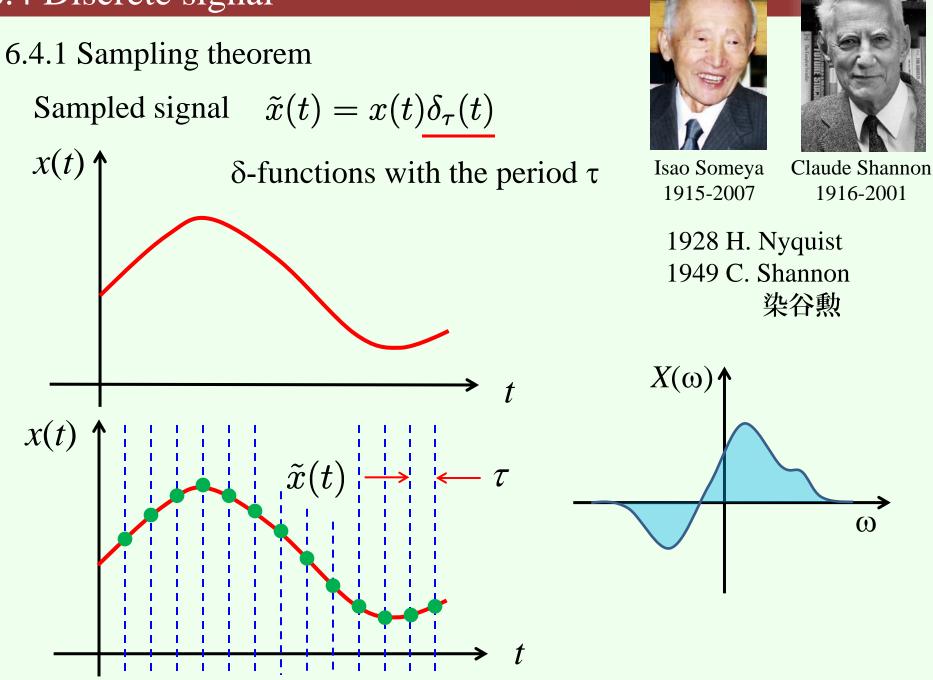
電子回路論第12回 Electric Circuits for Physicists

東京大学理学部・理学系研究科 物性研究所 勝本信吾 Shingo Katsumoto

Outline

6.4 Discrete signal 6.4.1 Sampling theorem 6.4.2 Pulse amplitude modulation (PAM) 6.4.3 Discrete Fourier transform 6.4.4 z-transform 6.4.5 Transfer function of discrete time signal Ch.7 Digital signals and circuits 7.2 Logic gates 7.3 Implementation of logic gates 7.4 Circuit implementation and simplification of logic operation

6.4 Discrete signal



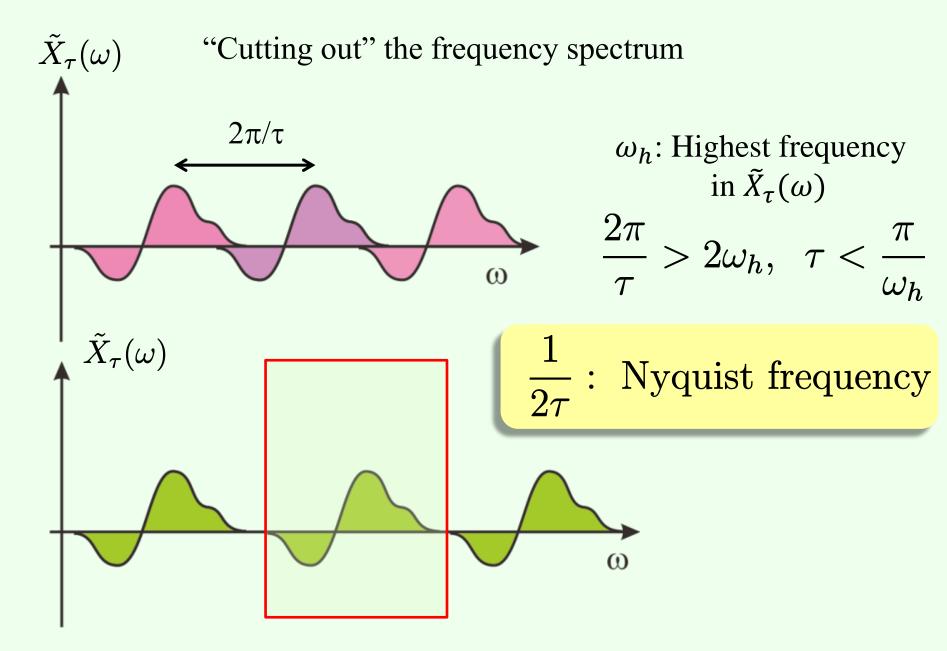
6.4.1 Sampling theorem

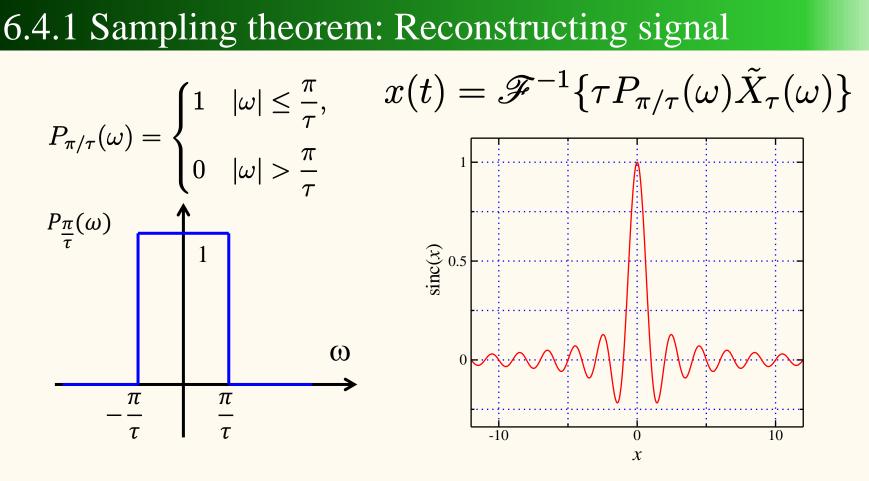
$$\delta_{\tau}(t) = \sum_{j=-\infty}^{\infty} \delta(t-j\tau) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{\tau} \int_{-\pi/\tau}^{\pi/\tau} \delta(s) ds \right] \exp\left(-in\frac{2\pi}{\tau}t\right)$$
$$= \frac{1}{\tau} \sum_{n=-\infty}^{\infty} \exp\left(-in\frac{2\pi}{\tau}t\right)$$
$$\mathscr{F}\{\delta_{\tau}(t)\} = \int_{-\infty}^{\infty} \left[\frac{1}{\tau} \sum_{-\infty}^{\infty} e^{-in(2\pi/\tau)t} \right] e^{i\omega t} dt = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[i\left(\omega - n\frac{2\pi}{\tau}\right)t\right] dt$$
$$= \frac{2\pi}{\tau} \sum_{n=-\infty}^{\infty} \delta\left(\omega - n\frac{2\pi}{\tau}\right) = \frac{2\pi}{\tau} \delta_{2\pi/\tau}(\omega)$$

