電子回路論第7回 Electric Circuits for Physicists

TITLL

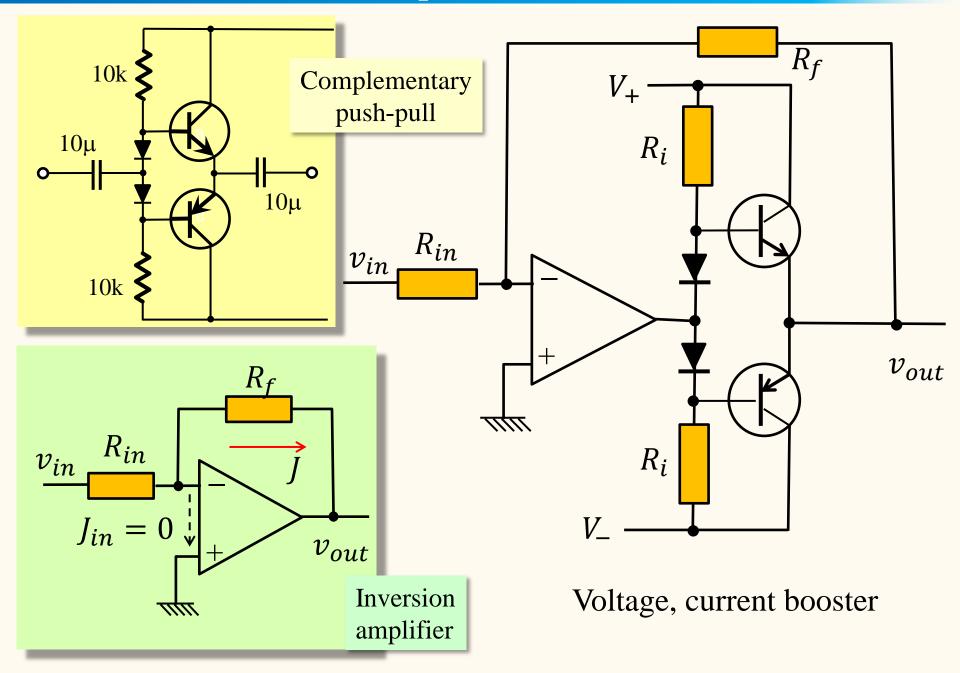
東京大学理学部・理学系研究科 物性研究所 勝本信吾 Shingo Katsumoto

Outline

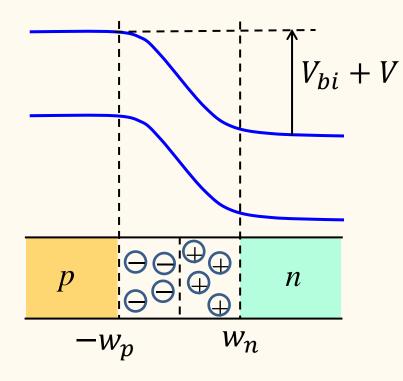
4.5 Field Effect Transistors (FETs)

Ch.5 Distributed constant circuits
5.1 Transmission lines
5.1.1 Coaxial cables
5.1.2 Lecher lines
5.1.3 Micro-strip lines
5.2 Wave propagation through transmission lines
5.2.2 Connection and termination of transmission lines

Combination of an OP-amp and discrete transistors



Depletion layer width with reverse bias voltage



Poisson equation

$$\frac{d^2\phi}{dx^2} = -aq(x) \quad (a \equiv (\epsilon\epsilon_0)^{-1})$$

$$\begin{cases} q = -eN_A \quad (-w_p \le x \le 0), \\ q = eN_D \quad (0 \le x \le w_n) \end{cases}$$

