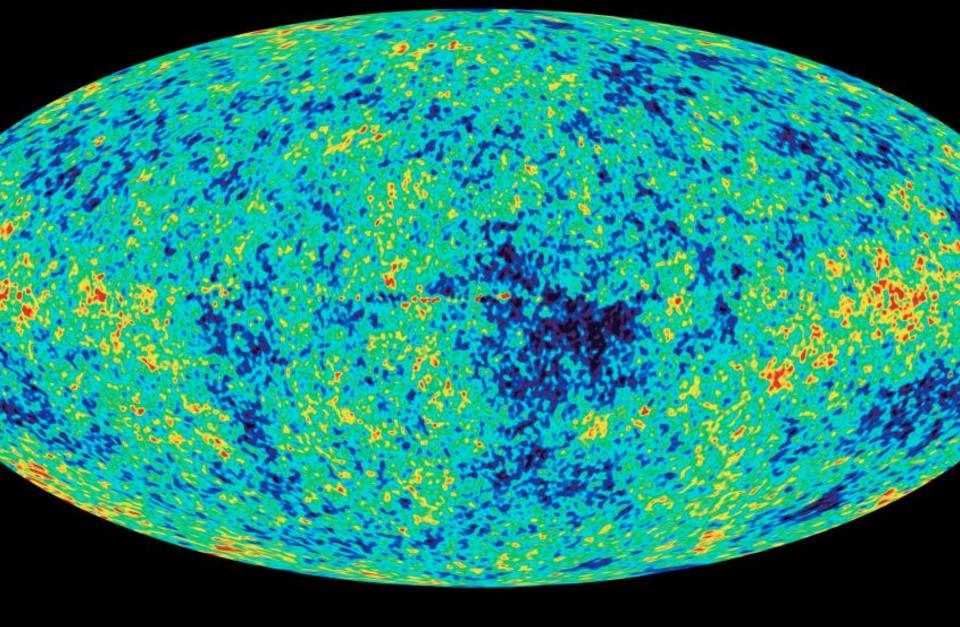
Comment: Impedance match/mismatch

Propagation of a wave:	Impedance match: complete absorption
	(propagation without reflection)
	Mismatch: wave reflection

Impedance match/mismatch is an important concept applicable to a broad area of physics.

- Antenna: should be matched to the vacuum. EM wave propagation simulation: boundary is shunted with the characteristic impedance of vacuum.
- > Optics: impedance mismatch \rightarrow disagreement in refractive index
- Plasma: should be matched to electrodes for excitation.
- > Phonon impedance mismatch at low temperatures: Kapitza resistance
- Sound insulated booth: should have sound impedance mismatch.

Ch6. Noises and Signals



Chapter 6 Noises and Signals

Outline

6.1 Fluctuation

- 6.1.1 Fluctuation-Dissipation theorem
- 6.1.2 Wiener-Khintchine theorem
- 6.1.3 Noises in the view of circuits
- 6.1.4 Nyquist theorem
- 6.1.5 Shot noise
- 6.1.6 1/f noise
- 6.1.7 Noise units
- 6.1.8 Other noises

6.2 Noises from amplifiers6.2.1 Noise figure6.2.2 Noise impedance matching

Electric circuits transform: 1) Information

2) Electromagnetic power

on some physical quantities like voltages, current, ...

Noises: stochastic (uncontrollable, unpredictable by human) variation in other words, fluctuation in such a quantity.

Intrinsic noise: Thermal noise (Johnson-Nyquist noise), Shot noise

Internal noise

Noise related to a specific physical phenomenon

Avalanche, Popcorn, Barkhausen, etc.

1/f noise: Name for a group of noises with spectra 1/f.

External noise

EMI, microphone noise, etc.

6.1 Fluctuation

Quantity x, fluctuation $\delta x = x - \bar{x}$ $\overline{(\delta x)^2} = \overline{(x - \bar{x})^2} = \overline{x^2} - \bar{x}^2 \quad (\overline{\delta x} = 0)$ g(x): distribution function of x Fourier transform: $u(q) = \mathscr{F}\{g(x)\} = \int_{-\infty}^{\infty} g(x)e^{ixq}\frac{dx}{\sqrt{2\pi}}$

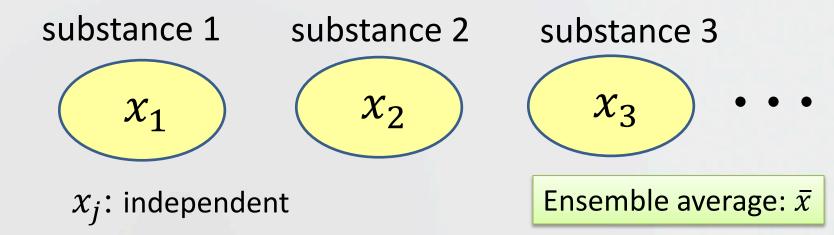
u(*q*) : characteristic function of the distributionFrom Taylor expansion, any moment can be obtained as

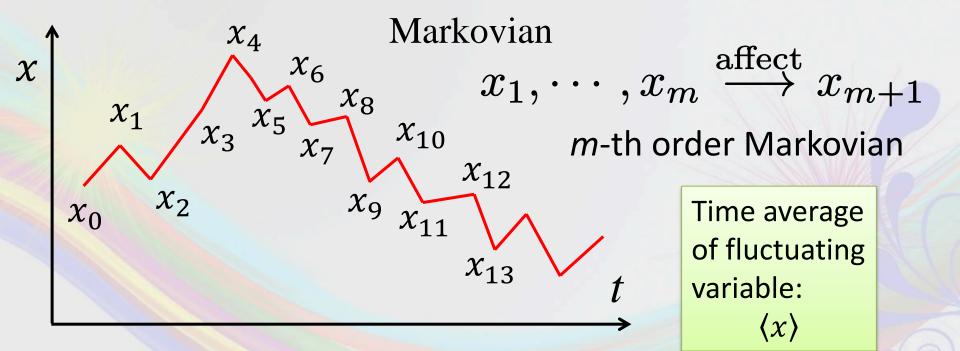
$$\overline{x^n} = \frac{\sqrt{2\pi}}{i^n} \left[\frac{d^n}{dq^n} u(q) \right]_{q=0}$$