 $\mathscr{F}\{x(t)\} = X(\omega), \ \mathscr{F}\{\tilde{x}_{\tau}(t)\} = \tilde{X}_{\tau}(\omega)$

$$\begin{split} \tilde{X}_{\tau}(\omega) &= \frac{1}{2\pi} X(\omega) * \frac{2\pi}{\tau} \delta_{2\pi/\tau}(\omega) = \frac{1}{\tau} X(\omega) * \sum_{n=-\infty}^{\infty} \delta\left(\omega - n\frac{2\pi}{\tau}\right) \\ &= \frac{1}{\tau} \int_{-\infty}^{\infty} X(\omega') \left\{ \sum_{n=-\infty}^{\infty} \delta\left(\omega - n\frac{2\pi}{\tau} - \omega'\right) \right\} d\omega' = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} X\left(\omega - n\frac{2\pi}{\tau}\right) \end{split}$$

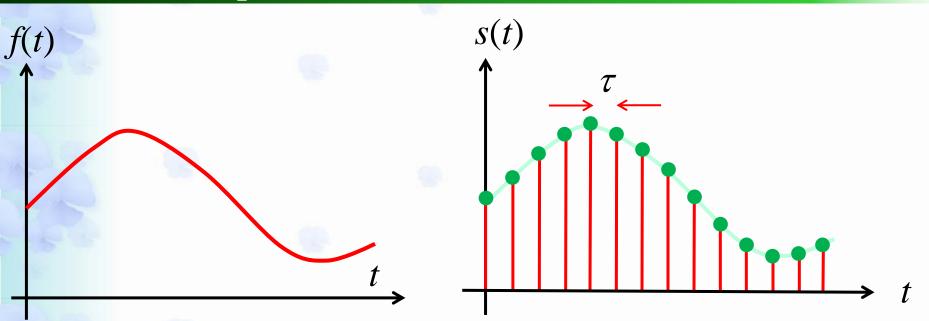
6.4.1 Sampling theorem





$$\begin{aligned} x(t) &= \tau \frac{1}{\tau} \operatorname{sinc} \left(\frac{t}{\tau} \right) * \tilde{x}_{\tau}(t) = \operatorname{sinc} \left(\frac{t}{\tau} \right) * \sum_{n = -\infty}^{\infty} x(t) \delta(t - n\tau) \\ &= \int_{-\infty}^{\infty} \operatorname{sinc} \left(\frac{s}{\tau} \right) \sum_{n = -\infty}^{\infty} x(t - s) \delta(t - n\tau - s) ds = \sum_{n = -\infty}^{\infty} \operatorname{sinc} \left(\frac{t - n\tau}{\tau} \right) x(n\tau) \end{aligned}$$

6.4.2 Pulse amplitude modulation (PAM)



Carrier:
$$\delta_{\tau}(t)$$
 $s(t) = f(t)\delta_{\tau}(t) = \sum_{n=-\infty}^{\infty} f(t)\delta(t-n\tau)$

Demodulation = Reconstruction of continuous signal from sampled data.

 $f(t) = \mathscr{F}^{-1}\{P_{\pi/\tau}(\omega)\mathscr{F}\{s(t)\}\}$

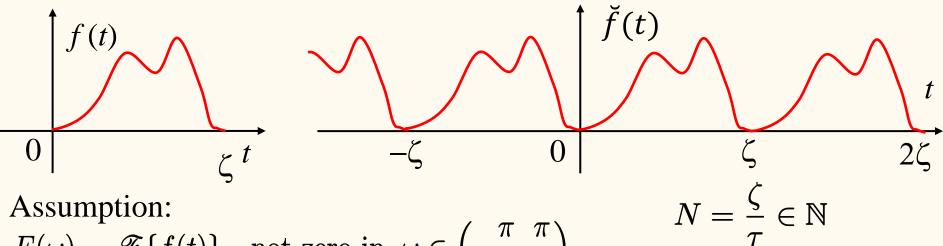
Demodulation of PAM and a trick in the sampling theorem

In the sampling theorem, though we only have discrete-time data, we can reconstruct complete original signal.

Assumption: we have data in infinite period $[-\infty, +\infty]$.

However in actual situations we can never have such data.

Need to consider handling data in a finite period.



Assumption: $F(\omega) = \mathscr{F}\{f(t)\}, \text{ not zero in } \omega \in \left(-\frac{\pi}{\tau}, \frac{\pi}{\tau}\right) \qquad N = \frac{\varsigma}{\tau} \in \mathbb{N}$ can be assumed without loosing generality

$$\breve{f}(t) = \sum_{n=-\infty}^{\infty} f(t - n\zeta), \quad \breve{F}(\omega) = \sum_{n=-\infty}^{\infty} F\left(\omega + n\frac{2\pi}{\zeta}\right)$$

$$\left(\breve{f}(t) = (f * \delta_{\zeta})(t) = \sum_{n = -\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi)\delta(t - n\zeta - \xi)d\xi\right)$$

Fourier expansion:

$$\breve{f}(t) = \frac{1}{\zeta} \sum_{n = -\infty}^{\infty} F\left(n\frac{2\pi}{\zeta}\right) \exp\left(2n\pi i\frac{t}{\zeta}\right)$$

$$n = l + mN \qquad \sum_{n = -\infty}^{\infty} \to \sum_{l = 0}^{N-1} \sum_{m = -\infty}^{\infty} \qquad \begin{array}{l} \text{Discreteness:} \\ t = j\tau \quad j \in \mathbb{Z} \end{array}$$
$$\breve{f}(j\tau) = \frac{1}{\zeta} \sum_{l = 0}^{N-1} \sum_{m = -\infty}^{\infty} F\left[(l + mN)\frac{2\pi}{\zeta}\right] \exp\left[(l + mN)2\pi i\frac{j\tau}{\zeta}\right]$$
$$= \frac{1}{N\tau} \sum_{l = 0}^{N-1} \sum_{m = -\infty}^{\infty} F\left(\frac{2\pi l}{\zeta} + m\frac{2\pi}{\tau}\right) \exp\left(2\pi i\frac{lj}{N}\right)$$
$$1 \quad \begin{array}{l} \sum_{n = -\infty}^{N-1} \left(2\pi \lambda\right) = \left(-li\right) \end{array}$$

$$= \frac{1}{N\tau} \sum_{l=0} \check{F}\left(l\frac{2\pi}{\zeta}\right) \exp\left(2\pi i\frac{\delta J}{N}\right)$$

