Outline

4.3 Feedback control
4.3.1 Disturbance and noise
4.3.2 PID control
4.4 PN junction transistors
4.4.1 Diodes
4.4.2 Bipolar junction transistors
4.5 Field effect transistors

Comment: Use of OP-amp at saturation voltages

Hurwitz criterion

1859-1919

$$
\Xi(s)=\frac{G(s)}{1+h(s) G(s)}
$$

Adolf Hurwitz

Pole equation: $\quad($ denominator $)=a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$

$$
=a_{n}\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)=0
$$

$\forall j=0,1, \cdots, n: \quad a_{j}>0($ or $<0) \quad$ (Otherwise the system is unstable.)

Hurwitz matrix $\quad H=$

$$
\left(\begin{array}{ccccc}
a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0 \\
a_{n} & a_{n-2} & a_{n-4} & \cdots & 0 \\
\hline 0 & a_{n-1} & a_{n-3} & \cdots & 0 \\
0 & a_{n} & a_{n-2} & \cdots & 0 \\
\hline \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{0}
\end{array}\right)
$$

Hurwitz criterion

Hurwitz determinants $\quad H_{j} \equiv|H[1, \cdots, j ; 1, \cdots, j]|$
$H_{1}=a_{n-1}, H_{2}=\left|\begin{array}{cc}a_{n-1} & a_{n-3} \\ a_{n} & a_{n-2}\end{array}\right|, H_{3}=\left|\begin{array}{ccc}a_{n-1} & a_{n-3} & a_{n-5} \\ a_{n} & a_{n-2} & a_{n-4} \\ 0 & a_{n-1} & a_{n-3}\end{array}\right|, \cdots$.
Hurwitz criterion

$$
H_{j}>0 \quad(j=2, \cdots, n=1)
$$

$H_{1}, H_{n}>0$ is trivial from the assumption.

Another expression:
Divide the denominator to odd and even parts $O(s)$ and $E(s)$. If the zeros of $O(s)$ and $E(s)$ are aligned on the imaginary axis alternatively, the system is stable.

Disturbance and noise on feedback control

Circuit treatment of fluctuations: - Prepare external power sources

- Express them as transfer functions
$D(s)$

$$
\begin{gathered}
Y(s)=\frac{G(s)}{F(s)}\left[G_{C}(s) R(s)+D(s)+G_{C}(s) H(s) N(s)\right] \\
F(s) \equiv 1+G_{C}(s) G(s) H(s)
\end{gathered}
$$

PID control

Compensator
P: proportional, I: integral, D: derivative (controller)

$$
G_{c}(s)=K_{P}+\frac{K_{I}}{s}+K_{D} s
$$

PID controllers

OmROn

\mathcal{E}° Invensys
 ع EUROTHERM

4.4 Example of active element: Transistors

Three types of semiconductors

Intrinsic
conduction band
p-type
valence band
doping

$$
n \text {-type }
$$

electrons

$$
E_{\mathrm{F}^{-\cdots}}--------
$$

holes

pn junction

Voltage (internal energy cost)
Diffusion (entropy)
Minimization of $F \rightarrow$ Built-in (diffusion) voltage $V_{b i}$

4.4.1 I-V characteristics of pn junctions

Forward bias
overcomes $V_{b i}$: go carrier injection

Rectification

$$
J=J_{0}\left[\exp \left(\frac{e V}{k_{\mathrm{B}} T}\right)-1\right]
$$

Shockley theory

Fate of injected minority carriers:
Radiative recombination

Injection of minority carriers

$$
J=e \underline{\left(v_{n} n_{p}+v_{p} p_{n}\right)}\left[\exp \frac{e V}{k_{\mathrm{B}} T}-1\right]
$$

minority carrier current

Nick Holonyak Jr.

Photo: A. Mahmoud Isamu Akasaki

Photo: A. Mahmoud Hiroshi Amano

Photo: A. Mahmoud Shuji Nakamura

Solar cell (injection of minority carriers with illumination

$$
J_{e 0}=e v_{n} n_{p}\left[\exp \frac{e V}{k_{\mathrm{B}} T}-1\right]
$$

$$
J_{e}=e v_{n} n_{p} \exp \frac{e V}{k_{\mathrm{B}} T}
$$

$$
-e v_{n}\left(n_{p}+\Delta n_{p}\right)
$$

$$
=J_{n 0}-\underline{e v_{n} \Delta n_{p}} \text { External injection }
$$

Gerald Pearson, Daryl Chapin and Calvin Fuller at Bell labs. 1954

4.3.2 Discovery and invention of bi-polar transistors

Bipolar junction transistor

Field effect transistor
The first point contact transistor (Dec. 1947
The paper published in June 1948.)
John Bardeen, William Shockley, Walter Brattain 1948 Bell Labs.

