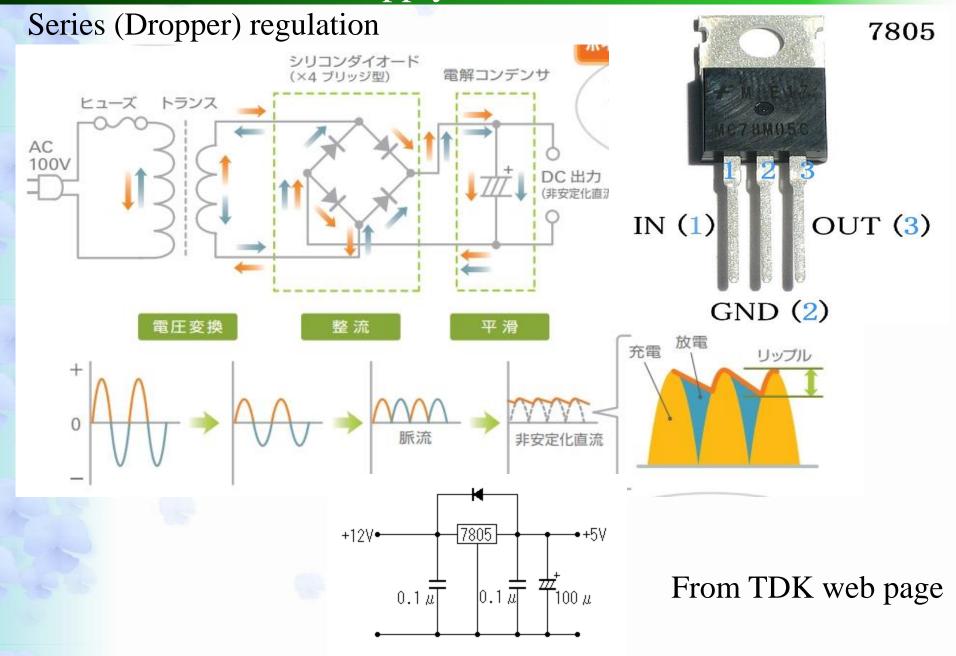


DC Stabilized Power Supply 直流安定化電源



Series regulator power supply

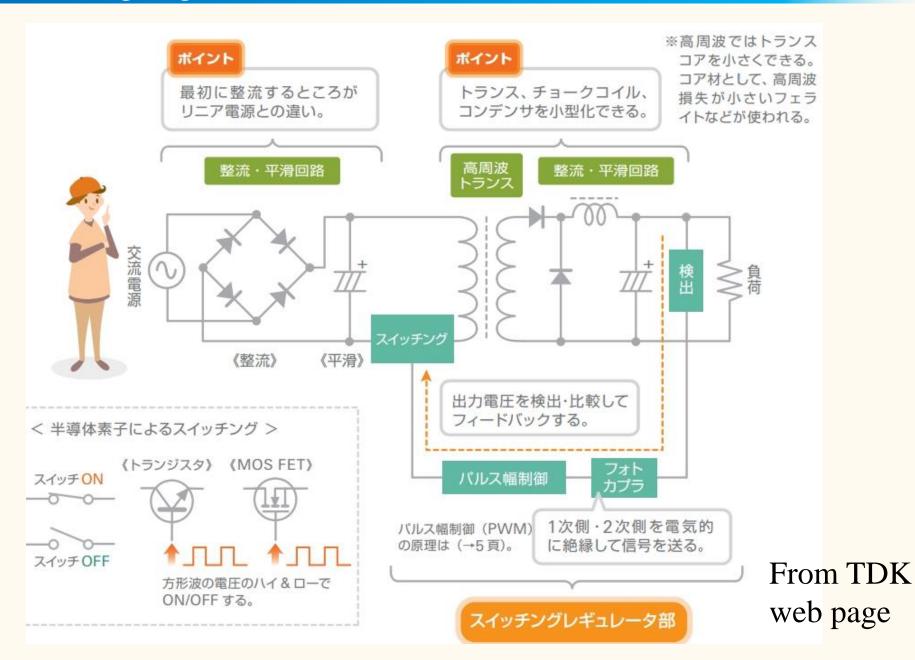
Uni-polar

High precision

Dual tracking

Bi-polar current source

Switching regulation



Switching regulator power supply

Molecular beam epitaxy Control panel

Bin 電源ビン

Complicated power lines

Bin

Outline Today

- 2.5 Theorems for paired terminal circuits
 Superposition, Ho-Tevenin, Reciprocity
- 2.6 Duality
- 2.7 Passive devices (elements) and active devices