Moments to high orders \rightarrow reconstruction of g(x)

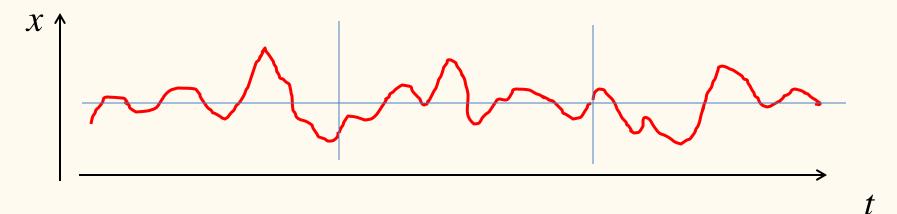
6.1 Fluctuation

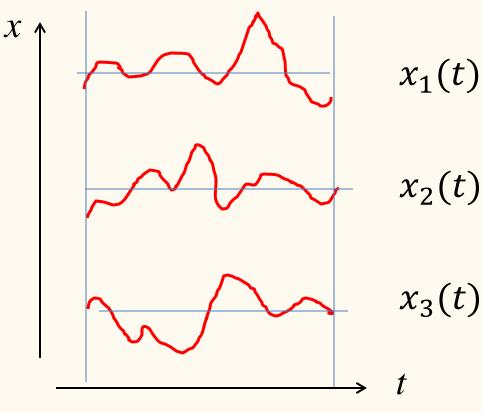
In electric circuits we need to consider two kinds of averages:





Random process to distribution





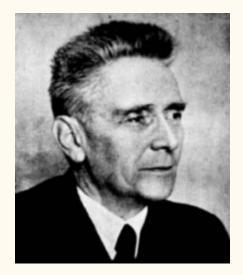
The averaging interval should be longer than *m* in *m*-th order Markovian.

6.1.1 Fluctuation-Dissipation Theorem

Harry Nyquist 1889-1976

久保亮五 Ryogo Kubo 1920-1995

Nobert Wiener 1894-1964



Aleksandr Khinchin 1894-1959

Power Spectrum

Consider probability sets in the interval [0,T).

set index:
$$j$$
 $x_j(t) = \sum_{n=1}^{\infty} (a_{jn} \cos \omega_n t + b_{jn} \sin \omega_n t), \quad \omega_n = \frac{2n\pi}{T}$
 $\mathscr{P}_{jn} = (a_{nj} \cos \omega_n t + b_{nj} \sin \omega_n t)^2$ (Power)
 $\langle \mathscr{P}_n \rangle = \frac{1}{2} \langle a_n^2 + b_n^2 \rangle \quad \because \text{ cross product terms are averaged out}$

Random process: Gaussian distribution in time

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{x^2}{2\sigma^2}\right]$$

$$\overline{(\delta x)^2} = \sigma^2, \quad \left(\sum_{j=1}^m \delta x_j\right)^2 = m\sigma^2$$

Then $\langle \mathscr{P}_n \rangle = \sigma_n^2$ (non-Markovian)

Power spectrum $G(\omega)$

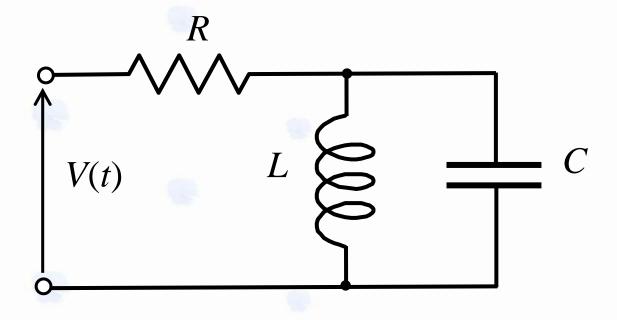
Frequency band width $\delta \omega$: separation between two adjacent frequencies

$$\delta\omega = \omega_{n+1} - \omega_n = \frac{2(n+1)\pi}{T} - \frac{2n\pi}{T} = \frac{2\pi}{T}$$

$$G(\omega_n)\frac{\delta\omega}{2\pi} = \overline{\langle \mathscr{P}_n \rangle} \ (=\sigma_n^2)$$

$$\overline{\langle x^2(t) \rangle} = \sum_{n=1}^{\infty} \overline{\langle \mathscr{P}_n \rangle} \quad (\overline{x(t)} = 0)$$
$$= \sum_n G(\omega_n) \frac{\delta\omega}{2\pi} \to \int_0^\infty G(\omega) \frac{d\omega}{2\pi}$$

6.1.1 Fluctuation-Dissipation Theorem



 $\omega_0 \equiv 1/\sqrt{LC}$

$$Z(i\omega) = \frac{R(\omega_0^2 - \omega^2) + i\omega_0^2 \omega L}{\omega_0^2 - \omega^2},$$
$$Y(i\omega) = \frac{\omega_0^2 - \omega^2}{R(\omega_0^2 - \omega^2) + i\omega_0^2 \omega L},$$

