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6.4 Discrete signal 

6.4.1 Sampling theorem 
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6.4.1 Sampling theorem 



6.4.1 Sampling theorem 

“Cutting out” the frequency spectrum 

2p/t 𝜔ℎ: Highest frequency 

 in 𝑋 𝜏(𝜔) 



6.4.1 Sampling theorem: Reconstructing signal 
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6.4.2 Pulse amplitude modulation (PAM) 

t t 

s(t) 

t 
f(t) 

Carrier: 𝛿𝜏(𝑡) 

Demodulation = Reconstruction of continuous signal  

from sampled data. 



Demodulation of PAM and a trick in the sampling theorem 

In the sampling theorem, though we only have discrete-time 
data, we can reconstruct complete original signal. 

↑ 

Assumption: we have data in infinite period [−∞, +∞]. 

However in actual situations we can never have such data. 

Need to consider handling data in a finite period. 



6.4.3 Discrete Fourier transform 
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𝑓 (𝑡) 

Fourier expansion: 

Assumption: 

can be assumed without 

loosing generality 



6.4.3 Discrete Fourier transform 

Twiddle factor: 

Discreteness: 



6.4.3 Discrete Fourier transform 

Twiddle factor: 

Discrete Fourier transform: 

(DFT) 



6.4.3 Discrete Fourier transform 



6.4.4 z-transform 

Discrete Laplace transform: z-transform 

one-sided z-transform 



6.4.4 z-transform 



6.4.4 z-transform 



6.4.5 Transfer function for discrete time signal 

ℎ𝑛: (impulse) response to 𝛿(𝑛𝜏), response to discrete signal 𝑓𝑛 = 𝑓 (𝑛𝜏) 

  

: Transfer function 



Crystal lattice and X-ray diffraction 
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Optical Frequency Comb 



Frequency Comb 

Theodor Hänsch, Max-Planck Institute, Science 2008 



Measurement of the Doppler effect in cosmic expansion 



Byzantine mosaic 

Chartres Blue 

(Stained glass) 

Chapter 7 

Digital signal 

 and circuits 



Ch.7 Digital signal and circuits 

t 

s (t) 

t 2t 5t 

Discrete time analog 

t 
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Value discretized → Digital signal 

Signal unit : 0 xor 1 (bit) 

Boolean algebra : F xor T 

Voltage level : L xor H 

Multiple bit → binary operation → parallel signal 



7.2 Logic gates 

Digital signal=logic value  Logic operation : logic gates 

Combinational logic  Truth table 

Sequential logic  Timing chart 

De Morgan's laws: 𝑥 + 𝑦 = 𝑥 ∙ 𝑦 ,  𝑥 ∙ 𝑦 = 𝑥 + 𝑦  



7.2.1 Combinational logic: Single input gates 

Truth table Circuit symbol 



7.2.2 Combinational logic: Double input gates  



7.2.3 Sequential logic: Flip-Flop (FF) 

RS (reset-set) Flip-Flop (FF) 

Symbol 

Truth table 

Equivalent circuit with discrete gates 



7.2.3 Sequential logic: Flip-Flop (FF) 

JK Flip-Flop 

Symbol 

Truth table 

Equivalent circuit with discrete gates 



7.2.3 Sequential logic: D-FF, T-FF 

D-FF 

T-FF 

Symbol 

Symbol 

Truth table 

Truth table 



7.2.4 Sequential logic: Counters 

Unsynchronized 

counter 

(ripple counter) 

Timing 

chart 



7.2.4 Sequential logic: Counters 

Synchronized counter 

Equivalent 

circuit with 

discrete gates 

Timing chart 



7.3 Implementation of logic gates 

TTL (transistor-transistor logic) CMOS (complimentary MOS) 

NAND gates 



7.3 Implementation of logic gates 

LT Spice 

simulation 



7.3 Implementation of logic gates 

Voltage levels diagram 



TTL logic family evolution 

Legacy: don’t use 

in new designs 

Widely used today 



CMOS logic family evolution 

obsolete 

• Reduction of dynamic losses through 

successively decreasing supply voltages: 

12V  5V  3.3V  2.5V  1.8V 

CD4000               LVC/ALVC/AVC 

• Power reduction is one of the keys to 

progressive growth of integration 

General trend: 



Summary 

TTL 

Logic 

Family 

CMOS 

TPD       Trise/fall       VIH,min      VIL,max      VOH,min     VOL,max  
Noise 

Margin 



Exercise F-1 

Show that the following circuit works as a demodulator of 

frequency modulation (FM) signal (quadrature demodulator).  

Phase shifter 

multiplier input 
output Low-pass 

filter 

Here the phase shifter gives the shift 

proportional to the frequency difference 

between input and the career frequency 

𝜔0. The shift at 𝜔0 is 𝜋/2 as shown in 

the right (this can be achieved with 

resonant circuits). The low-pass filter 

cuts components with frequencies as 

high as 𝜔0. 
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Exercise F-1 

(hint)  Assume the original signal 𝑓(𝑡) is much slower than 

the carrier 𝐴 cos 𝜔0𝑡 . Then the input can be  

approximated as 

Then the phase shifter output is  

Taking product and high-frequency filtering gives … 

(use 𝑎𝑘𝑓𝑓(𝑡) ≪ 1). 



Exercise F-2 

In the following phase lock loop (PLL) circuit, the initial (𝑡 = 0) 

oscillation frequency of voltage-controlled oscillator (VCO) 𝜔 

deviates from 𝑁𝜔0 by ∆𝜔. Obtain the relaxation time of 𝜔 to 𝑁𝜔0. 

𝑁- divider 

Phase 

comparator 

Loop 

filter 
VCO 

Output 

freq. 𝜔 

Input 

freq. 𝜔0 

freq. 𝜔/𝑁 

𝑉𝑐(𝜃𝑖 − 𝜃𝑜/𝑁) gain 𝐺𝑝 

phase 𝜃𝑜 phase 𝜃𝑖 

(hint) Here we can put 𝜃𝑖 = 0 hence input = 𝑉𝑖 sin𝜔0𝑡 without 

loosing generality. Similarly output = 𝑉𝑜 sin 𝑁𝜔0𝑡 + 𝜃𝑜(𝑡) . 

Now 𝜔 = 𝑁𝜔0 + 𝑑𝜃𝑜/𝑑𝑡 and it is easy to write 𝑑𝜃𝑜/𝑑𝑡 with 𝐴, 

𝐺𝑝, 𝑉𝑐, 𝜃𝑜(𝑡) and a constant. 

Coef. 𝐴 for freq. shift 



Exercise F-3 

Solve the difference equation below with z-transform. 

(hint) z-transform of 𝑛 is  as in the table (slide no.14). 

Then z-transform of 𝑥(𝑛) : 𝑋(𝑧) is easily obtained. Inverse z-

transform gives 𝑥 𝑛 . 

Answer sheet submission deadline: 11th Jan. 2017. 