Twiddle factor:
$$W_N \equiv \exp\left(-i\frac{2\pi}{N}\right)$$

$$\eta \equiv \frac{2\pi}{\zeta} \qquad \qquad \breve{f}(j\tau) = \frac{1}{N\tau} \sum_{l=0}^{N-1} \breve{F}(l\eta) W_N^{-lj}$$

$$\forall n, m \in \mathbb{Z} \quad W_N^{n+mN} = W_N^n,$$

Twiddle factor:
$$\frac{1}{N} \sum_{n=0}^{N-1} W_N^{nm} = \begin{cases} 1 & \text{for } m = 0, \\ 0 & \text{for } m \neq 0. \end{cases}$$

$$\tau \sum_{j=0}^{N-1} \breve{f}(j\tau) W_N^{mj} = \sum_{j=0}^{N-1} \left[\frac{1}{N} \sum_{l=0}^{N-1} \breve{F}(l\eta) W_N^{(m-l)j} \right] = \breve{F}(m\eta)$$
$$f_n \equiv \breve{f}(n\tau), \quad F_k \equiv \frac{1}{\tau} \breve{F}(k\eta)$$

Discrete Fourier transform: (DFT)

$$F_{k} = \sum_{n=0}^{N-1} f_{n} W_{N}^{kn},$$

$$f_{n} = \frac{1}{N} \sum_{k=0}^{N-1} F_{k} W_{N}^{-kn}.$$

$$F = {}^{t}{F_i}, W = {W_N^{ij}}, f = {}^{t}{f_i}$$

 $F = Wf, f = \frac{1}{N}W^*F$

$${}^{t}W^{*}W = NI_{N}$$
 i.e., $\frac{1}{\sqrt{N}}W$: unitary

6.4.4 z-transform

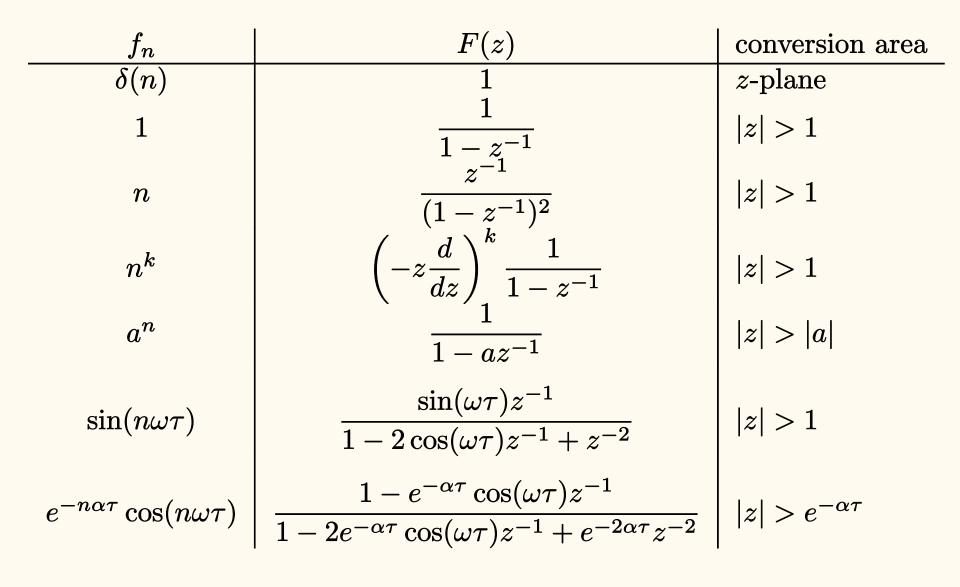
Discrete Laplace transform: z-transform

$$\tilde{f}_{\tau}(t) = \sum_{n=0}^{\infty} f(n\tau)\delta(t-n\tau) \quad (t \ge 0)$$
$$\mathscr{L}\{\tilde{f}_{\tau}(t)\}(s) = \mathscr{L}\left\{\sum_{n=0}^{\infty} f(n\tau)\delta(t-n\tau)\right\}$$
$$= \sum_{n=0}^{\infty} f(n\tau)\mathscr{L}\{\delta(t-n\tau)\} = \sum_{n=0}^{\infty} f(n\tau)\exp(-sn\tau)$$

$$z = \exp(s\tau), \ f_n = f(n\tau), \ F(z) = \mathscr{L}\{\tilde{f}_\tau(t)\}$$

$$F(z) = \sum_{n=0}^{\infty} f_n z^{-n} = \mathscr{Z}[\tilde{f}_{\tau}(t)]$$

one-sided z-transform



6.4.4 z-transform

Property	Signal	z-transform
linearity	$af_n + bg_n$	aF(z) + bG(z)
z-domain scaling	$f_{lpha n}$	$F(z^{1/lpha})$
time shift	f_{n+k}	$z^{k} \left[F(z) - \sum_{l=0}^{k-1} f(l) z^{l} \right]$ $z^{-k} F(z)$
$time \ shift \ II$	f_{n-k}	$z^{-k}F(z)$
scaling	$e^{\mp lpha n} f_n$	$F(e^{\pm lpha}z)$
scaling II	$a^n x_n$	$F(a^{-1}z)$
product with index	nf_n	$-zrac{d}{dz}F(z)$
differentiation	$n^k f_n$	$-z\frac{d}{dz}F(z) \\ \left(-z\frac{d}{dz}\right)^{n}F(z) \\ r^{\infty}$
integration	$\frac{f_n}{n+a}$	$z^a \int_{z}^{\infty} \xi^{-a+1} F(\xi) d\xi$
$\operatorname{convolution}$	$f_n * g_n$	$F(z) \cdot G(z)$
product	$f_n\cdot g_n$	$\frac{1}{2\pi i} \oint_c F(\xi) G\left(\frac{z}{\xi}\right) \xi^{-1} d\xi$

6.4.5 Transfer function for discrete time signal

$$\tilde{f}_{\tau}(t) = f(t)\delta_{\tau}(t) = \sum_{k=-\infty} f_k\delta(t-k\tau)$$

 h_n : (impulse) response to $\delta(n\tau)$, response to discrete signal $f_n = f(n\tau)$

$$g_n = \mathscr{R}\{\tilde{f}_{\tau}(n\tau)\} = \mathscr{R}\left\{\sum_{k'=-\infty}^{\infty} f(k'\tau)\delta[(n-k')\tau]\right\}$$

