

 shopm ch cu trioc Peysitists

Outline

6.4 Discrete signal
6.4.1 Sampling theorem
6.4.2 Pulse amplitude modulation (PAM)
6.4.3 Discrete Fourier transform
6.4.4 z-transform
6.4.5 Transfer function of discrete time signal

Ch. 7 Digital signals and circuits
7.2 Logic gates
7.3 Implementation of logic gates
7.4 Circuit implementation and simplification of logic operation

6．4 Discrete signal

6．4．1 Sampling theorem

Sampled signal $\quad \tilde{x}(t)=x(t) \delta_{\tau}(t)$

Isao Someya 1915－2007

Claude Shannon 1916－2001

1928 H．Nyquist 1949 C．Shannon染谷勲

6.4.1 Sampling theorem

$$
\begin{aligned}
\delta_{\tau}(t) & =\sum_{j=-\infty}^{\infty} \delta(t-j \tau)=\sum_{n=-\infty}^{\infty}\left[\frac{1}{\tau} \int_{-\pi / \tau}^{\pi / \tau} \delta(s) d s\right] \exp \left(-i n \frac{2 \pi}{\tau} t\right) \\
& =\frac{1}{\tau} \sum_{n=-\infty}^{\infty} \exp \left(-i n \frac{2 \pi}{\tau} t\right) \\
\mathscr{F}\left\{\delta_{\tau}(t)\right\} & =\int_{-\infty}^{\infty}\left[\frac{1}{\tau} \sum_{-\infty}^{\infty} e^{-i n(2 \pi / \tau) t}\right] e^{i \omega t} d t=\frac{1}{\tau} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[i\left(\omega-n \frac{2 \pi}{\tau}\right) t\right] d t \\
& =\frac{2 \pi}{\tau} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{\tau}\right)=\frac{2 \pi}{\tau} \delta_{2 \pi / \tau}(\omega)
\end{aligned}
$$

$$
\mathscr{F}\{x(t)\}=X(\omega), \mathscr{F}\left\{\tilde{x}_{\tau}(t)\right\}=\tilde{X}_{\tau}(\omega)
$$

$$
\tilde{X}_{\tau}(\omega)=\frac{1}{2 \pi} X(\omega) * \frac{2 \pi}{\tau} \delta_{2 \pi / \tau}(\omega)=\frac{1}{\tau} X(\omega) * \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{\tau}\right)
$$

$$
=\frac{1}{\tau} \int_{-\infty}^{\infty} X\left(\omega^{\prime}\right)\left\{\sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{\tau}-\omega^{\prime}\right)\right\} d \omega^{\prime}=\frac{1}{\tau} \sum_{n=-\infty}^{\infty} X\left(\omega-n \frac{2 \pi}{\tau}\right)
$$

6.4.1 Sampling theorem

6.4.1 Sampling theorem: Reconstructing signal

$$
\begin{aligned}
x(t) & =\tau \frac{1}{\tau} \operatorname{sinc}\left(\frac{t}{\tau}\right) * \tilde{x}_{\tau}(t)=\operatorname{sinc}\left(\frac{t}{\tau}\right) * \sum_{n=-\infty}^{\infty} x(t) \delta(t-n \tau) \\
& =\int_{-\infty}^{\infty} \operatorname{sinc}\left(\frac{s}{\tau}\right) \sum_{n=-\infty}^{\infty} x(t-s) \delta(t-n \tau-s) d s=\sum_{n=-\infty}^{\infty} \operatorname{sinc}\left(\frac{t-n \tau}{\tau}\right) x(n \tau)
\end{aligned}
$$

6.4.2 Pulse amplitude modulation (PAM)

$$
s(t)=f(t) \delta_{\tau}(t)=\sum_{n=-\infty}^{\infty} f(t) \delta(t-n \tau)
$$

Demodulation $=$ Reconstruction of continuous signal from sampled data.

$$
f(t)=\mathscr{F}^{-1}\left\{P_{\pi / \tau}(\omega) \mathscr{F}\{s(t)\}\right\}
$$

Demodulation of PAM and a trick in the sampling theore

In the sampling theorem, though we only have discrete-time data, we can reconstruct complete original signal.

\uparrow

Assumption: we have data in infinite period $[-\infty,+\infty]$.

However in actual situations we can never have such data.