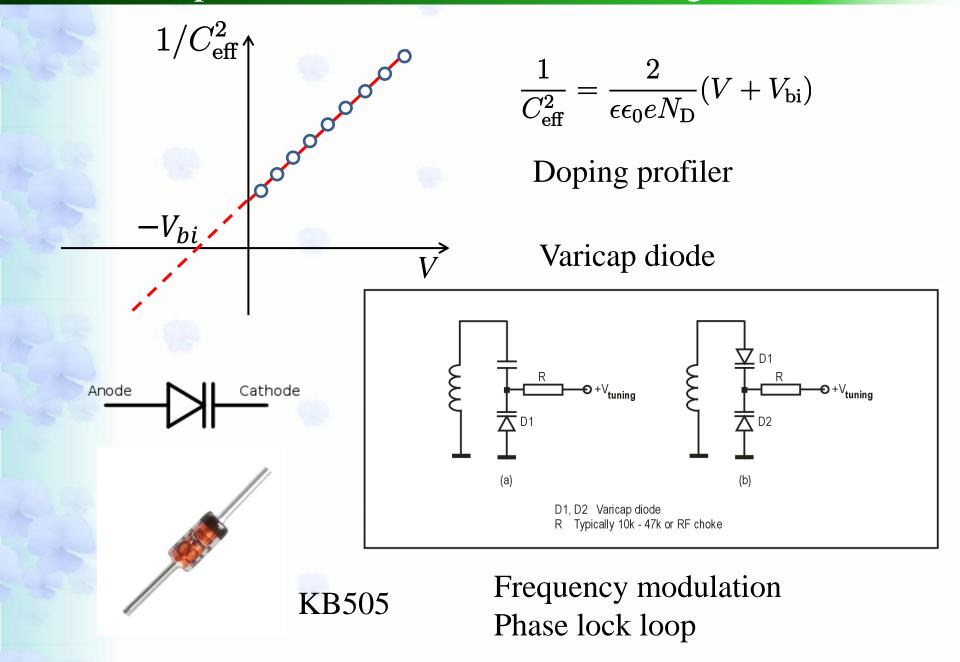
$$\phi(-\infty) = 0$$

$$\phi(-w_p) = 0, \quad \frac{d\phi}{dx} \Big|_{-w_p} = 0,$$

$$\phi(w_n) = V + V_{\text{bi}}, \quad \frac{d\phi}{dx} \Big|_{w_n} = 0$$

$$\phi(x) = \begin{cases} (aeN_A/2)(x+w_p)^2 & (-w_p \le x \le 0), \\ V+V_{\rm bi} - (aeN_D/2)(x-w_n)^2 & (0 \le x \le w_n) \end{cases}$$

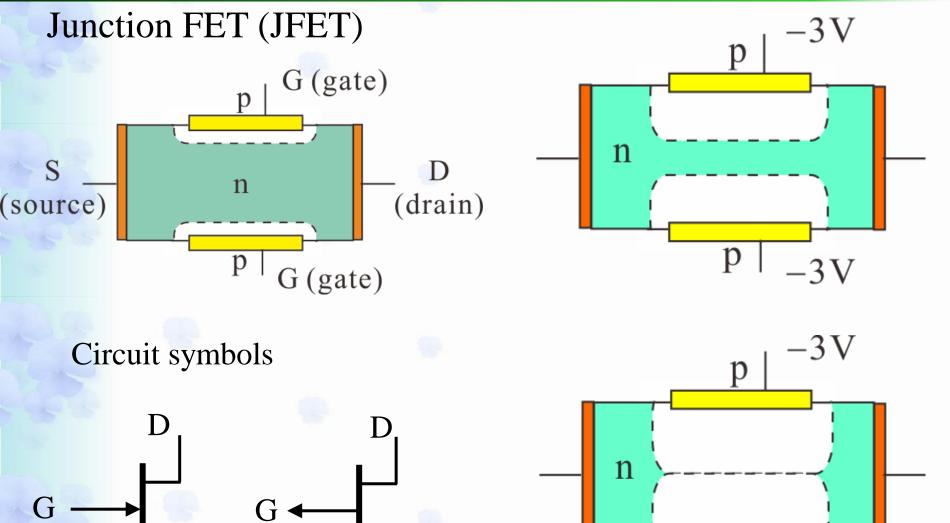
Effective capacitance and reverse bias voltage