Bipolar transistor structures and symbols

$$
\begin{aligned}
& \text { PNP type } \\
& L_{\mathrm{B}}<L_{h}
\end{aligned}
$$

NPN type
$L_{\mathrm{B}}<L_{e}$

Similar characteristics PNP and NPN: complementary

How a bipolar transistor amplifies?

How a bipolar transistor amplifies?

Base-Collector characteristics

Current amplification : Linearize with quantity selection

$$
J_{C}=h_{F E} J_{B}
$$

Emitter-common current gain

Linear approximation of bipolar transistor

Hybrid matrix
$\left.\stackrel{\stackrel{J_{1}}{V_{1}}}{\stackrel{(l l}{H_{11}}} \begin{array}{l}H_{12} \\ H_{21}\end{array} H_{22}\right) ~ \stackrel{J_{2}}{\prod_{-}} \quad\binom{V_{1}}{J_{2}}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)\binom{J_{1}}{V_{2}}$.

h-parameters
(lower case: local linear approximation)

Concept of bias circuits for non-linear devices

Common emitter amplifier

For small amplitude (highfrequency) circuits

All the capacitors can be viewed as short circuits.

For bias (dc) circuits

All the capacitors can be viewed as break line.

Concept of equivalent circuit

Concept of equivalent circuit: Where is feedback?

Current amplification: Emitter follower

$$
\begin{aligned}
\frac{v_{o}}{v_{i}} & =\frac{j_{b}\left(1+h_{f e}\right)\left(R_{E} \| R_{o}\right)}{j_{b}\left[h_{i e}+\left(1+h_{f e}\right)\left(R_{E} \| R_{o}\right)\right]} \\
& \approx 1 \quad\left(h_{f e} \gg 1\right)
\end{aligned}
$$

v_{o} does not depend on load resistance
\Rightarrow Very low output resistance

Complementary transistors

Symmetric: Small collector current (idling current) for zero input.

Example of transistor datasheet

TOSHIBA

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT process)

2SC1815(L)

Unit mm

1. EMITTER
2. COLLECTOR
3. BASE

JEDEC	TO-92
JEITA	SC-43
TOSHIBA	$2-5 F 1 B$

Audio Frequency Voltage Amplifier Applications

Low Noise Amplifier Applications

- High breakdown voltage, high current capability

$$
\therefore \mathrm{VCEO}=50 \mathrm{~V}(\mathrm{~min}), \mathrm{IC}=150 \mathrm{~mA}(\max)
$$

- Excellent linearity of hFE
$: \mathrm{hFE}(2)=100$ (typ) at $\mathrm{VCE}_{\mathrm{CE}}=6 \mathrm{~V}$, $\mathrm{IC}=150 \mathrm{~mA}$
$\left.: \mathrm{hFE}^{(\mathrm{I}}=0.1 \mathrm{~mA}\right) / \mathrm{hFE}\left(\mathrm{IC}_{\mathrm{C}}=2 \mathrm{~mA}\right)=0.95(\mathrm{typ}$.
- Low noise: $\mathrm{NF}=0.2 \mathrm{~dB}$ (typ) $(\mathrm{f}=1 \mathrm{kHz})$.
- Complementary to 2SA1015 (L) (O, Y, GR class).

Example of transistor datasheet

TOSHIBA
TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT process)

2SC1815(L)

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Characteristics		Symbol	Test Condition	Min	Typ.	Max	Unit
Collector cut-off current		1 CBO	$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}, \mathrm{lE}=0$	-	-	0.1	$\mu \mathrm{A}$
Emitter cut-off current		lebo	$V_{E B}=5 \mathrm{~V}, \mathrm{l}_{C}=0$	"	-	0.1 .	$\mu \mathrm{A}$
DC current gain		$\mathrm{h}_{\text {FE }}(1)$ (Note)	$V_{C E}=6 \mathrm{~V}$ IC $=2 \mathrm{~mA}$	70	-	700	
		$\mathrm{h}_{\text {FE (2) }}$	$\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=150 \mathrm{~mA}$	25	100	2-	
Saturation voltage	Collector-emitter	VCE (sat)	$\mathrm{IC}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}$	-	0.1	0.25	V
	Base-emitter	$V_{\text {BE (sat) }}$	Ic $=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}$	-	\cdots	10	
Transition frequency		f	$V_{\mathrm{CE}}=10 \mathrm{~V} \cdot \mathrm{l} \mathrm{C}=1 \mathrm{~mA}$	80	تِ	- -	MHz
Collector output capacitance		$\mathrm{C}_{\text {ob }}$	$V_{C B}=10 \mathrm{~V}, \mathrm{lE}=0, \mathrm{f}=1 \mathrm{MHz}$	-	2.0	3.5	pF
Base intrinsic resistance		rbb	$V_{\mathrm{CE}}=10 \mathrm{~V}, 1 \mathrm{E}=-1 \mathrm{~mA}, \mathrm{f}=30 \mathrm{MHz}$	-	50	-	Ω
Noise figure		NF (1)	$\begin{aligned} & V_{C E}=6 \mathrm{~V}, 1 \mathrm{C}=0.1 \mathrm{~mA} \\ & R_{\mathrm{G}}=10 \mathrm{k} \Omega \mathrm{f}=100 \mathrm{~Hz} \end{aligned}$	-	0.5	6	dB
		NF (2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V} \mathrm{IC}_{\mathrm{C}}=0.1 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega_{\mathrm{I}} \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	-	0.2	3	