 ∞

$$=\sum_{k'=-\infty}^{\infty}f_{k'}h_{n-k'}=\sum_{k=-\infty}^{\infty}h_kf_{n-k}$$

$$G(z) = \mathscr{Z}[g_n] = \mathscr{Z}\left[\sum_{k=0}^{\infty} h_k f_{n-k}\right] = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} h_k f_{n-k}\right) z^{-n}$$

$$=\sum_{k=0}^{\infty} h_k \sum_{n=0}^{\infty} f_{n-k} z^{-n} = \sum_{k=0}^{\infty} h_k z^{-k} F(z)$$

 ∞

$$H(z) = \mathscr{Z}[h_n] = \sum_{k=0}^{\infty} h_k z^{-k}$$
$$G(z) = H(z)F(z)$$

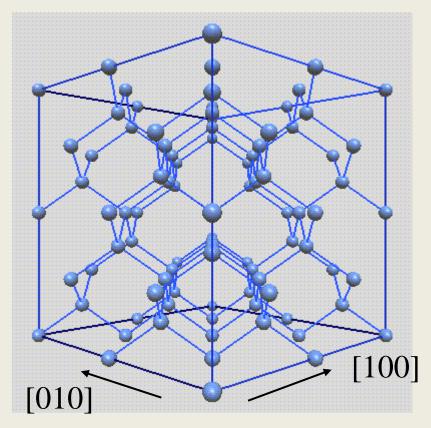
: Transfer function

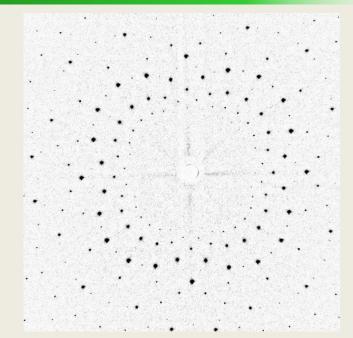
Crystal lattice and X-ray diffraction

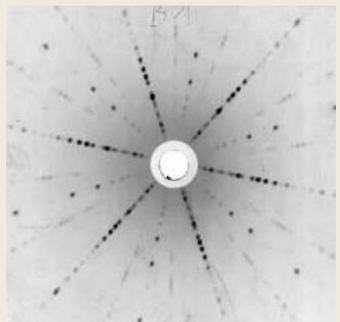
Max von Laue 1879-1960

Laue pattern

Diamond lattice



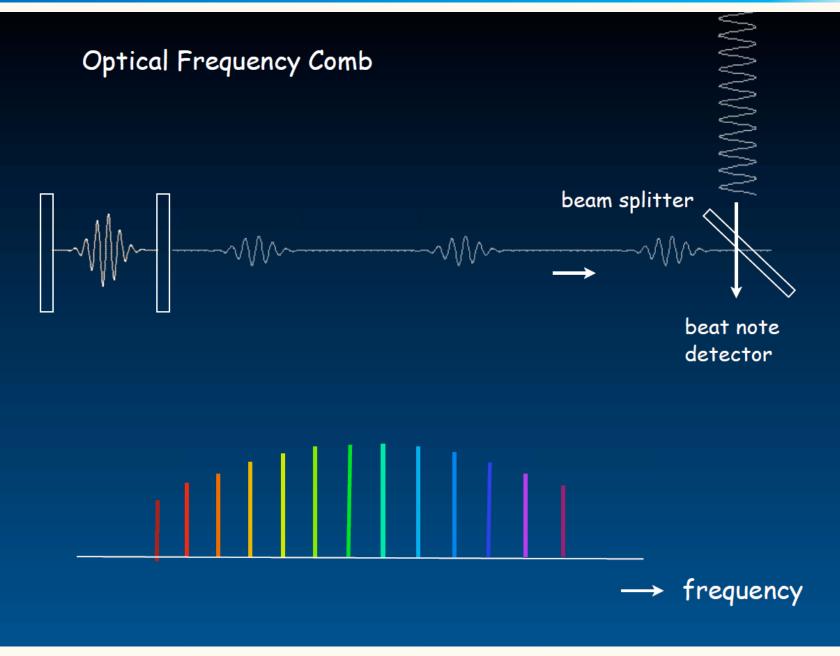




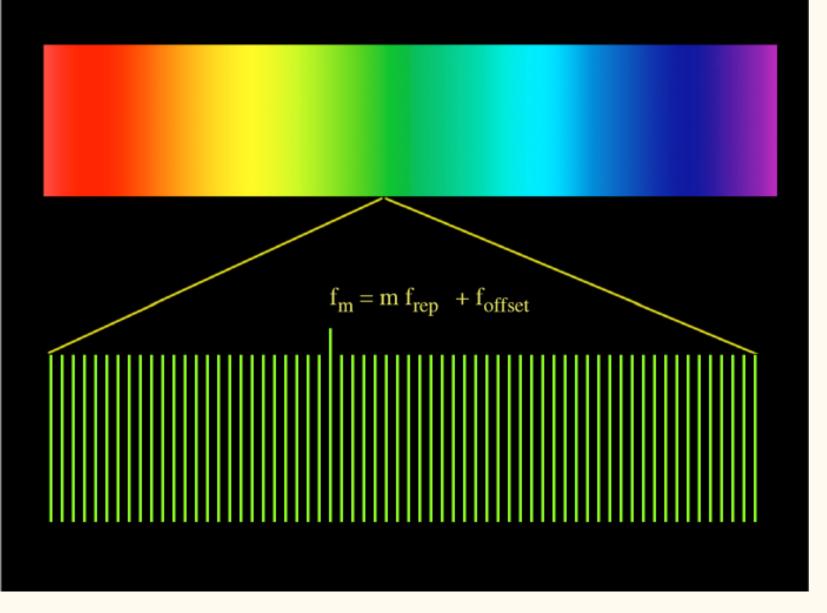
[111]

[100]

