電子回路論第6回 Electric Circuits for Physicists

11

東京大学理学部・理学系研究科 物性研究所 勝本信吾 Shingo Katsumoto

Outline

4.3 Feedback control 4.3.1 Disturbance and noise 4.3.2 PID control 4.4 PN junction transistors 4.4.1 Diodes 4.4.2 Bipolar junction transistors 4.5 Field effect transistors

Comment: Use of OP-amp at saturation voltages

Hurwitz criterion

 $U(s) + G(s) \xrightarrow{W(s)} E(s) = \frac{G(s)}{1 + h(s)G(s)}$ Adolf Hurwitz 1859 - 1919

Pole equation: (denominator) = $a_n s^n + a_{n-1} s^{n-1} + \dots + a_0$ = $a_n (s - p_1) \cdots (s - p_n) = 0$

 $\forall j = 0, 1, \cdots, n: a_j > 0 \text{ (or } < 0 \text{)}$ (Otherwise the system is unstable.)

Hurwitz matrix
$$H = \begin{pmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0\\ a_n & a_{n-2} & a_{n-4} & \cdots & 0\\ 0 & a_{n-1} & a_{n-3} & \cdots & 0\\ 0 & a_n & a_{n-2} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & a_0 \end{pmatrix}$$

Hurwitz criterion

Hurwitz determinants
$$H_j \equiv |H[1, \cdots, j; 1, \cdots, j]|$$

 $H_1 = a_{n-1}, H_2 = \begin{vmatrix} a_{n-1} & a_{n-3} \\ a_n & a_{n-2} \end{vmatrix}, H_3 = \begin{vmatrix} a_{n-1} & a_{n-3} & a_{n-5} \\ a_n & a_{n-2} & a_{n-4} \\ 0 & a_{n-1} & a_{n-3} \end{vmatrix}, \cdots$

Hurwitz criterion

$$H_j > 0 \quad (j = 2, \cdots, n = 1)$$

 $H_1, H_n > 0$ is trivial from the assumption.

Another expression:

Divide the denominator to odd and even parts O(s) and E(s). If the zeros of O(s) and E(s) are aligned on the imaginary axis alternatively, the system is stable.

Disturbance and noise on feedback control

Circuit treatment of fluctuations: • Prepare external power sources Express them as transfer functions D(s)Y(s)R(s)G(s) $G_C(s)$ H(s) $\int_{N(s)}$

$$Y(s) = \frac{G(s)}{F(s)} [G_C(s)R(s) + D(s) + G_C(s)H(s)N(s)]$$
$$F(s) \equiv 1 + G_C(s)G(s)H(s)$$

PID control

$$G_c(s) = K_P + \frac{K_I}{s} + K_D s$$

PID controllers

OMRON

4.4 Example of active element: Transistors

pn junction thermodynamics

$$F = \underline{U} - T\underline{S}$$

Voltage (internal energy cost)

Diffusion (entropy)

Minimization of $F \rightarrow$ Built-in (diffusion) voltage V_{bi}

4.4.1 I-V characteristics of pn junctions

te of injected minority carriers: Radiative recombination

Nick Holonyak Jr.

Photo: A. Mahmoud Isamu Akasaki

Photo: A. Mahmoud Hiroshi Amano

Photo: A. Mahmoud Shuji Nakamura

Solar cell (injection of minority carriers with illumination)

Gerald Pearson, Daryl Chapin and Calvin Fuller at Bell labs. 1954

4.3.2 Discovery and invention of bi-polar transistors

The first point contact transistor (Dec. 1947 The paper published in June 1948.)

John Bardeen, William Shockley, Walter Brattain 1948 Bell Labs.

Bipolar junction transistor

Bipolar transistor structures and symbols

Similar characteristics PNP and NPN: complementary

How a bipolar transistor amplifies?

How a bipolar transistor amplifies?

Base-Collector characteristics

Collector-Emitter characteristics

Current amplification : Linearize with quantity selection

Linear approximation of bipolar transistor

Hybrid matrix

$$\begin{pmatrix} V_1 \\ J_2 \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} J_1 \\ V_2 \end{pmatrix}.$$

 $\overset{j_2}{\begin{pmatrix}v_1\\j_2\end{pmatrix}} = \begin{pmatrix}h_{11} & h_{12}\\h_{21} & h_{22}\end{pmatrix}\begin{pmatrix}j_1\\v_2\end{pmatrix} = \begin{pmatrix}h_i & h_r\\h_f & h_o\end{pmatrix}\begin{pmatrix}j_1\\v_2\end{pmatrix}$

h-parameters

(lower case: local linear approximation)

Concept of bias circuits for non-linear devices

For small amplitude (high-frequency) circuits

All the capacitors can be viewed as short circuits.

For bias (dc) circuits

All the capacitors can be viewed as break line.

Concept of equivalent circuit

Concept of equivalent circuit: Where is feedback?