Note: $h_{\text {FE (1) }}$ classification 0: 70~140, Y: 120~240, GR: $200 \sim 400$, BL: $350 \sim 700$

Example of transistor datasheet

$h_{f e}$ linear model availability in the range of J_{C}.

Cut-off frequency as a function of J_{C}

Common emitter (grounded emitter) amplifier circuit

$$
\Delta V_{\mathrm{C}}=R_{2} \Delta J_{\mathrm{C}} \approx R_{2} \Delta J_{\mathrm{E}}=R_{2} \frac{\Delta V_{\mathrm{E}}}{R_{4}}=\frac{R_{2}}{R_{4}} \Delta V
$$

Transient Analysis (Oscilloscope)
$\square \square x$

4.4 Field effect transistor (FET)

Junction FET (JFET)

Circuit symbols

n-channel

p-channel

Pinch-off

MES-FET

Substrat semi-isolant

MOS-FET

Simplified
CMOS inverter circuit

Low leakage current

Single gate input both on/off switch

Static characteristics of FET

$$
\begin{array}{rlrl}
g_{m} & \equiv\left(\frac{\partial J_{D}}{\partial V_{G S}}\right)_{V_{D}=\text { const. }} & & \text { transconductance } \\
r_{d} & \equiv\left(\frac{\partial V_{D}}{\partial J_{D}}\right)_{V_{G S}=\text { const. }} & \text { Drain resistance }
\end{array}
$$

Locally linear approximation

$$
j_{d}=g_{m} v_{g s}+\frac{v_{d}}{r_{d}}
$$

References

Feedback
＞土谷武士，江上正「現代制御工学」（産業図書，2000）
$>$ J．J．Distefano，et al．＂Schaum＇s outline of theory and problems of feedback and control systems＂ $2^{\text {nd }}$ ed．（McGraw－Hill，1990）

OP amp．circuit design
$>$ 岡村迪夫 「 OP アンプ回路の設計」 CQ 出版社
＞J．K．Roberge，K．H．Lundberg，＂Operational Amplifiers：Theory and Practice＂（MIT，2007）．
http：／／web．mit．edu／klund／www／books／opamps181．pdf

BJT，FET circuits

＞松澤昭 「基礎電子回路工学」（電気学会，2009）。
＞S．M．Sze，K．K．Ng，＂Physics of Semiconductor Devices＂ （Wiley，2007）．

Exercise C-1

In the circuit shown in the left, at point P , a waveform in the lower panel was observed. Here V+ and V- are power source voltages for + and - respectively.

Draw a rough sketch of the waveform for $V_{\text {out }}$.
"Rough sketch" should contain the levels and the timing of folding points. Write a short comment why $V_{\text {out }}$ should be in such a form.

Consider a differential amplifier with the open loop gain

$$
A(s)=\frac{A_{0} \omega_{1} \omega_{2}}{s\left(s+\omega_{1}\right)\left(s+\omega_{2}\right)} .
$$

$\gamma R \quad$ So the gain diverges with $s \rightarrow 0$ but here we ignore this instability. The input impedance is ∞, and the output impedance is 0 .
It is now placed in a circuit with a feedback shown in the left.
Obtain the stability condition for γ.
(hint) Apply the Hurwitz criterion for zeros of even and odd parts of the denominator.
Or just calculate H_{2}.

Let us view a bipolar transistor plus an emitter resistance as a four terminal circuit as shown in the left figure.
Obtain the Y (admittance) matrix defined below for this circuit.

Calculate each element in the Y matrix for

$$
r_{e}=25 \Omega, h_{i e}=500 \Omega, h_{f e}=200
$$

$$
\binom{j_{1}}{j_{2}}=\left(\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right)\binom{v_{1}}{v_{2}}
$$