Ch.3 Transfer function and transient response

3.1 Transfer function of single-pair terminal circuits

Resonance circuit

Bode plot

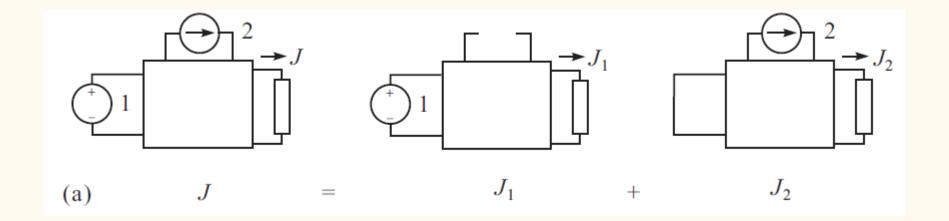
General properties

Appendix B Bridges and balance circuits

Appendix C General properties of resonance circuits

Theorems for terminal-pair circuits

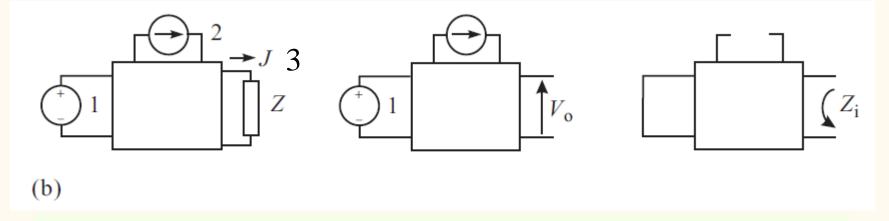
Superposition theorem



$$J = \sum_{i} J_{i}$$

 J_i : The current caused by *i*-th power source.

Ho-Thevenin's theorem



Consider a circuit with an open terminal pair (No.3). Obtain current J when the open pair is connected with impedance Z.

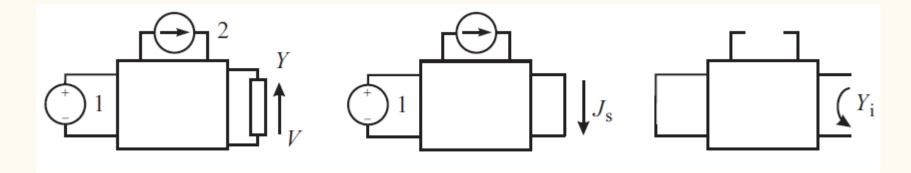
- 1. Measure the open terminal voltage V_0 .
- 2. Turn off all the power sources (voltage sources: short, current sources: open). Measure the open circuit impedance Z_i .

Then

$$J = \frac{V_0}{Z + Z_i}$$



Norton's theorem



$$V = \frac{J_S}{Y + Y_i}$$

Dual theorem for Ho-Tevenin.

Comments on Tellegen's theorem

 $i=1,\cdots,n$: index of nodes, $j=1,\cdots,m$: index of branches

$$a_{ij} = \begin{cases} 1: & i \text{ is the start of } j, \\ -1: & i \text{ is the end of } j, \\ 0: & \text{others} \end{cases}$$
 incidence matrix

redundancy $\rightarrow (n-1) \times m$ matrix D: irreducible incidence matrix

 J_j , V_j : current and voltage along branch j, W_i : potential of node i.

Kirchhoff's first law:
$$D\mathbf{J} = 0$$
 Second law: $\mathbf{V} = {}^{t}\mathcal{D}\mathbf{W}$

$$\sum_{i=1}^{m} V_{i} J_{i} = ({}^{t} \mathcal{D} \boldsymbol{W}) \cdot \boldsymbol{J} = {}^{t} \boldsymbol{W} \mathcal{D} \boldsymbol{J} = 0 \qquad \boldsymbol{V} \perp \boldsymbol{J}$$
Power of *i*-th branch

Comments

- 1. Power conservation law
- 2. Holds for any kind of circuit (irrespective of linear, or non-linear)
- 3. Holds for two independent circuit conditions (as long as *D* is the same)