Current amplification: Emitter follower

Complementary transistors

Example of transistor datasheet

TOSHIBA

2SC1815(L)

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT process)

2SC1815(L)

Audio Frequency Voltage Amplifier Applications Low Noise Amplifier Applications

- High breakdown voltage, high current capability
 : VCEO = 50 V (min), IC = 150 mA (max)
- Excellent linearity of hFE

: hFE (2) = 100 (typ.) at VCE = 6 V, IC = 150 mA

: hFE (IC = 0.1 mA)/hFE (IC = 2 mA) = 0.95 (typ.)

- Low noise: NF = 0.2dB (typ.) (f = 1 kHz).
- Complementary to 2SA1015 (L). (O, Y, GR class).

Example of transistor datasheet

TOSHIBA

```
2SC1815(L)
```

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT process)

2SC1815(L)

Electrical Characteristics (Ta = 25°C)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current		I _{CBO}	$V_{CB}=60~V,~I_{E}=0$	j a - k		0.1	μA
Emitter cut-off current		I _{EBO}	$V_{EB} = 5 \text{ V}, I_C = 0$: 		0.1	μA
DC current gain		h _{FE (1)} (Note)	$V_{CE} = 6 \text{ V}, I_C = 2 \text{ mA}$	70	2 <u>11-11</u>	700	
		h _{FE (2)}	V_{CE} = 6 V, I _C = 150 mA	25	100	// }.	
Saturation voltage	Collector-emitter	V _{CE (sat)}	$I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA}$	1 <u>99</u>	0.1	0.25	V
	Base-emitter	V _{BE (sat)}	$I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA}$	<u>),</u>		1.0	
Transition frequency		f _T	$V_{CE} = 10 \text{ V}, I_C = 1 \text{ mA}$	80		(<u>;</u>)	MHz
Collector output capacitance		C _{ob}	$\forall_{CB} = 10 \; \forall, \; I_E = 0, \; f = 1 \; MHz$	6 <u>0</u>	2.0	3.5	pF
Base intrinsic resistance		r _{bb} ,	V_{CE} = 10 V, I_{E} = –1 mA, f = 30 MHz	8 7 - N	50	la n i k	Ω
Noise figure		NF (1)	$V_{CE} = 6 \text{ V}, I_C = 0.1 \text{ mA}$ $R_G = 10 \text{ k}\Omega, f = 100 \text{ Hz}$		0.5	6	dB
		NF (2)	V_{CE} = 6 V, I _C = 0.1 mA R _G = 10 kΩ, f = 1 kHz	8	0.2	3	

Note: hFE (1) classification O: 70~140, Y: 120~240, GR: 200~400, BL: 350~700

Example of transistor datasheet

COLLECTOR CURRENT IC (mA)

Common emitter (grounded emitter) amplifier circuit

$$V_{\rm C} = R_2 \Delta J_{\rm C} \approx R_2 \Delta J_{\rm E} = R_2 \frac{\Delta V_{\rm E}}{R_4} = \frac{R_2}{R_4} \Delta V$$

4.4 Field effect transistor (FET)

S

n-channel

p-channel

S

Pinch-off

p

-3V

MES-FET

MOS-FET

Static characteristics of FET

Locally linear approximation $j_d = g_m v_{gs} + \frac{v_d}{r_d}$

References

Feedback

- ▶ 土谷武士, 江上正「現代制御工学」(産業図書, 2000)
- ➢ J. J. Distefano, et al. "Schaum's outline of theory and problems of feedback and control systems" 2nd ed. (McGraw-Hill, 1990)

OP amp. circuit design

- ▶ 岡村迪夫「OPアンプ回路の設計」 CQ出版社
- J. K. Roberge, K. H. Lundberg, "Operational Amplifiers: Theory and Practice" (MIT, 2007). http://web.mit.edu/klund/www/books/opamps181.pdf

BJT, FET circuits

- ▶ 松澤昭「基礎電子回路工学」(電気学会, 2009).
- S. M. Sze, K. K. Ng, "Physics of Semiconductor Devices" (Wiley, 2007).

Exercise C-1

In the circuit shown in the left, at point P, a waveform in the lower panel was observed. Here V+ and V- are power source voltages for + and – respectively.

Draw a rough sketch of the waveform for V_{out} .

"Rough sketch" should contain the levels and the timing of folding points. Write a short comment why V_{out} should be in such a form.

Exercise C-2

 γR

+

Α

 $(1-\gamma)R$

$$A(s) = \frac{A_0\omega_1\omega_2}{s(s+\omega_1)(s+\omega_2)}$$

So the gain diverges with $s \rightarrow 0$ but here we ignore this instability. The input impedance is ∞ , and the output impedance is 0.

It is now placed in a circuit with a feedback shown in the left.

Obtain the stability condition for γ .

(hint) Apply the Hurwitz criterion for zeros of even and odd parts of the denominator. Or just calculate H_2 .

Exercise C-3

Let us view a bipolar transistor plus an emitter resistance as a four terminal circuit as shown in the left figure.

Obtain the Y (admittance) matrix defined below for this circuit.

Calculate each element in the Y matrix for $r_e = 25\Omega$, $h_{ie} = 500 \Omega$, $h_{fe} = 200$