V(t) noise power spectrum $\rightarrow G_v(\omega)$

$$G_v(\omega) = 4k_{\rm B}T {\rm Re}[Z(i\omega)]$$

$$G_v(\omega) = 4k_{\rm B}TR$$

Johnson-Nyquist noise Thermal noise

White noise

One representation of the fluctuation-dissipation theorem

6.1.2 Wiener-Khintchine Theorem

Autocorrelation function $C(\tau) = \overline{\langle x(t)x(t+\tau)\rangle}$

$$= \sum_{n,m} \langle [a_n \cos \omega_n t + b_n \sin \omega_n t] [a_m \cos \omega_m (t + \tau) + b_m \sin \omega_m (t + \tau)] \rangle$$
$$= \frac{1}{2} \sum_n \overline{\langle a_n^2 + b_n^2 \rangle} \cos \omega_n \tau = \sum_n \overline{\langle \mathscr{P}_n \rangle} \cos \omega_n \tau$$
$$= \int_0^\infty G(\omega) \cos \omega \tau \frac{d\omega}{2\pi}$$

$$C(\tau) = \int_0^\infty G(\omega) \cos \omega \tau \frac{d\omega}{2\pi}$$

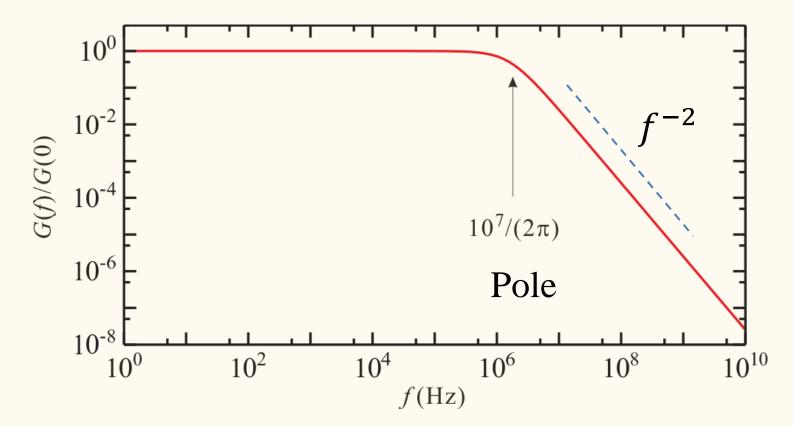
$$G(\omega) = 4 \int_0^\infty C(\tau) \cos \omega \tau d\tau$$
 Wiener-Khintchine theorem

6.1.2 Wiener-Khintchine Theorem

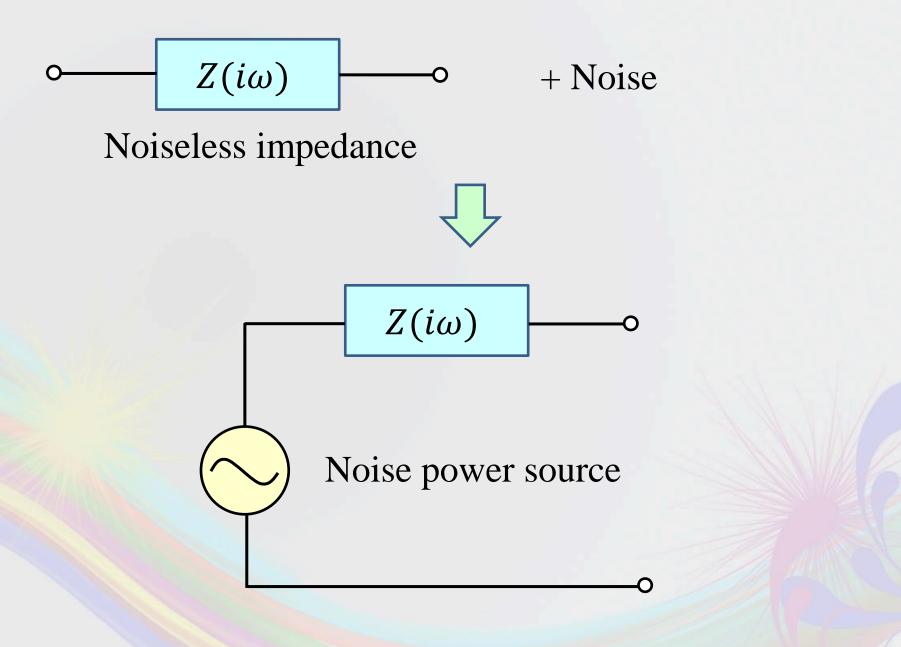
Example)
$$C(\tau) = \exp\left(-\frac{\tau}{\tau_0}\right)$$

 $G(f) = 4 \int_0^\infty e^{-\tau/\tau_0} \cos(2\pi f\tau) d\tau = \frac{4\tau_0}{1 + (2\pi f\tau_0)^2}$

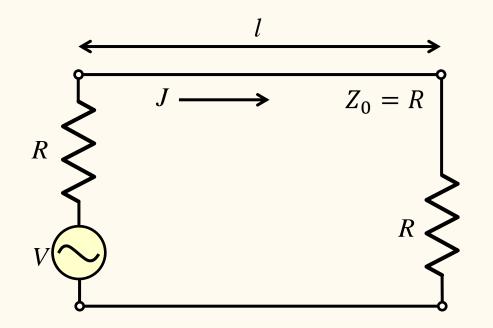
 $\tau_0 = 10^{-7}$ s (10MHz)



6.1.3 Electric circuit treatment of noise



6.1.4 Nyquist Theorem



Mode density on a transmission line with length l

J

$$\omega_n = c^* k_n = \frac{2\pi n c^*}{l} \qquad \therefore \quad \delta \omega = \frac{2\pi c^*}{l}$$