Reciprocity theorem

An *n*-terminal pair linear circuit
At one state $(V_1, J_1), (V_2, J_2), \cdots, (V_n, J_n),$ at another state $(V'_1, J'_1), (V'_2, J'_2), \cdots, (V'_n, J'_n)$ i=1 i=1

Proof: Consider a two terminal-pair circuit with *m* branches.

$$J_{1} \xrightarrow{\bigcirc} V_{k} = Z_{k}J_{k} \xrightarrow{\bigcirc} V_{2}$$

$$V_{1} \xrightarrow{\bigcirc} V_{k} = Z_{k}J_{k}$$

$$-V_{1}J_{1}' - V_{2}J_{2}' + \sum_{k} V_{k}J_{k}' = 0$$

$$-V_{1}J_{1} - V_{2}'J_{2} + \sum_{k} V_{k}'J_{k} = 0$$

$$V_{k}J_{k}' = V_{k}'J_{k} = Z_{k}J_{k}J_{k}'$$

$$\therefore V_{1}J_{1}' + V_{2}J_{2}' = V_{1}'J_{1} + V_{2}'J_{2} \quad //$$

(This also holds for circuits with mutual inductances.)

2.6 Duality 双対性

直列接続	並列接続				
開放	短絡				
電場	磁場				
キルヒホッフの第2法則	キルヒホッフの第1法則				
電圧	電流				
インピーダンス	アドミッタンス				
抵抗	コンダクタンス				
静電容量	インダクタンス				
鳳-テブナンの定理	ノートンの定理				

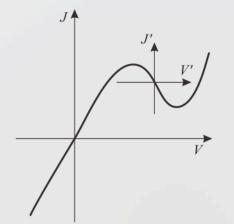
2.6 Duality

Series	Parallel
Open	Short
Voltage	Current
Impedance	Admittance
Capacitance	Inductance
Electric field	Magnetic field
Resistance	Conductance
Ho-Thevenin	Norton
Kirchhoff's 2 nd law	Kirchhoff's 1st law

2.7 Definition: Passive elements and active elements

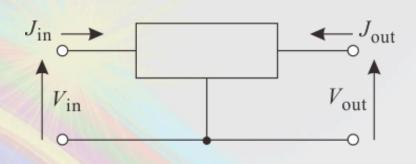
Two terminal: current J, voltage V $JV \ge 0$: passive element

JV < 0: active element



Locally active two-terminal element

More than three-terminal: treat as a terminal pair circuit



$$J_{
m out}$$
 $P = J_{
m in} V_{
m in} + J_{
m out} V_{
m out}$

 $P \ge 0$: passive element

P < 0: active element

3.1 General Properties of Resonance and Resonance Circuits

3.1.1 Resonance Phenomena

Harmonic oscillator:
$$\frac{d^2q}{dt^2} = -\omega_0^2 q$$

Kirchhoff's law

$$L\frac{dJ_{\rm L}}{dt} = -L\frac{d^2q_{\rm L}}{dt^2} = \frac{q}{C} = RJ_{\rm R} = R\frac{dq_{\rm R}}{dt}$$

$$dq_{\rm L} + dq_{\rm R} + dq = 0$$

$$\frac{d^2q}{dt^2} + \frac{1}{CR}\frac{dq}{dt} + \frac{1}{LC}q = \frac{d^2q}{dt^2} + \frac{1}{\tau}\frac{dq}{dt} + \omega_0^2 q = 0$$

$$q = \exp(\lambda t)$$
 $\lambda = \frac{1}{2\tau} \left[-1 \pm \sqrt{1 - 4(\omega_0 \tau)^2} \right] \approx -\frac{1}{2\tau} \pm i\omega_0 \quad (\omega_0 \tau \gg 1)$

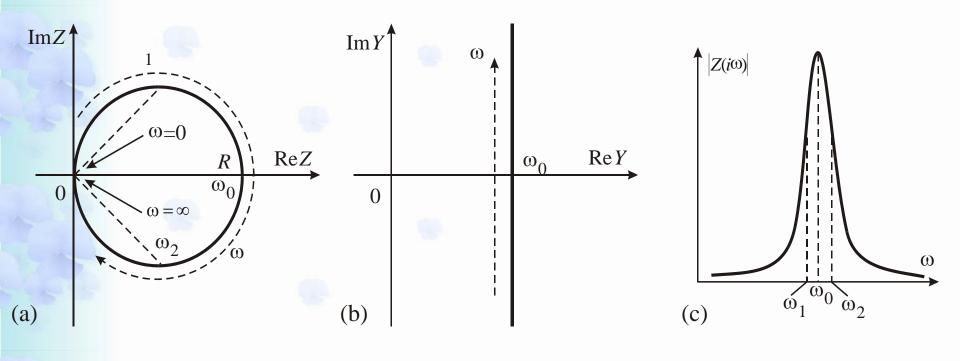
Resonant (angular) frequency
$$\omega_0 \equiv \frac{1}{\sqrt{LC}}$$