Need to consider handling data in a finite period.

6.4.3 Discrete Fourier transform

Assumption:
$F(\omega)=\mathscr{F}\{f(t)\}$, not zero in $\omega \in\left(-\frac{\pi}{\tau}, \frac{\pi}{\tau}\right)$

$$
N=\frac{\zeta}{\tau} \in \mathbb{N}
$$

can be assumed without loosing generality

$$
\breve{f}(t)=\sum_{n=-\infty}^{\infty} f(t-n \zeta), \quad \breve{F}(\omega)=\sum_{n=-\infty}^{\infty} F\left(\omega+n \frac{2 \pi}{\zeta}\right)
$$

$$
\left(\breve{f}(t)=\left(f * \delta_{\zeta}\right)(t)=\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) \delta(t-n \zeta-\xi) d \xi\right)
$$

Fourier expansion: $\quad \breve{f}(t)=\frac{1}{\zeta} \sum_{n=-\infty}^{\infty} F\left(n \frac{2 \pi}{\zeta}\right) \exp \left(2 n \pi i \frac{t}{\zeta}\right)$

6.4.3 Discrete Fourier transform

$$
\begin{gathered}
n=l+m N \quad \sum_{n=-\infty}^{\infty} \rightarrow \sum_{l=0}^{N-1} \sum_{m=-\infty}^{\infty} \quad t=j \tau \quad j \in \mathbb{Z} \\
\begin{aligned}
& \breve{f}(j \tau)=\frac{1}{\zeta} \sum_{l=0}^{N-1} \sum_{m=-\infty}^{\infty} F\left[(l+m N) \frac{2 \pi}{\zeta}\right] \exp \left[(l+m N) 2 \pi i \frac{j \tau}{\zeta}\right] \\
&=\frac{1}{N \tau} \sum_{l=0}^{N-1} \sum_{m=-\infty}^{\infty} F\left(\frac{2 \pi l}{\zeta}+m \frac{2 \pi}{\tau}\right) \exp \left(2 \pi i \frac{l j}{N}\right) \\
&= \frac{1}{N \tau} \sum_{l=0}^{N-1} \breve{F}\left(l \frac{2 \pi}{\zeta}\right) \exp \left(2 \pi i \frac{l j}{N}\right) \\
& \text { Twiddle factor: } W_{N} \equiv \exp \left(-i \frac{2 \pi}{N}\right) \\
& \eta \equiv \frac{2 \pi}{\zeta} \quad \breve{f}(j \tau)=\frac{1}{N \tau} \sum_{l=0}^{N-1} \breve{F}(l \eta) W_{N}^{-l j}
\end{aligned}
\end{gathered}
$$

6.4.3 Discrete Fourier transform

$$
\forall n, m \in \mathbb{Z} \quad W_{N}^{n+m N}=W_{N}^{n},
$$

Twiddle factor:

$$
\frac{1}{N} \sum_{n=0}^{N-1} W_{N}^{n m}= \begin{cases}1 & \text { for } \quad m=0 \\ 0 & \text { for } \quad m \neq 0\end{cases}
$$

$$
\tau \sum_{j=0}^{N-1} \breve{f}(j \tau) W_{N}^{m j}=\sum_{j=0}^{N-1}\left[\frac{1}{N} \sum_{l=0}^{N-1} \breve{F}(l \eta) W_{N}^{(m-l) j}\right]=\breve{F}(m \eta)
$$

$$
f_{n} \equiv \breve{f}(n \tau), \quad F_{k} \equiv \frac{1}{\tau} \breve{F}(k \eta)
$$

Discrete Fourier transform:

$$
F_{k}=\sum_{n=0}^{N-1} f_{n} W_{N}^{k n},
$$

(DFT)

$$
f_{n}=\frac{1}{N} \sum_{k=0}^{N-1} F_{k} W_{N}^{-k n} .
$$

6.4.3 Discrete Fourier transform

$$
\begin{gathered}
\boldsymbol{F}={ }^{t}\left\{F_{i}\right\}, \boldsymbol{W}=\left\{W_{N}^{i j}\right\}, \boldsymbol{f}={ }^{t}\left\{f_{i}\right\} \\
\boldsymbol{F}=\boldsymbol{W} \boldsymbol{f}, \quad \boldsymbol{f}=\frac{1}{N} \boldsymbol{W}^{*} \boldsymbol{F} \\
{ }^{t} \boldsymbol{W}^{*} \boldsymbol{W}=N \boldsymbol{I}_{N} \quad \text { i.e., } \frac{1}{\sqrt{N}} \boldsymbol{W}: \text { unitary }
\end{gathered}
$$