Bidirectional \rightarrow Freedom $\times 2$

Bose distribution

$$f(\hbar\omega, T) = \frac{1}{\exp(\hbar\omega/k_{\rm B}T) - 1}$$

6.1.4 Nyquist Theorem

Thermal energy density per freedom

$$\frac{\hbar\omega}{\exp(\hbar\omega/k_{\rm B}T) - 1} \sim \frac{\hbar\omega}{1 + (\hbar\omega/k_{\rm B}T) - 1} = k_{\rm B}T \quad (k_{\rm B}T \gg \hbar\omega)$$

Thermal energy density in band $\Delta \omega$

 $2\frac{\Delta\omega}{\delta\omega}k_{\rm B}T = \frac{2k_{\rm B}Tl}{2\pi c^*}\Delta\omega$, a half of which flows in one-direction

Energy flowing out from the end:

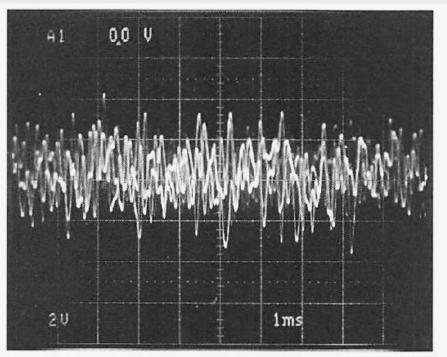
$$\frac{k_{\rm B}Tl}{2\pi c^*}\Delta\omega \times \frac{1}{l} \times c^* = k_{\rm B}T\Delta f \quad (2\pi f = \omega)$$

equals the energy supplied from the noise source.

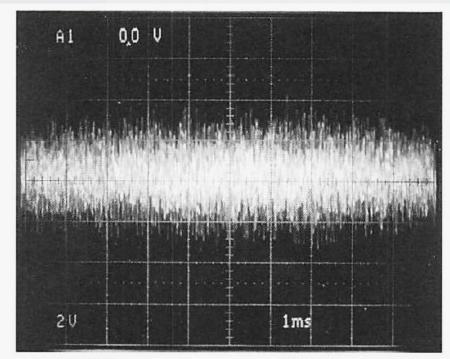
$$\overline{J^2}R = k_{\rm B}T\Delta f, \quad \overline{V^2} = 4Rk_{\rm B}T\Delta f \quad (V = 2RJ)$$

 $\sqrt{\overline{J^2V^2}} = 2k_{\rm B}T\Delta f \quad \rightarrow \text{Noise Temperature}$

Thermal noise



(a) 上限周波数5 kHz (-3dB) 1 Vmsの熱雑音を1 ms/divで観測



(b) 上限周波数100 kHz (-3dB)1 Vmsの熱雑音を1 ms/divで観測

〈写真1-1〉熱雑音の測定



Single Electron

Time domain: δ -function approximation

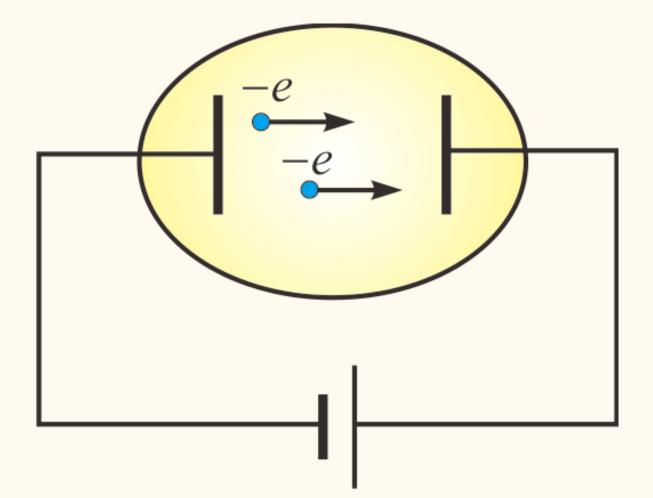
$$J_e(t) = e\delta(t - t_0)$$

= $e \int_{-\infty}^{\infty} e^{2\pi i f(t - t_0)} df = 2e \int_{0}^{\infty} \cos\left[2\pi f(t - t_0)\right] df$

Uniform 2*e* in frequency domain: fluctuation at each frequency Coherent only at $t = t_0$

Current fluctuation density for infinitesimal band df

$$\delta J = d\sqrt{\langle J_e^2 \rangle} = \frac{2e}{\sqrt{2}} df = \sqrt{2}edf$$



Double Electron

$$\overline{\langle \delta j^2 \rangle} = (j_p + j_q e^{i\phi})(j_p + j_q e^{-i\phi}) = j_p^2 + j_q^2 + 2j_p j_q \cos\phi$$

 ϕ : coherent phase shift \rightarrow averaged out

$$\overline{\langle \delta j^2 \rangle} = j_p^2 + j_q^2 = 2 \times (\sqrt{2}e)^2 df$$

N-Electron

$$\overline{\langle \delta J^2 \rangle} = N \times 2e^2 df = 2e\overline{J}df \quad (\overline{J} = eN)$$

Quantum mechanical correlation \rightarrow Modification from random

Example: pn junction

Current-Voltage characteristics: $J(V) = J_0 \left[\exp \left(\frac{eV}{k_{\rm B}T} \right) - 1 \right]$