Transfer function, resonance and phase shift

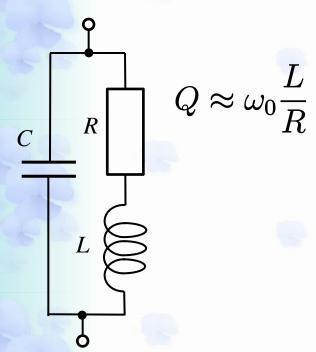
$$Z_{\mathrm{tot}}(i\omega) = \left[\frac{1}{R} + i\left(\omega C - \frac{1}{\omega L}\right)\right]^{-1}$$
 $\omega_0 \equiv \frac{1}{\sqrt{LC}}$

Resonance: Reactance =0

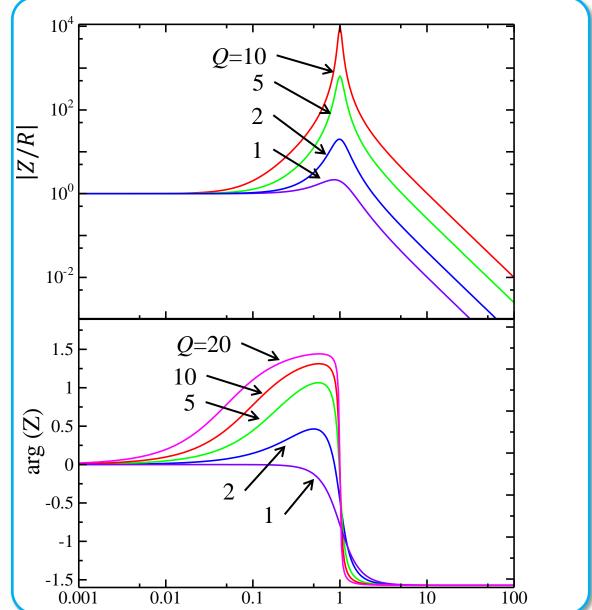
Total Phase Shift Change: π



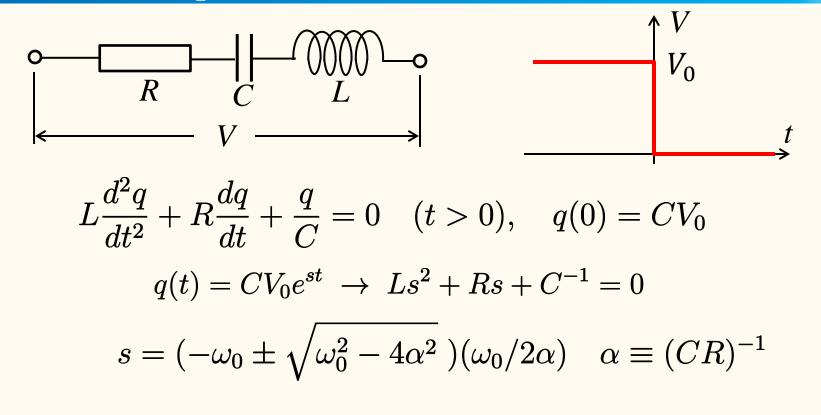
Bode diagram



$$Z(i\omega) = \frac{R + i\omega L}{1 - \omega^2 LC + i\omega CR} = \frac{R + i\omega L}{1 - \frac{\omega^2}{\omega_0^2} + i\omega CR}$$



Transient response of resonant circuit



$$(\omega_0/2) < \alpha \rightarrow \text{imaginary part}$$

$$q(t) = CV_0 \exp[(-\gamma \pm i\omega_s)t], \quad \gamma \equiv \frac{\omega_0^2}{2\alpha}, \quad \omega_s \equiv \omega_0 \left(1 - \frac{\omega_0^2}{4\alpha^2}\right)^{1/2}$$

Damped oscillation with time constant γ^{-1} , frequency ω_s

Transient response of resonance circuit (transfer function)