Optical Frequency Comb

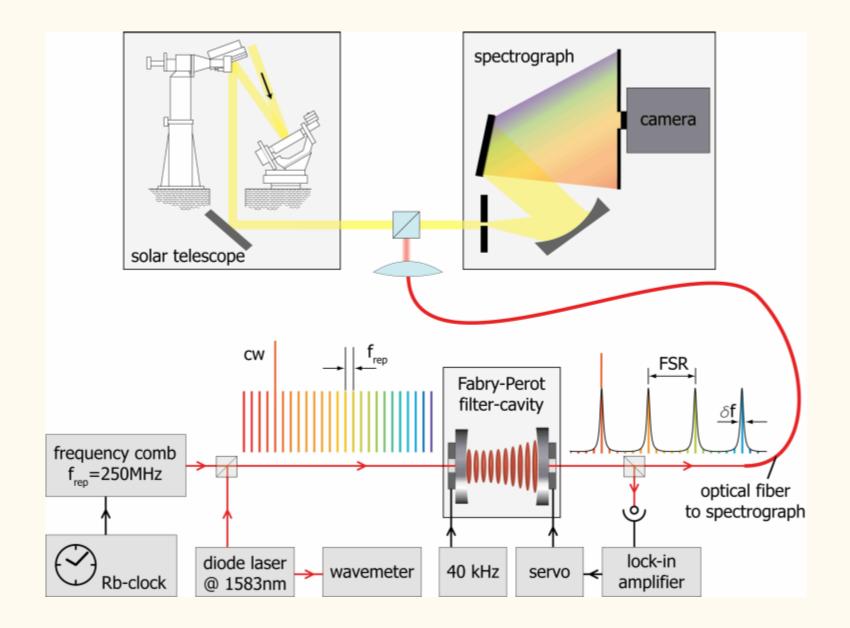


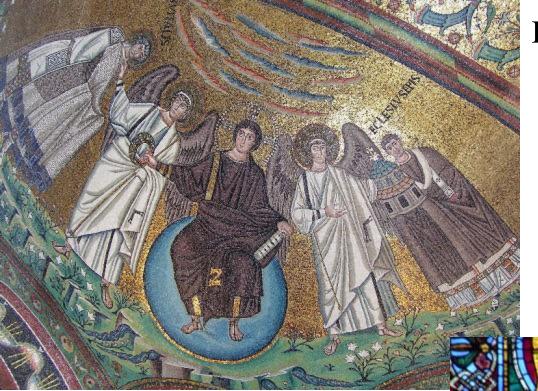
Frequency Comb



Theodor Hänsch, Max-Planck Institute, Science 2008

Measurement of the Doppler effect in cosmic expansion





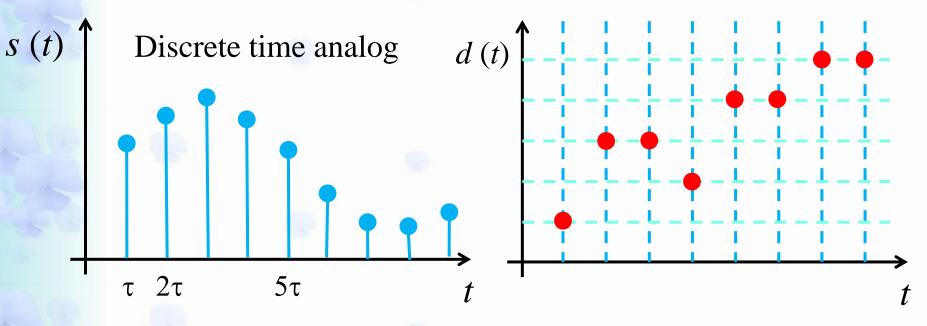
Byzantine mosaic

Chapter 7

Digital signal and circuits

Chartres Blue (Stained glass)

Ch.7 Digital signal and circuits



Value discretized \rightarrow Digital signal

Signal unit : 0 xor 1 (bit) Boolean algebra : F xor T Voltage level : L xor H

Multiple bit \rightarrow binary operation \rightarrow parallel signal

7.2 Logic gates

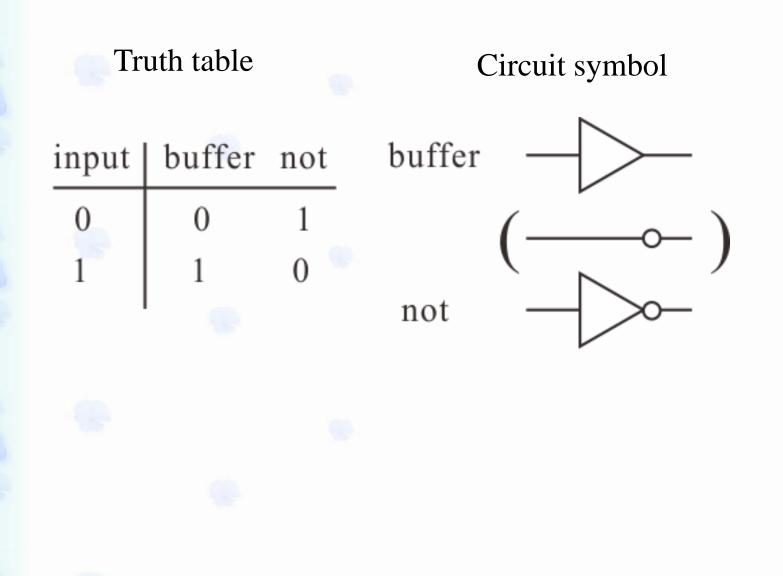
Digital signal=logic value \rightarrow Logic operation : logic gates

De Morgan's laws: $\overline{x + y} = \overline{x} \cdot \overline{y}, \ \overline{x \cdot y} = \overline{x} + \overline{y}$

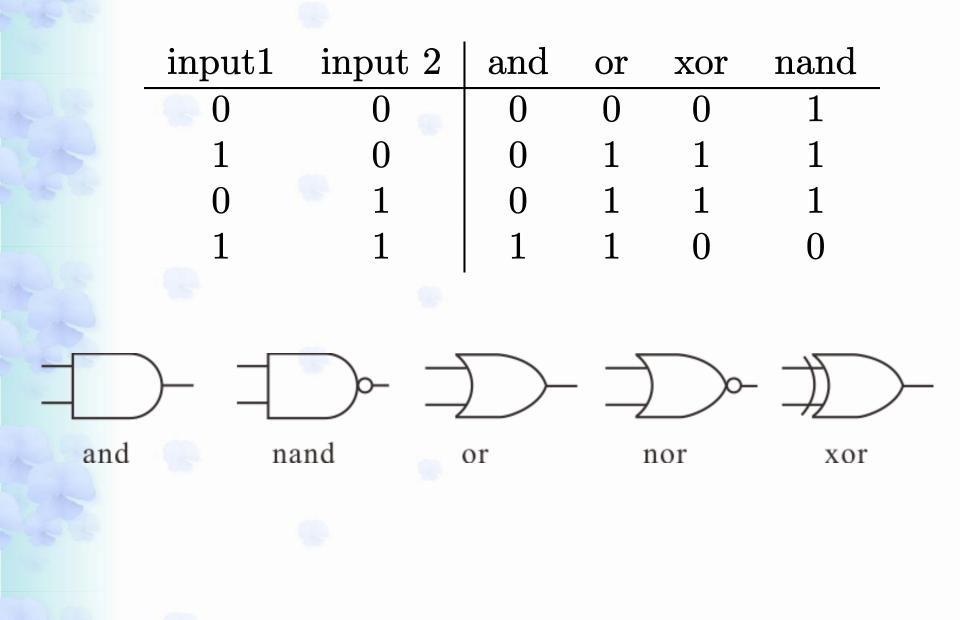
		input					output			
t		t_1	t_2	• • •	t_m		$ t_1 $	t_2	• • •	t_m
Ch.	$rac{1}{2}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 0 \end{array}$	•••	$f_{1m} \ f_{2m}$	$egin{array}{c} 1 \\ 2 \end{array}$	$\begin{array}{c} 1\\ 0 \end{array}$	1 1	•••	$q_{1m} \ q_{2m}$
	• •	•	• •	••••	•		•	• •	•••	•
	n	0	1	•••	f_{nm}	l	0	1	• • •	f_{lm}