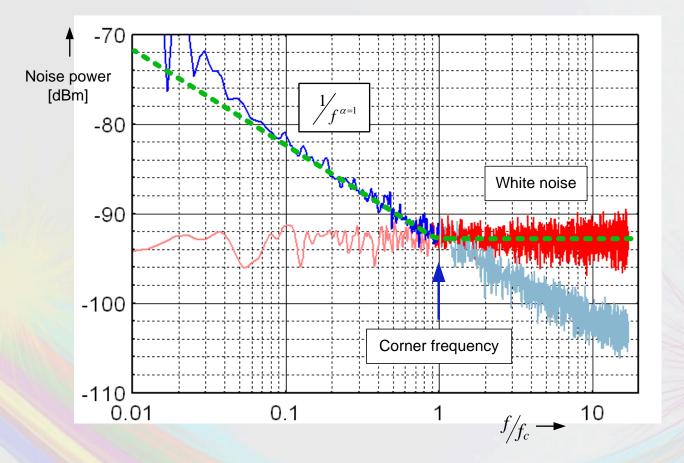
Differential
resistance
$$r_{\rm d} = \left(\frac{dJ}{dV}\right)^{-1} = \left[\frac{eJ_0}{k_{\rm B}T}\exp\left(\frac{eV}{k_{\rm B}T}\right)\right]^{-1} = \frac{k_{\rm B}T}{e}\frac{1}{J+J_0}$$

 $J \gg J_0 \rightarrow r_{\rm d} \sim k_{\rm B}T/eJ$

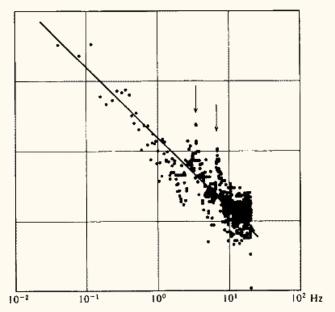
$$\overline{\langle (\delta J)^2 \rangle} = 2e \frac{k_{\rm B}T}{er_{\rm d}} df = 4k_{\rm B}T \frac{1}{2r_{\rm d}} df$$
$$(\delta V)^2 = 4 \frac{r_{\rm d}}{2} k_{\rm B}T \Delta f$$

6.1.6 1/f noise

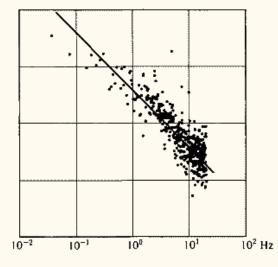
 $(\delta V)^2 = K J^a R^2 \frac{\Delta f}{f^\alpha}$