Synthesized impedance, admittance

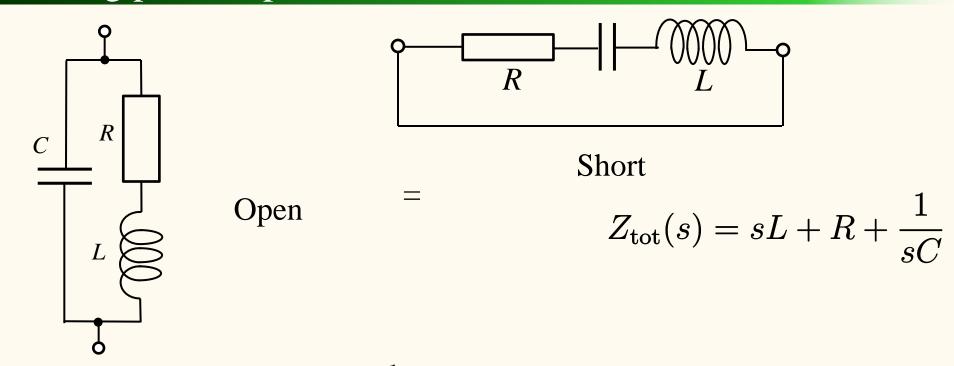
$$Z_{\rm tot}(s) = sL + R + \frac{1}{sC}, \quad Y_{\rm tot}(s) = Z_{\rm tot}(s)^{-1}$$
 Zero (pole) of $Z_{\rm tot}(s)$ ($Y_{\rm tot}(s)$) $s = (-\omega_0 \pm \sqrt{\omega_0^2 - 4\alpha^2})(\omega_0/2\alpha)$

$$Z_{\text{tot}}(s_0) = 0$$
 Time constant: Re(s_0) Frequency: Im(s_0)

Laplace transformation of voltage: V(s)

$$\underline{J(t)} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Y(s)V(s)e^{st}ds = \sum_{i} R(s_i)V(s_i)e^{s_it} \quad (c > 0)$$
Natural current s_i : poles of $Y(s)$ $R(s_i) = Y(s)(s - s_i)|_{s=s_i}$

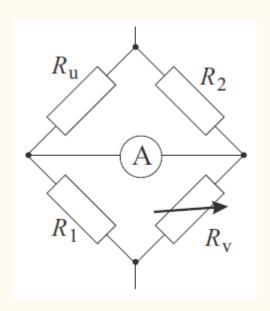
Driving point impedance



$$Z_{\text{tot}}^{(2)}(s) = \left(\frac{1}{R+sL} + sC\right)^{-1} = \frac{sL+R}{s^2LC + sRC + 1}$$

 $Z_{\text{tot}}(s)$ zero is pole for $Z_{\text{tot}}^{(2)}(s)$

Resistance bridge 抵抗ブリッジ

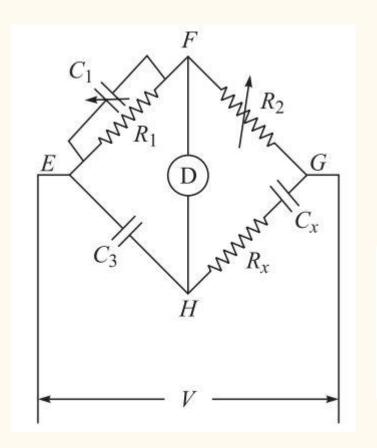


Wheatstone bridge

AVS-47 Resistance bridge

Not a "bridge" circuit!

Schering Bridge



$$Z_1 Z_x = Z_2 Z_3, \quad Z_x = Z_2 Z_3 Y_1$$

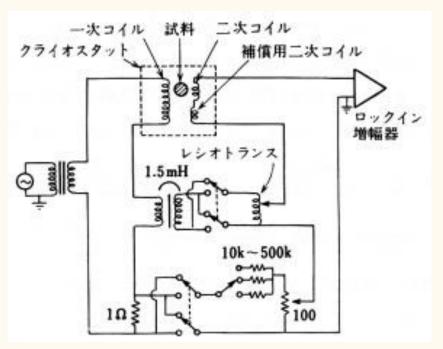
$$Z_x = R_x + \frac{1}{i\omega C_x}$$
, $Z_2 = R_2$, $Z_3 = \frac{1}{i\omega C_3}$, $Y_1 = \frac{1}{R_1} + i\omega C_1$

$$R_x + \frac{1}{i\omega C_x} = R_2 \frac{1}{i\omega C_3} \left(\frac{1}{R_1} + i\omega C_1 \right)$$