Combinational logic \rightarrow Truth table Sequential logic \rightarrow Timing chart

7.2.1 Combinational logic: Single input gates



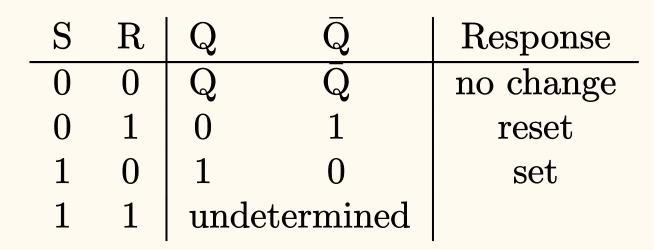
7.2.2 Combinational logic: Double input gates



7.2.3 Sequential logic: Flip-Flop (FF)

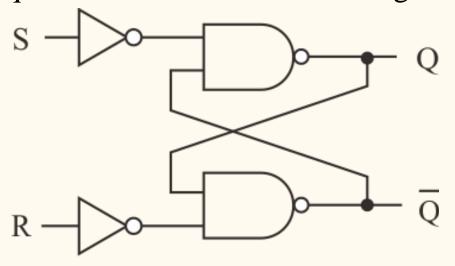
RS (reset-set) Flip-Flop (FF)

Truth table



Symbol

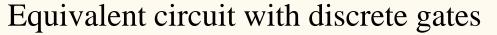
S Q R Q Equivalent circuit with discrete gates

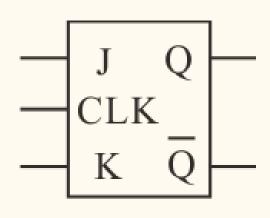


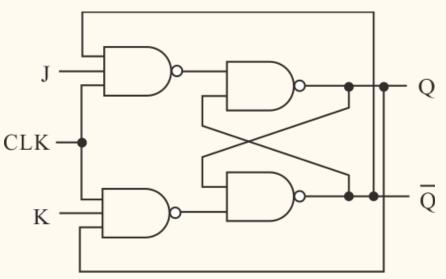
7.2.3 Sequential logic: Flip-Flop (FF)

JK Flip-Flop	\mathbf{J}	Κ	\mathbf{Q}	Q for the next CLK
Truth table	0	0	0	0
	0	0	1	1
	0	1	_	0
	1	0	_	1
	1	1	0	1
	1	1	1	0

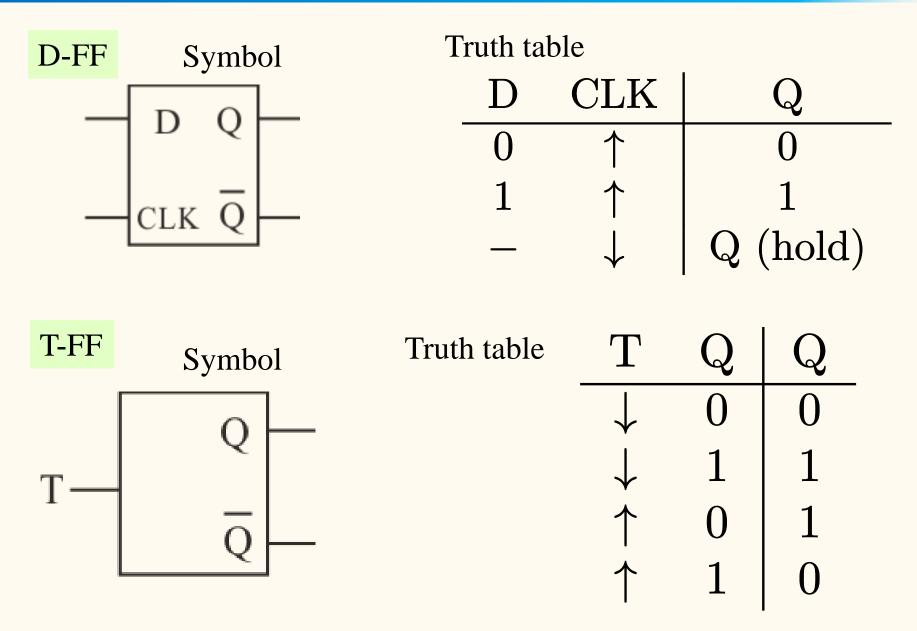
Symbol





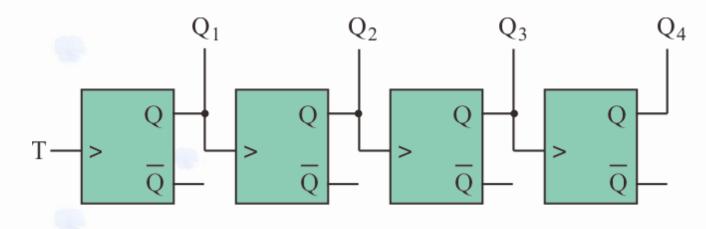


7.2.3 Sequential logic: D-FF, T-FF



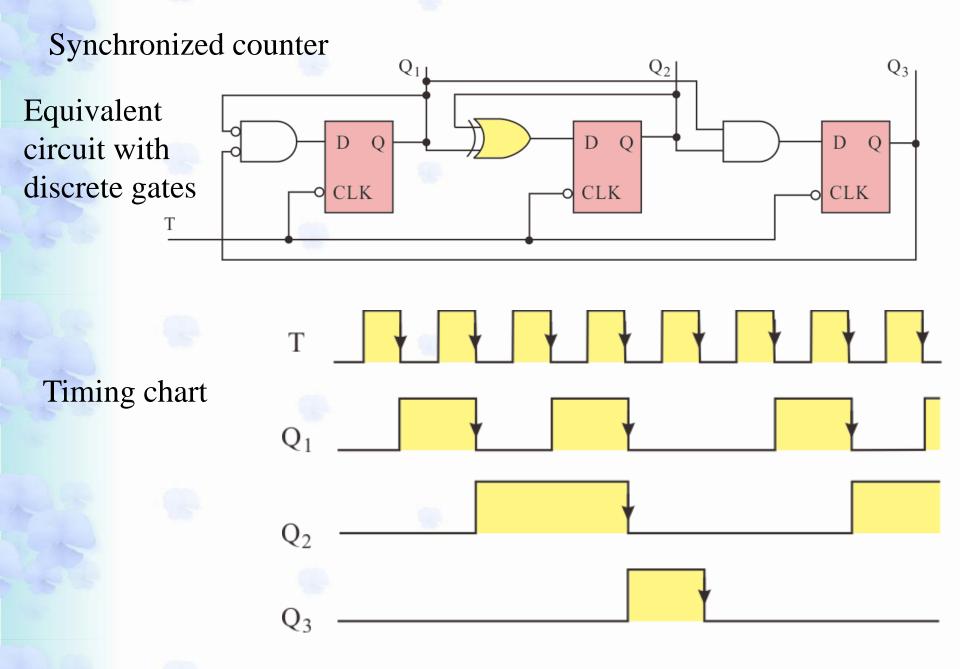
7.2.4 Sequential logic: Counters

Unsynchronized counter (ripple counter)