6.4.4 z-transform

Discrete Laplace transform: z-transform

$$
\begin{gathered}
\tilde{f}_{\tau}(t)=\sum_{n=0}^{\infty} f(n \tau) \delta(t-n \tau) \quad(t \geq 0) \\
\mathscr{L}\left\{\tilde{f}_{\tau}(t)\right\}(s)=\mathscr{L}\left\{\sum_{n=0}^{\infty} f(n \tau) \delta(t-n \tau)\right\} \\
=\sum_{n=0}^{\infty} f(n \tau) \mathscr{L}\{\delta(t-n \tau)\}=\sum_{n=0}^{\infty} f(n \tau) \exp (-s n \tau) \\
z=\exp (s \tau), f_{n}=f(n \tau), F(z)=\mathscr{L}\left\{\tilde{f}_{\tau}(t)\right\}
\end{gathered}
$$

$$
F(z)=\sum_{n=0}^{\infty} f_{n} z^{-n}=\mathscr{Z}\left[\tilde{f}_{\tau}(t)\right]
$$

6.4.4 z-transform

f_{n}	$F(z)$	conversion area
$\delta(n)$	$\frac{1}{1-z^{-1}}$	z-plane
1	$\frac{z^{-1}}{\left(1-z^{-1}\right)^{2}}$	$\|z\|>1$
n	$\left(-z \frac{d}{d z}\right)^{k} \frac{1}{1-z^{-1}}$	$\|z\|>1$
n^{k}	$\frac{1}{1-a z^{-1}}$	$\|z\|>1$
a^{n}	$\frac{\sin (\omega \tau) z^{-1}}{1-2 \cos (\omega \tau) z^{-1}+z^{-2}}$	$\|z\|>1$
$\sin (n \omega \tau)$	$\frac{1-e^{-\alpha \tau} \cos (\omega \tau) z^{-1}}{1-2 e^{-\alpha \tau} \cos (\omega \tau) z^{-1}+e^{-2 \alpha \tau} z^{-2}}$	$\|z\|>e^{-\alpha \tau}$

6.4.4 z-transform

Property	Signal	z-transform
linearity	$a f_{n}+b g_{n}$	$a F(z)+b G(z)$
z-domain scaling	$f_{\alpha n}$	$F\left(z^{1 / \alpha}\right)$
time shift	f_{n+k}	$z^{k}\left[F(z)-\sum_{l=0}^{k-1} f(l) z^{l}\right]$
time shift II	f_{n-k}	$z^{-k} F(z)$
scaling	$e^{\mp \alpha n} f_{n}$	$F\left(e^{ \pm \alpha} z\right)$
scaling II	$a^{n} x_{n}$	$-z\left(a^{-1} z\right)$
product with index	$n f_{n}$	$\left(z \frac{d}{d z} F(z)\right.$
differentiation	$n^{k} f_{n}$	$\left(-z \frac{d}{d z}\right)^{n} F(z)$
integration	$\frac{f_{n}}{n+a}$	$z^{a} \int_{z}^{\infty} \xi^{-a+1} F(\xi) d \xi$
convolution	$f_{n} * g_{n}$	$F(z) \cdot G(z)$
product	$f_{n} \cdot g_{n}$	$\frac{1}{2 \pi i} \oint_{c} F(\xi) G\left(\frac{z}{\xi}\right) \xi^{-1} d \xi$