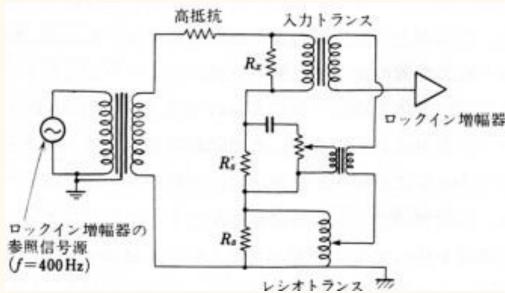
$$R_x = \frac{R_2 C_1}{C_3}, \quad C_x = \frac{R_1}{R_2} C_3$$

Hartshorn bridge

Magnetic moment measurement



Resistance measurement

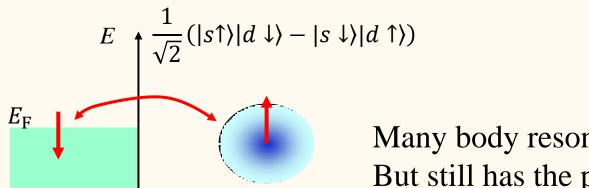


Capacitance bridge キャパシタンス ブリッジ

General Radio
3-terminal
Capacitance bridge

Agilent E4981A

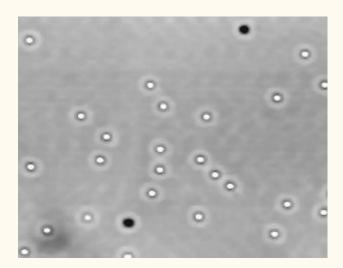
Kondo Resonance and Phase shift



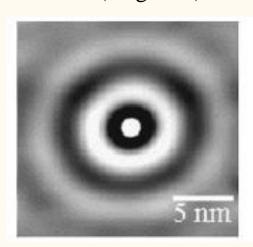
Jun Kondo

Many body resonance. But still has the phase shift of $\pi/2$!

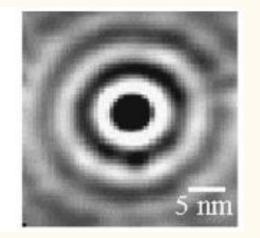
Co atoms on Ag (111) surface



Co (magnetic)

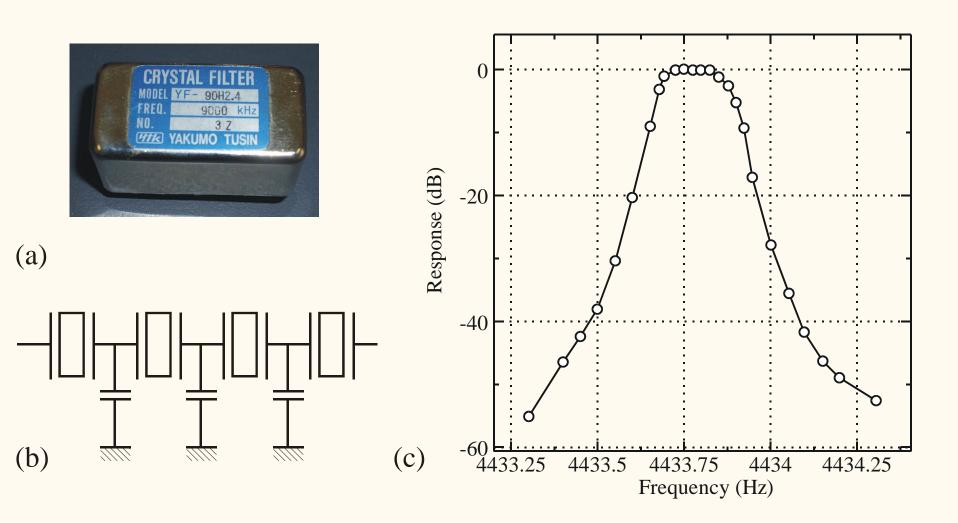


Defect (non-magnetic)