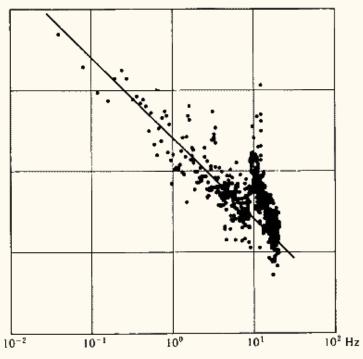
6.1.6 1/f noise



J. S. Bach, Brandenburg Concerto No.1



Kawai Naoko, Smile for me



A. Vivaldi, Four Seasons, Spring

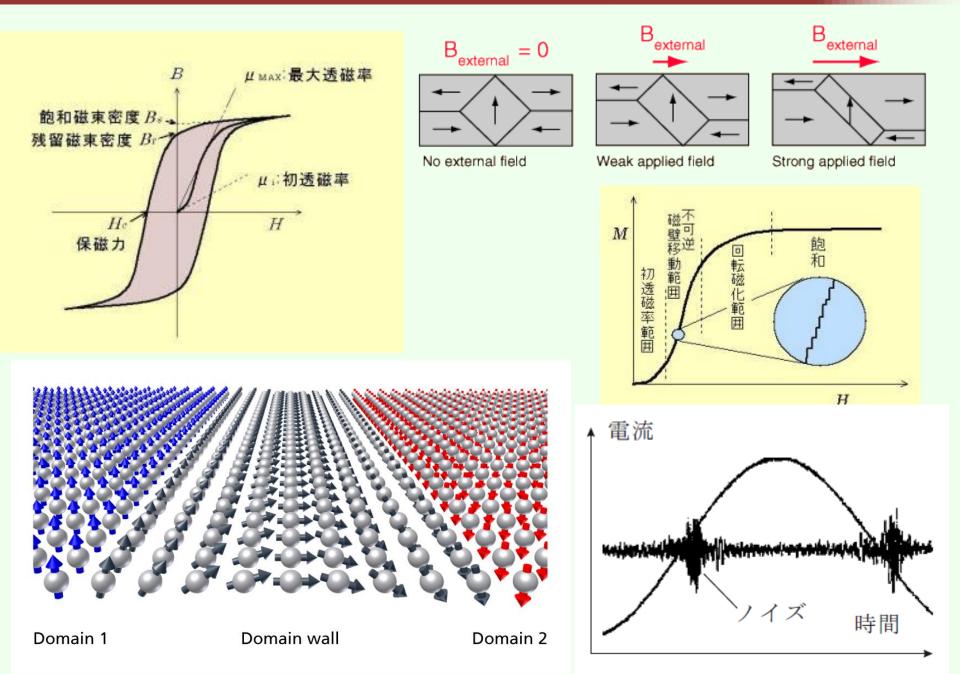


Noise: Power spectrum per frequency

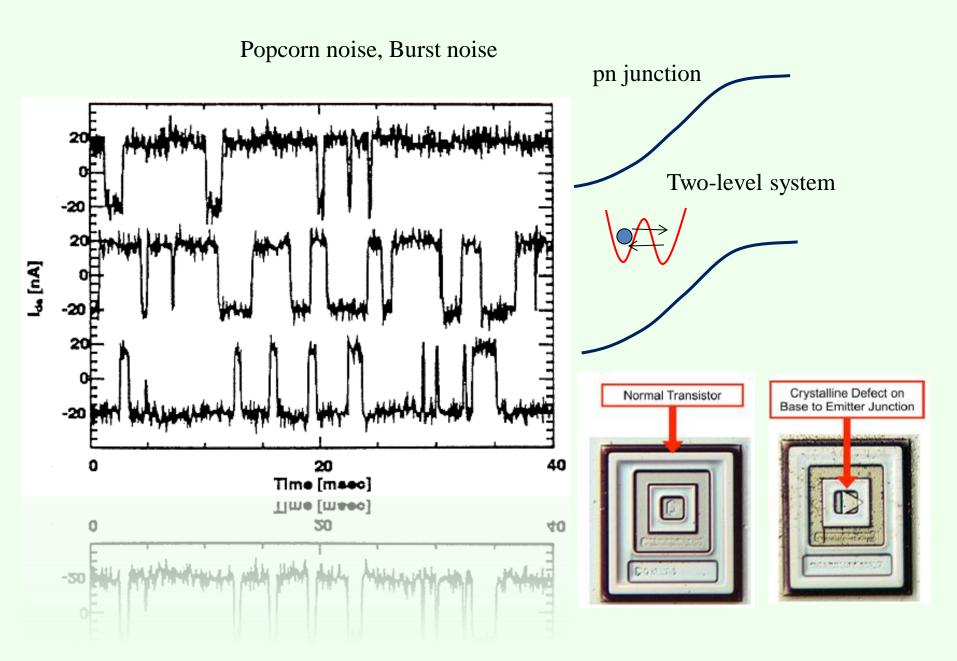
$$\overline{j_n^2} = \overline{\delta J^2} / \Delta f, \quad \overline{e_n^2} = \overline{\delta V^2} / \Delta f$$

unit of $\sqrt{\overline{j_n^2}}, \quad \sqrt{\overline{e_n^2}}$
 $A / \sqrt{\text{Hz}}, \quad V / \sqrt{\text{Hz}}$