6.4.5 Transfer function for discrete time signal

$$
\tilde{f}_{\tau}(t)=f(t) \delta_{\tau}(t)=\sum_{k=-\infty}^{\infty} f_{k} \delta(t-k \tau)
$$

h_{n} : (impulse) response to $\delta(n \tau)$, response to discrete signal $f_{n}=f(n \tau)$

$$
\begin{aligned}
& g_{n}=\mathscr{R}\left\{\tilde{f}_{\tau}(n \tau)\right\}=\mathscr{R}\left\{\sum_{k^{\prime}=-\infty}^{\infty} f\left(k^{\prime} \tau\right) \delta\left[\left(n-k^{\prime}\right) \tau\right]\right\} \\
&=\sum_{k^{\prime}=-\infty}^{\infty} f_{k^{\prime}} h_{n-k^{\prime}}=\sum_{k=-\infty}^{\infty} h_{k} f_{n-k} \\
& G(z)=\mathscr{Z}\left[g_{n}\right]=\mathscr{Z}\left[\sum_{k=0}^{\infty} h_{k} f_{n-k}\right]=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} h_{k} f_{n-k}\right) z^{-n} \\
&=\sum_{k=0}^{\infty} h_{k} \sum_{n=0}^{\infty} f_{n-k} z^{-n}=\sum_{k=0}^{\infty} h_{k} z^{-k} F(z) \\
& H(z)=\mathscr{Z}\left[h_{n}\right]=\sum_{k=0}^{\infty} h_{k} z^{-k} \quad: \text { Transfer function } \\
& G(z)=H(z) F(z)
\end{aligned}
$$

Crystal lattice and X-ray diffraction

Max von Laue
1879-1960
Laue pattern

Diamond lattice

[100]
[111]

Optical Frequency Comb

Optical Frequency Comb

beam splitter

beat note
detector

\longrightarrow frequency

Frequency Comb

Measurement of the Doppler effect in cosmic expansion

Byzantine mosaic

Chapter 7

Digital signal and circuits

Chartres Blue (Stained glass)

Ch. 7 Digital signal and circuits

Value discretized \rightarrow Digital signal
Signal unit : 0 xor 1 (bit)
Boolean algebra: F xor T
Voltage level : L xor H

Multiple bit \rightarrow binary operation \rightarrow parallel signal

7.2 Logic gates

Digital signal=logic value \rightarrow Logic operation : logic gates
De Morgan's laws: $\overline{x+y}=\bar{x} \cdot \bar{y}, \overline{x \cdot y}=\bar{x}+\bar{y}$

input							output				
		t_{1}	t_{2}	\cdots	t_{m}		t_{1}	t_{2}	\cdots	t_{m}	
Ch.	1	0	1	\cdots	$f_{1 m}$	1	1	1	\cdots	$q_{1 m}$	
	2	1	0	\cdots	$f_{2 m}$	2	0	1	\cdots	$q_{2 m}$	
	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	
	n	0	1	\cdots	$f_{n m}$	l	0	1	\cdots	$f_{l m}$	

Combinational logic \rightarrow Truth table
Sequential logic \rightarrow Timing chart

7.2.2 Combinational logic: Double input gates

input1	input 2	and	or	xor	nand
0	0	0	0	0	1
1	0	0	1	1	1
0	1	0	1	1	1
1	1	1	1	0	0

and

nand

or

nor

xor

RS (reset-set) Flip-Flop (FF)

Truth table

S	R	Q	$\overline{\mathrm{Q}}$	Response
0	0	Q	$\overline{\mathrm{Q}}$	no change
0	1	0	1	reset
1	0	1	0	set
1	1	undetermined		

Symbol

Equivalent circuit with discrete gates

7.2.3 Sequential logic: Flip-Flop (FF)

JK Flip-Flop

J	K	Q	Q for the next CLK
0	0	0	0
0	0	1	1
0	1	-	0
1	0	-	1
1	1	0	1
1	1	1	0

Symbol

Equivalent circuit with discrete gates

7.2.3 Sequential logic: D-FF, T-FF

Truth table

7.2.4 Sequential logic: Counters

Unsynchronized counter (ripple counter)

Timing chart

7.2.4 Sequential logic: Counters

Synchronized counter
Equivalent circuit with discrete gates

Timing chart

7.3 Implementation of logic gates

NAND gates

TTL (transistor-transistor logic)
CMOS (complimentary MOS)

7.3 Implementation of logic gates

LT Spice simulation

盽 Draft1.raw

7.3 Implementation of logic gates

Voltage levels diagram

TTL logic family evolution

Legacy: don't use
Widely used today in new designs

CMOS logic family evolution

obsolete

General trend:

- Reduction of dynamic losses through successively decreasing supply voltages:

$12 \mathrm{~V} \rightarrow 5 \mathrm{~V} \rightarrow 3.3 \mathrm{~V} \rightarrow 2.5 \mathrm{~V} \rightarrow 1.8 \mathrm{~V}$ CD4000 LVC/ALVC/AVC

- Power reduction is one of the keys to progressive growth of integration

Summary

TTL

Logic Family	T_{PD}	$\mathrm{T}_{\text {rise/fall }}$	$\mathrm{V}_{\mathbf{I H}, \text { min }}$	$\mathrm{V}_{\text {IL,max }}$	$\mathrm{V}_{\mathrm{OH}, \text { min }}$	$\mathbf{V}_{\text {OL,max }}$	Noise Margin
(74)	22ns		2.0 V	0.8 V	2.4 V	0.4 V	0.4 V
74LS	15ns		2.0 V	0.8 V	2.7 V	0.5 V	0.3 V
74F	5ns	2.3 ns	2.0 V	0.8 V	2.7 V	0.5 V	0.3 V
74AS	4.5ns	1.5 ns	2.0 V	0.8 V	2.7 V	0.5 V	0.3 V
74ALS	11 ns	2.3 ns	2.0 V	0.8 V	2.5 V	0.5 V	0.3 V
ECL	1.45 ns	0.35 ns	$-1.165 \mathrm{~V}$	-1.475V	-1.025V	-1.610V	0.135 V
($\overline{40} \overline{0} 0{ }^{-}$	250ns	90ns	3.5 V	1.5 V	4.95 V	0.05 V	1.45 V
74 C	90ns		3.5 V	1.5 V	4.5 V	0.5 V	1 V
74HC I	18 ns	3.6 ns	3.5 V	1.0 V	4.9 V	0.1 V	0.9 V
74HCT	23 ns	3.9 ns	2.0 V	0.8 V	4.9 V	0.1 V	0.7 V
74 AC -	9ns	1.5 ns	3.5 V	1.5 V	4.9 V	0.1 V	1.4 V
74 ACT ,	9ns	1.5 ns	2.0 V	0.8 V	4.9 V	0.1 V	0.7 V
74 AHC -	3.7 ns		3.85 V	1.65 V	4.4 V	0.44 V	0.55 V
CMOS							

Exercise F-1

Show that the following circuit works as a demodulator of frequency modulation (FM) signal (quadrature demodulator).

Here the phase shifter gives the shift proportional to the frequency difference between input and the career frequency ω_{0}. The shift at ω_{0} is $\pi / 2$ as shown in
 the right (this can be achieved with resonant circuits). The low-pass filter cuts components with frequencies as high as ω_{0}.
(hint) Assume the original signal $f(t)$ is much slower than the carrier $A \cos \left(\omega_{0} t\right)$. Then the input can be approximated as

$$
s(t)=A \cos \left\{\left[\omega_{0}+k_{f} f(t)\right] t\right\}
$$

Then the phase shifter output is

$$
q_{\mathrm{ps}}(t)=A \sin \left\{\left[\omega_{0}+k_{f} f(t)\right] t-a k_{f} f(t)\right\}
$$

Taking product and high-frequency filtering gives ... (use $a k_{f} f(t) \ll 1$).

In the following phase lock loop (PLL) circuit, the initial $(t=0)$ oscillation frequency of voltage-controlled oscillator (VCO) ω deviates from $N \omega_{0}$ by $\Delta \omega$. Obtain the relaxation time of ω to $N \omega_{0}$.

(hint) Here we can put $\theta_{i}=0$ hence input $=V_{i} \sin \omega_{0} t$ without loosing generality. Similarly output $=V_{o} \sin \left[N \omega_{0} t+\theta_{o}(t)\right]$. Now $\omega=N \omega_{0}+d \theta_{o} / d t$ and it is easy to write $d \theta_{o} / d t$ with A, $G_{p}, V_{c}, \theta_{o}(t)$ and a constant.

Solve the difference equation below with z-transform.

$$
\begin{cases}x(n)-2 x(n-1)=n & (n \geq 0) \\ x(n)=0 & (n<0)\end{cases}
$$

(hint) z -transform of n is $\frac{z}{(z-1)^{2}}$ as in the table (slide no.14).
Then z-transform of $x(n): X(z)$ is easily obtained. Inverse ztransform gives $x(n)$.

Answer sheet submission deadline: $11^{\text {th }}$ Jan. 2017.