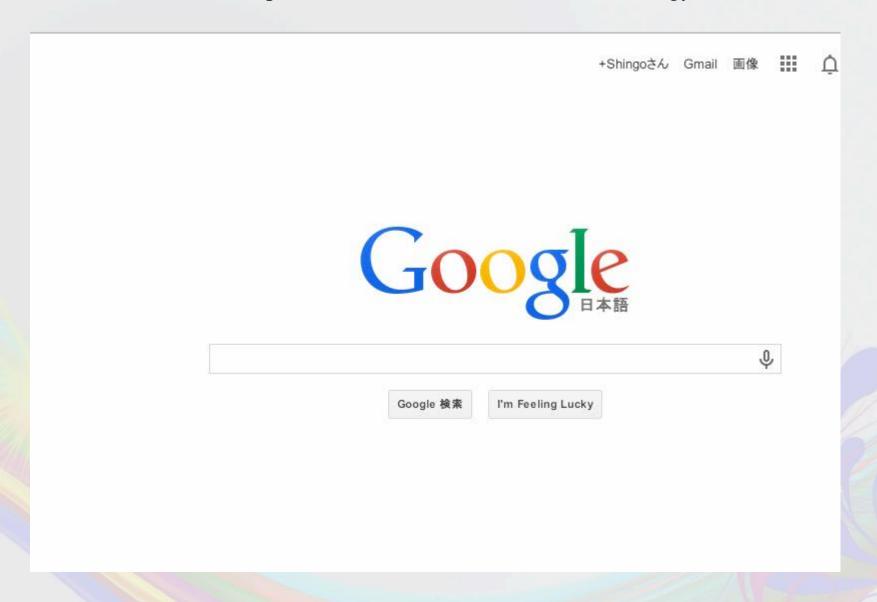
Schneider et al., Phys. Rev. B65, 121406 (2002).

Quartz crystal filter



Circuit Simulator

Download LTSpice from the web site of Linear Technology



What is Spice?

SPICE: Simulation Program with Integrated Circuit Emphasis

A language which describes electronic circuits (corresponding to circuit diagrams).

ex) a CR circuit and a dc power source

* 0---R1---1---C1---2---V1---0

R10110

C1 1 2 20

V1 2 0 5

.END

Graphical user interface: Circuit diagram

Linear Technology web site

Operation example

	TECHNOLOGY	国内ニュースサイト	ENGLISH	中文网站	品質	採用	問い合わせ
製品	ソリューション	デザイン	サポート		購入		会社

Home > デザインサポート > ソフトウェア

Design Simulation and Device Models

リニアテクノロジーは高性能なスイッチング・レギュレータやアンブ、データ・コンパータ、フィルターなどを使用した回路を、初めての設計者でも短時間に容易に評価できるよう ムデザイン・シミュレーション・ツールを提供しています。

- LTspice IV
- LTpowerCAD
- LTpowerPlay
- · Amplifier Simulation & Design
- Filter Simulation & Design
- · Timing Simulation & Design
- Data Converter Evaluation Software
- · Dust Networks Starter Kits

LTSPICE IV

LTspice IV

LTspice IVは高性能なSpice IIIシミュレータと回路図入力、波形ビューワに改善を加え、ス イッチング・レギュレータのシミュレーションを容易にするためのモデルを搭載しています。 Spiceの改善により、スイッチング・レギュレータのシミュレーションは、通常のSpiceシミュレ 一タ使用時に比べて著しく高速化され、ほとんどのスイッチング・レギュレータにおいて波形 表示をほんの数分で行なうことができます。Spiceとリニアテクノロジーのスイッチング・レギ ュレータの80%に対応するMacro Model、200を超えるオペアンブ用モデルならびに抵抗、 トランジスタ、MOSFETモデルをここからダウンロードできます。

- LTspice IV (Windows用)をダウンロード(2014年5月5日更新)
- ・ LTspice IV (Mac OS X 10.7+用)をダウンロード
- 関連情報 & ショートカット
- Mac OS X用ショートカット
- スタート・ガイド
- ユーザ・ガイド(ヘルブ・ファイル参照)
- トランスの使用
- デモ回路集
- セミナーの開催予定を見る

LTspiceのツイッターをフォロー

LTspiceに関するビデオを見る

MYLINEAR ログイン I TPOWFRCAD

Summary

Theorems for paired terminal circuits
Superposition, Ho-Tevenin, Reciprocity
Duality

Passive devices (elements) and active devices

Transfer function and transient response

Transfer function of single-pair terminal circuits

Resonance circuit

Bode plot

General properties