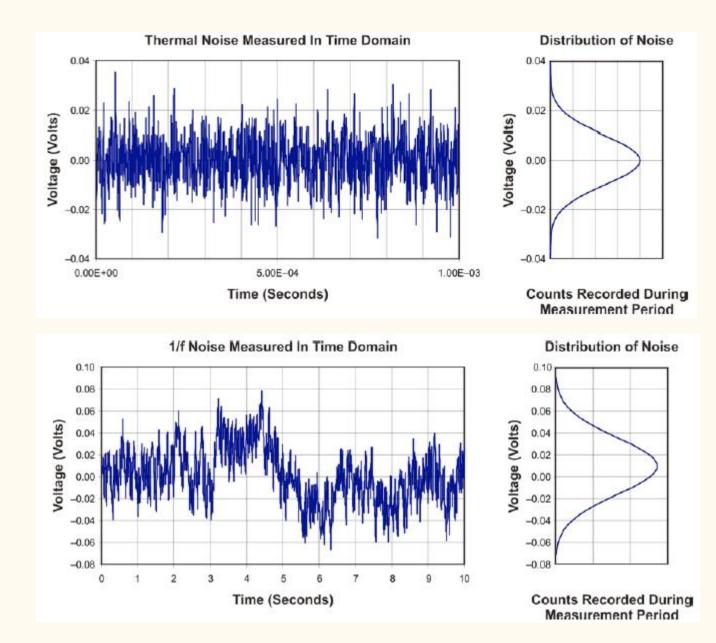
Other noises: Barkhausen noise



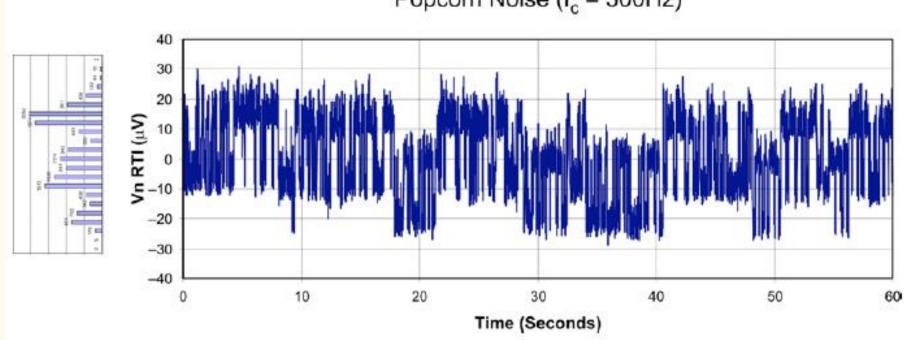
Popcorn noise



Amplitude distributions of random-type noises

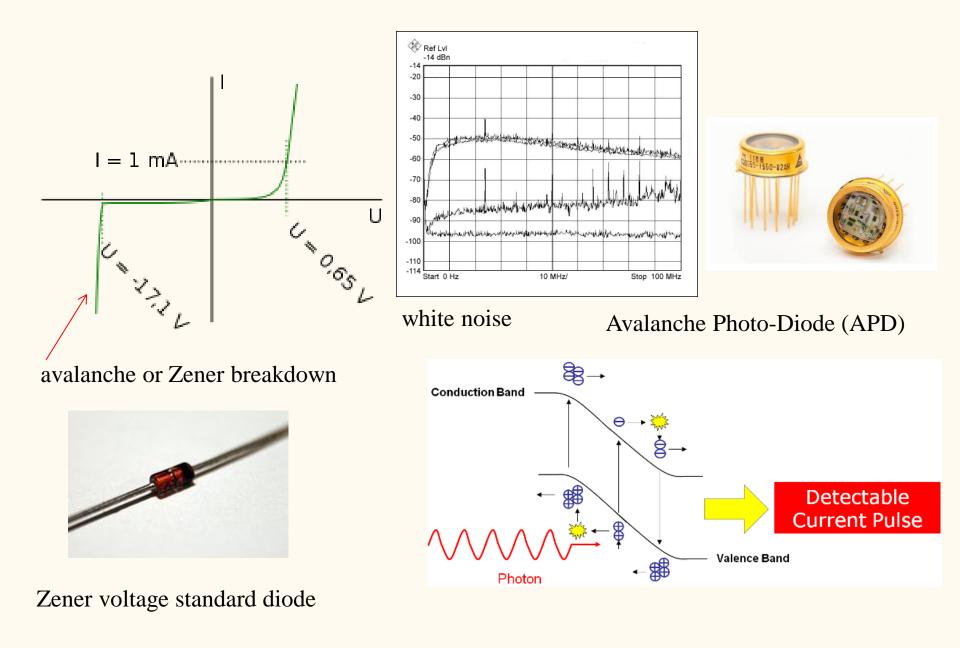


Amplitude distribution of popcorn noise

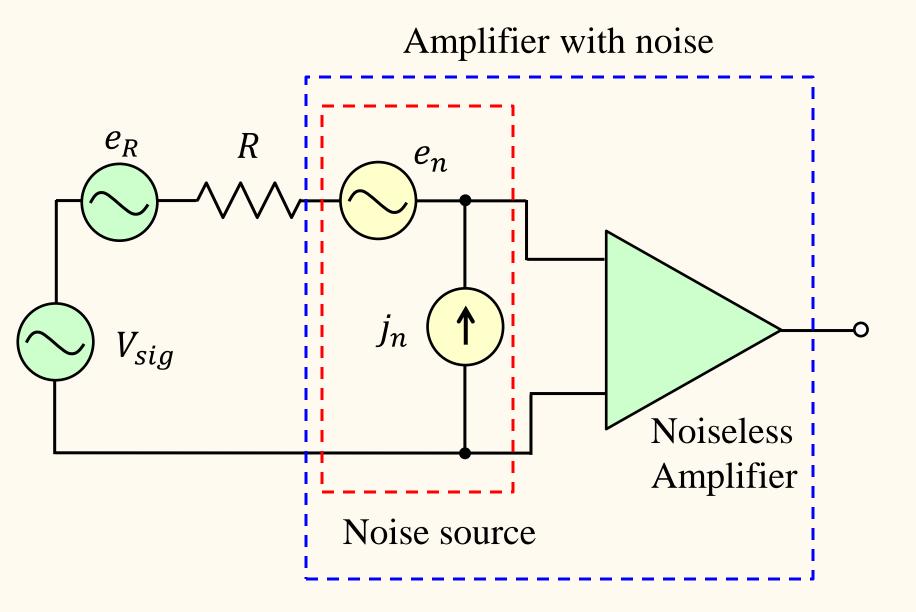


Popcorn Noise (f_c = 300Hz)

Avalanche noise



6.2 Noises from Amplifiers



Amplifiers: the elements have characteristic noises, power sources work as noise sources

Noiseless amplifier + Noise source = Amplifier with noise Power gain G_p

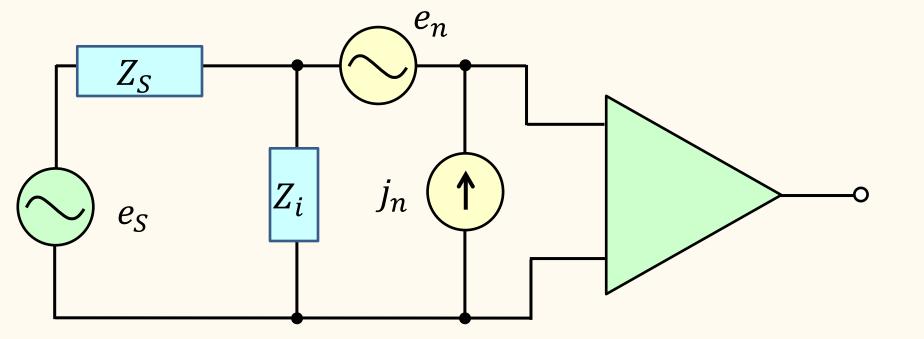
$$e_{\text{intotal}}^2 = j_n^2 R^2 + e_{\text{R}}^2 + e_n^2 = e_{\text{out}}^2 / G_{\text{p}}$$

Signal to noise ratio: S/N ratio

Noise Figure: NF =
$$10 \log_{10} \frac{(S/N)_{\text{in}}}{(S/N)_{\text{out}}} = 10 \log_{10} \frac{S_{\text{in}}N_{\text{out}}}{S_{\text{out}}N_{\text{in}}}$$

 $N_{\text{out}} = G_{\text{p}}\overline{e_{\text{N}}^2}$
NF = $10 \log_{10} \frac{S_{\text{in}}G_{\text{p}}\overline{e_{\text{N}}^2}}{S_{\text{in}}G_{\text{p}}\overline{e_{\text{R}}^2}} = 10 \log_{10} \frac{\overline{e_{\text{N}}^2}}{\overline{e_{\text{R}}^2}} = 10 \log_{10} \frac{\overline{e_{\text{R}}^2} + \overline{e_{\text{R}}^2} + \overline{j_{n}^2}R^2}{\overline{e_{\text{R}}^2}}$

6.2.2 Noise impedance matching



6.2.2 Noise impedance matching

Noise temperature and matched source impedance

$$T_{\rm a} = \frac{\sqrt{\overline{e_n^2} \ \overline{j_n^2}}}{2k_{\rm B}}, \quad R_{\rm bs} = \sqrt{\frac{\overline{e_n^2}}{\overline{j_n^2}}}$$