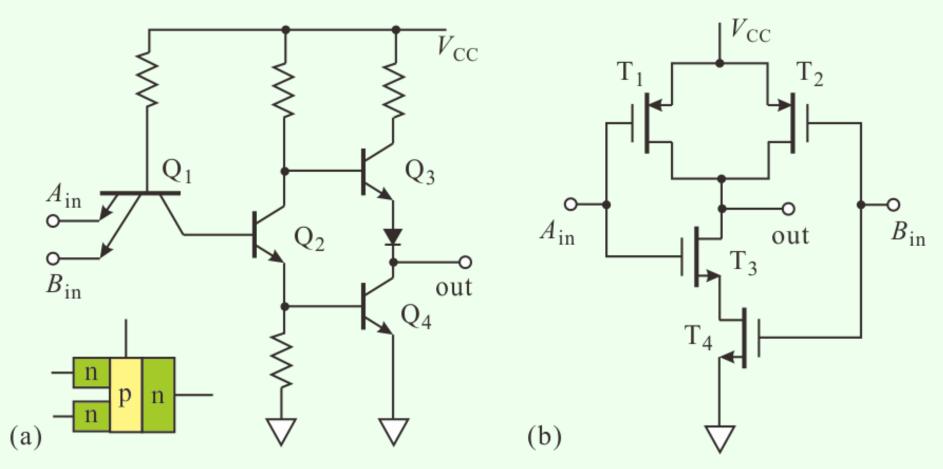
Timing chart

7.2.4 Sequential logic: Counters



7.3 Implementation of logic gates

NAND gates

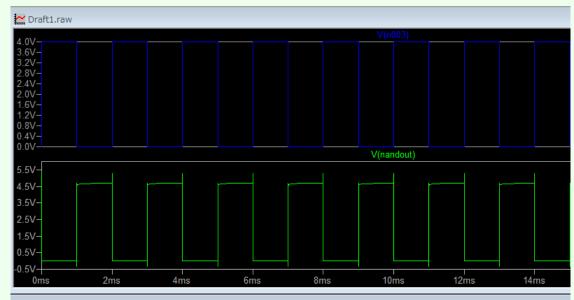


TTL (transistor-transistor logic)

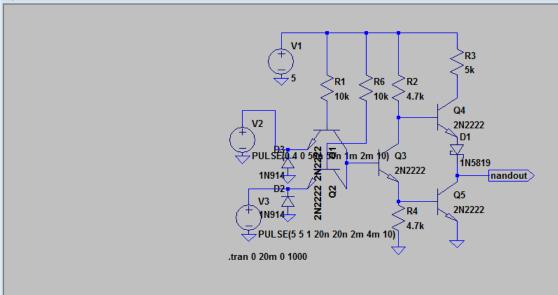
CMOS (complimentary MOS)

7.3 Implementation of logic gates

LT Spice simulation

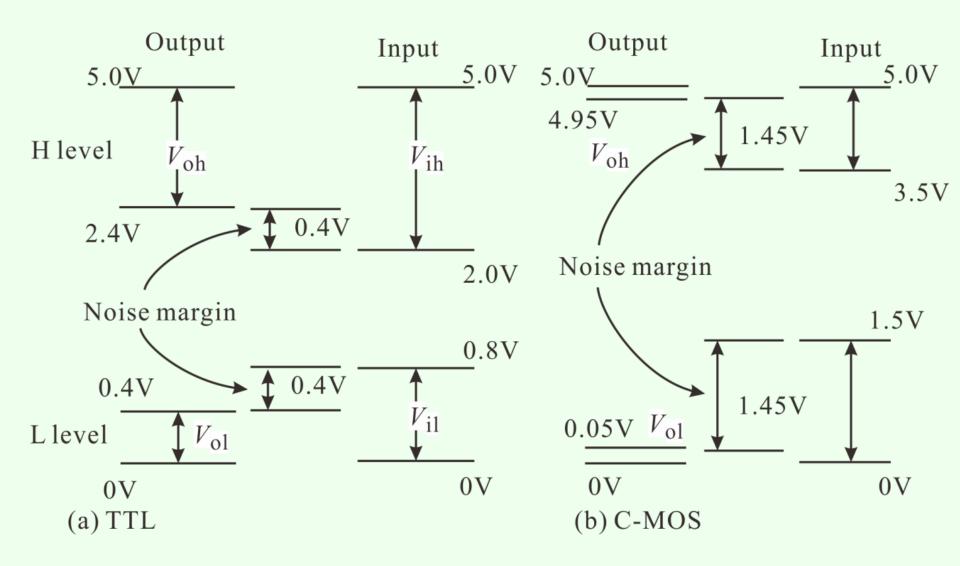


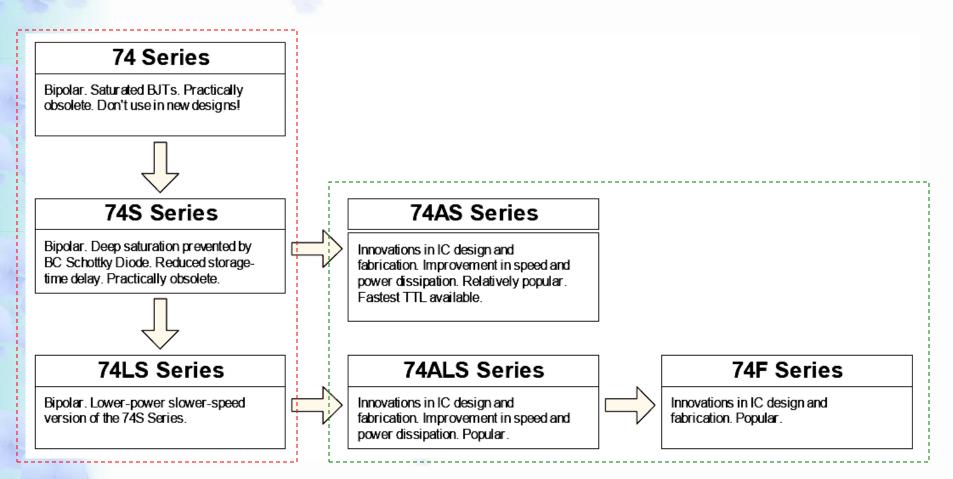
🕻 nand.asc



7.3 Implementation of logic gates

Voltage levels diagram



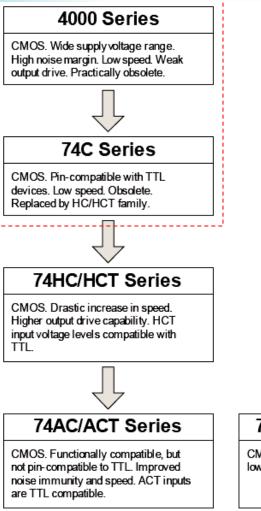


Legacy: don't use in new designs

Widely used today

CMOS logic family evolution

obsolete



General trend:

 Reduction of dynamic losses through successively decreasing supply voltages: 12V → 5V → 3.3V → 2.5V → 1.8V
CD4000 LVC/ALVC/AVC
Power reduction is one of the keys to progressive growth of integration

74AHC/AHCT Series

CMOS. Improved speed, lower power, lower drive capability.

CMOS/Bipolar. Combine the best features of CMOS and bipolar. Low power high speed. Bus interfacing applications (74BCT, 74ABT)

74LVC/ALVC/LV/AVC

CMOS. Reduced supply voltage. LVC: 5V/3.3V translation ALVC: Fast 3.3V only AVC: Optimised for 2.5V, down to 1.2V

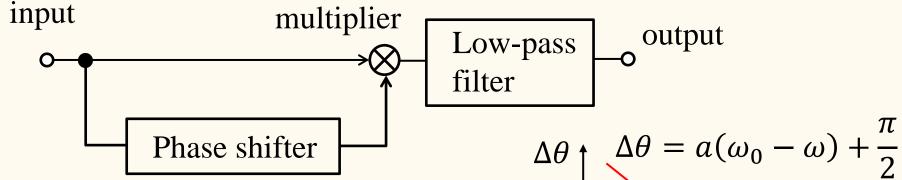
Summary

TTL

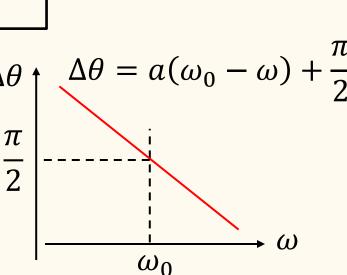
Logic Family	T _{PD}	T _{rise/fall}	$\mathbf{V}_{\mathrm{IH,min}}$	V _{IL,max}	V _{OH,min}	V _{OL,max}	Noise Margin
74	22ns		2.0V	0.8V	2.4V	0.4V	0.4V
74LS	15ns		2.0V	0.8V	2.7V	0.5V	0.3V
74F	5ns	2.3ns	2.0V	0.8V	2.7V	0.5V	0.3V
74AS	4.5ns	1.5ns	2.0V	0.8V	2.7V	0.5V	0.3V
74ALS	llns	2.3ns	2.0V	0.8V	2.5V	0.5V	0.3V
ECL	1.45ns	0.35ns	-1.165V	-1.475V	-1.025V	-1.610V	0.135V
4000	250ns	90ns	3.5V	1.5V	4.95V	0.05V	1.45V
74C	90ns		3.5V	1.5V	4.5V	0.5V	1V
74HC	18ns	3.6ns	3.5V	1.0V	4.9V	0.1V	0.9V
74HCT	23ns	3.9ns	2.0V	0.8V	4.9V	0.1V	0.7V
74AC	9ns	1.5ns	3.5V	1.5V	4.9V	0.1V	1.4V
74ACT	9ns	1.5ns	2.0V	0.8V	4.9V	0.1V	0.7V
74AHC -	3.7ns		3.85V	1.65V	4.4V	0.44V	0.55V

CMOS

Show that the following circuit works as a demodulator of frequency modulation (FM) signal (quadrature demodulator).



Here the phase shifter gives the shift proportional to the frequency difference between input and the career frequency ω_0 . The shift at ω_0 is $\pi/2$ as shown in the right (this can be achieved with resonant circuits). The low-pass filter cuts components with frequencies as high as ω_0 .



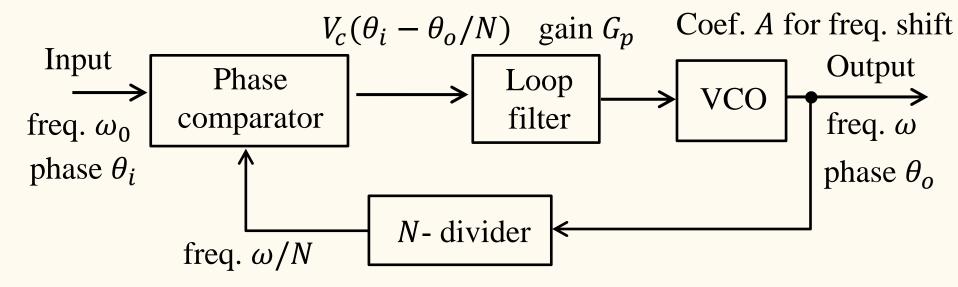
(hint) Assume the original signal f(t) is much slower than the carrier $A \cos(\omega_0 t)$. Then the input can be approximated as

$$s(t) = A\cos\{[\omega_0 + k_f f(t)]t\}.$$

Then the phase shifter output is $q_{\rm ps}(t) = A \sin\{[\omega_0 + k_f f(t)]t - ak_f f(t)\}.$

Taking product and high-frequency filtering gives ... (use $ak_f f(t) \ll 1$).

In the following phase lock loop (PLL) circuit, the initial (t = 0) oscillation frequency of voltage-controlled oscillator (VCO) ω deviates from $N\omega_0$ by $\Delta\omega$. Obtain the relaxation time of ω to $N\omega_0$.



(hint) Here we can put $\theta_i = 0$ hence input $= V_i \sin \omega_0 t$ without loosing generality. Similarly output $= V_o \sin[N\omega_0 t + \theta_o(t)]$. Now $\omega = N\omega_0 + d\theta_o/dt$ and it is easy to write $d\theta_o/dt$ with A, $G_p, V_c, \theta_o(t)$ and a constant.

Solve the difference equation below with z-transform.

$$\begin{cases} x(n) - 2x(n-1) = n & (n \ge 0) \\ x(n) = 0 & (n < 0) \end{cases}$$

(hint) z-transform of *n* is $\frac{z}{(z-1)^2}$ as in the table (slide no.14).

Then z-transform of x(n) : X(z) is easily obtained. Inverse z-transform gives x(n).

Answer sheet submission deadline: 11th Jan. 2017.