Output noise temperature:

$$T_{\rm n} = \left(1 + \frac{\operatorname{Re}(1/Z_{\rm i})}{\operatorname{Re}(1/Z_{\rm s})}\right) \frac{T_{\rm a}}{2\operatorname{Re}Z} \left(\frac{|Z|^2}{R_{\rm bs}} + R_{\rm bs}\right), \quad \frac{1}{Z} \equiv \frac{1}{Z_{\rm i}} + \frac{1}{Z_{\rm s}}$$

Minimize T_n : $Z_{\rm i} = \frac{1}{R_{\rm bs}^{-1} - Z_{\rm s}^{-1}}$ Noise matching condition

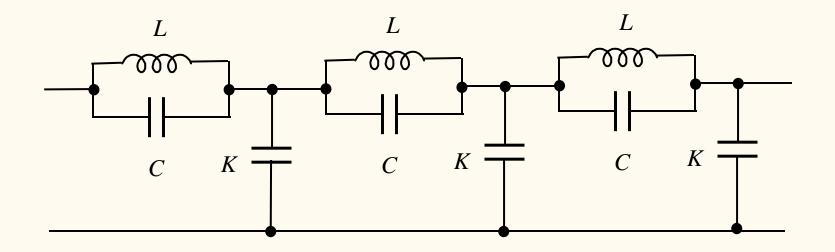
$$T_{\rm n} = \left(1 + \frac{\operatorname{Re}(1/Z_{\rm i})}{\operatorname{Re}(1/Z_{\rm s})}\right) T_{\rm a}$$

C. Kittel, "Elementary Statistical Physics", (Dover, 2004).

遠坂俊昭「計測のためのアナログ回路設計」(CQ出版社, 1997).

Anton F. P. van Putten, "Electronic Measurement Systems", (IOP pub., 1996).

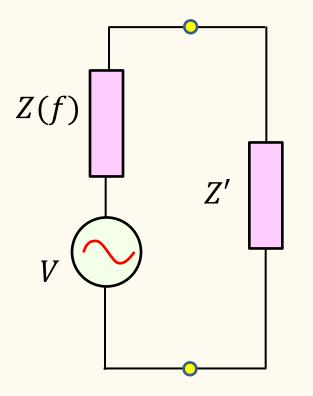
寺本英,広田良吾,武者利光,山口昌哉 「無限・カオス・ゆらぎ」(培風館, 1985). Obtain the dispersion relation in the following transmission line.



Exercise E-2

Show that the power spectrum G(f) of voltage noise across the impedance Z(f) = R(f) + iY(f)is given as $G(f) = 4R(f)k_{\rm B}T.$

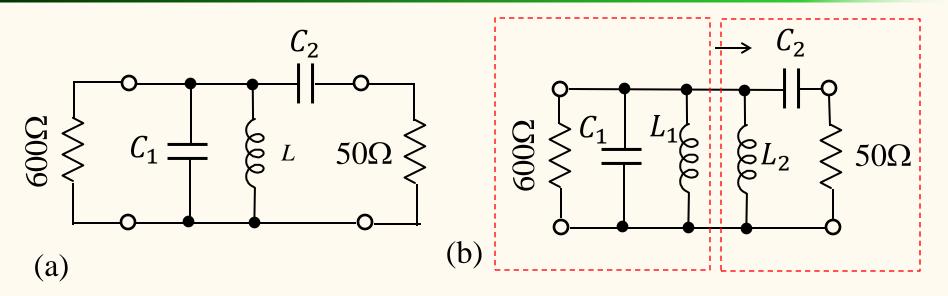
Assume that thermal noise energy per unit time is $k_B T \Delta f$.



(hint) From the above assumption we can skip the discussion on the mode energy in transmission line. Instead consider the case in the left figure, in which Z' is matched to Z as

$$Z'(f) = Z^*(f) = R(f) - iY(f)$$

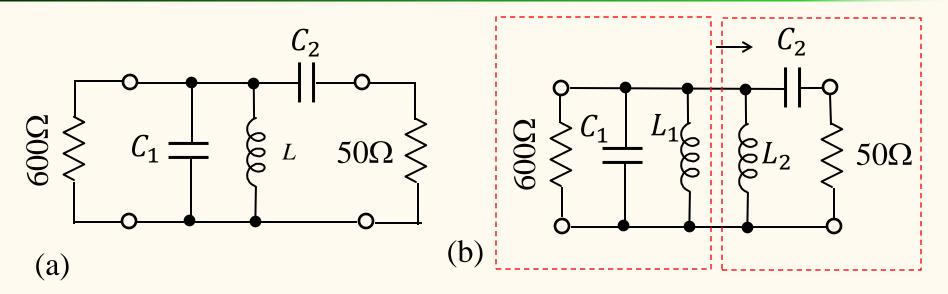
Exercise E-3



A preamplifier with FETs for an FM receiver has the output impedance of 600Ω . The FM receiver has the input impedance of 50Ω and we need to make impedance matching. The central frequency is 85MHz, the effective with of amplification is 10MHz. Obtain C_1 , C_2 , L in the matching circuit with 3 digits significant figures.

(hint) Express L with a parallel of L_1 and L_2 as shown in (b). The left resonance circuit should be tuned to 85MHz, width10MHz. Then the left and the right circuit should be impedance matched.

Exercise E-3



FM受信機のプリアンプをFETで作ったところ,出力インピーダンスが 600Ωになった.受信機の入力インピーダンスは50Ωなので,インピーダ ンスマッチを取る必要がある.中心周波数を85MHz,有効周波数幅を 10MHz,として(a)のような回路でマッチを取ると,回路定数*C*₁,*C*₂,*L*はど うなるか.有効数字3桁で答えよ.

(ヒント)(b)のようにインダクタンスを2つに分割し,左の共鳴回路で 85MHz,10MHz幅に同調させる.この後,左右のインピーダンスが一致 するように定数を求める.