4.4 Field effect transistor (FET)

S

n-channel



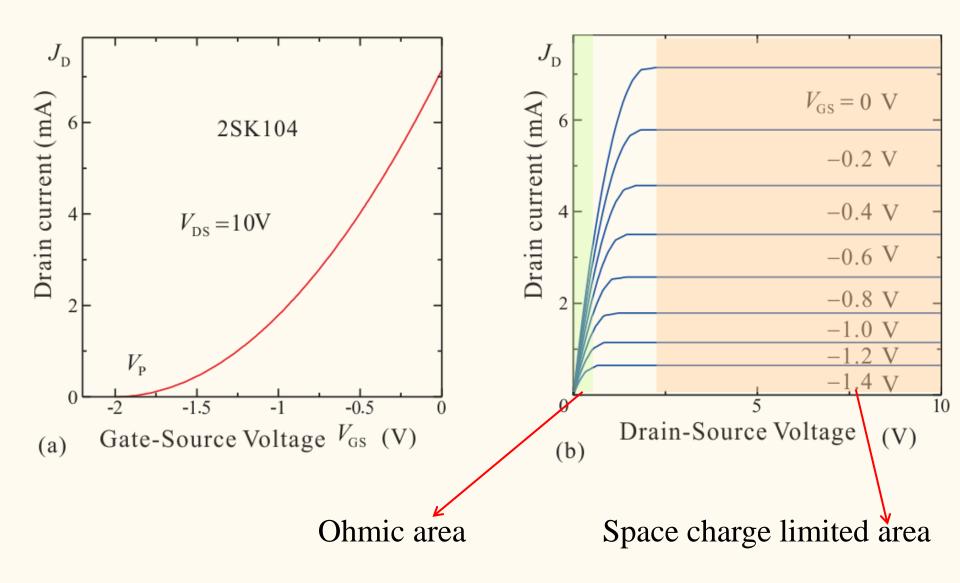
p-channel

S

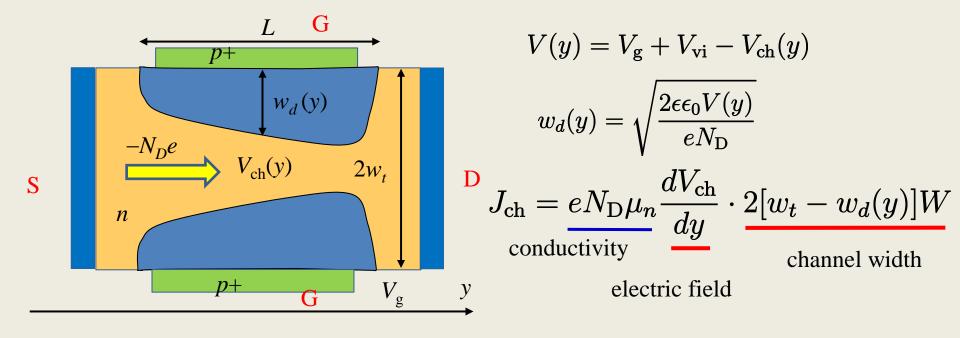
Pinch-off

p

-3V



Space-charge limitation of source-drain current



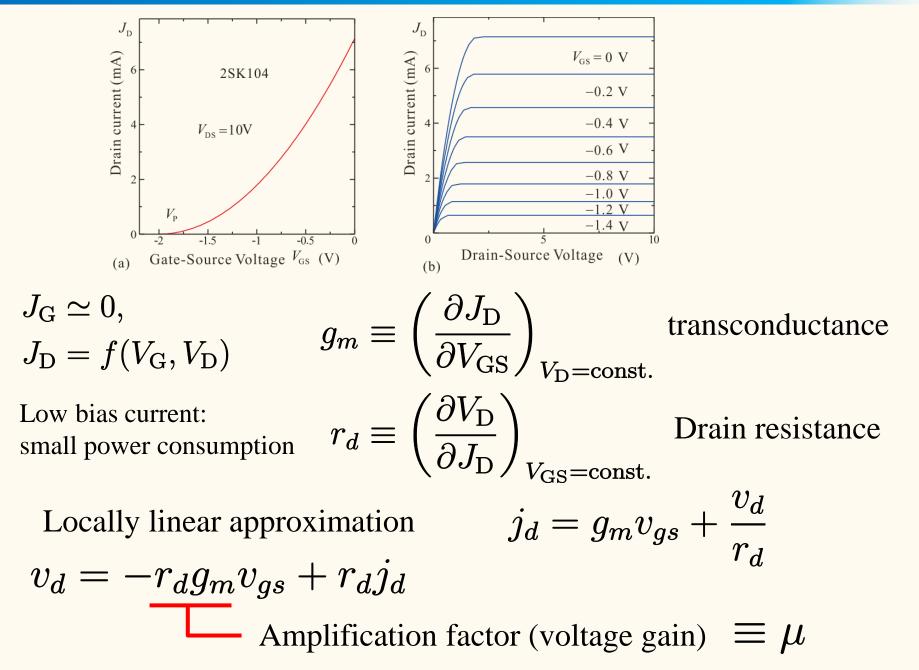
$$J_{ch}L = \int_{0}^{L} J_{ch}dy = 2eN_{D}\mu_{n}W \int_{0}^{L} (w_{t} - w_{d})\frac{dV}{dy}dy = 2w_{t}eN_{D}\mu_{n}W \int_{V_{0}}^{V_{L}} \left(1 - \frac{w_{d}}{w_{t}}\right)dV$$

pinch off (internal) voltage: $w_{d}(V_{c}) = w_{t}$ $V_{c} = \frac{eN_{D}w_{t}^{2}}{2\epsilon\epsilon_{0}}$
$$J_{ch} = \frac{2N_{D}e\mu_{n}Ww_{t}}{L} \left[V_{L} - V_{0} + \frac{2}{3\sqrt{V_{c}}}(V(V_{0})^{3/2} - V(V_{L})^{3/2})\right]$$

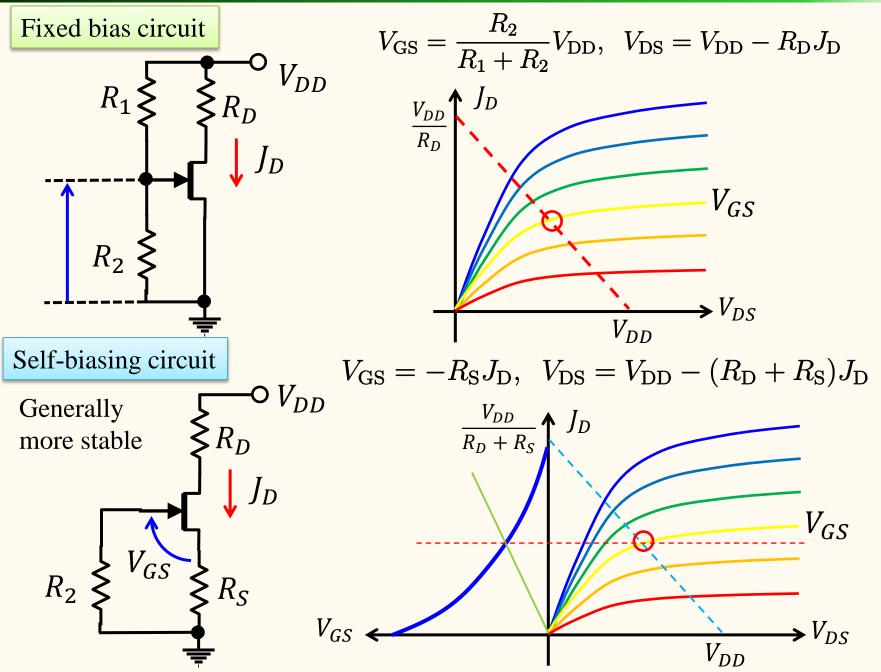
Only valid for $w_d < w_t/2$.

L

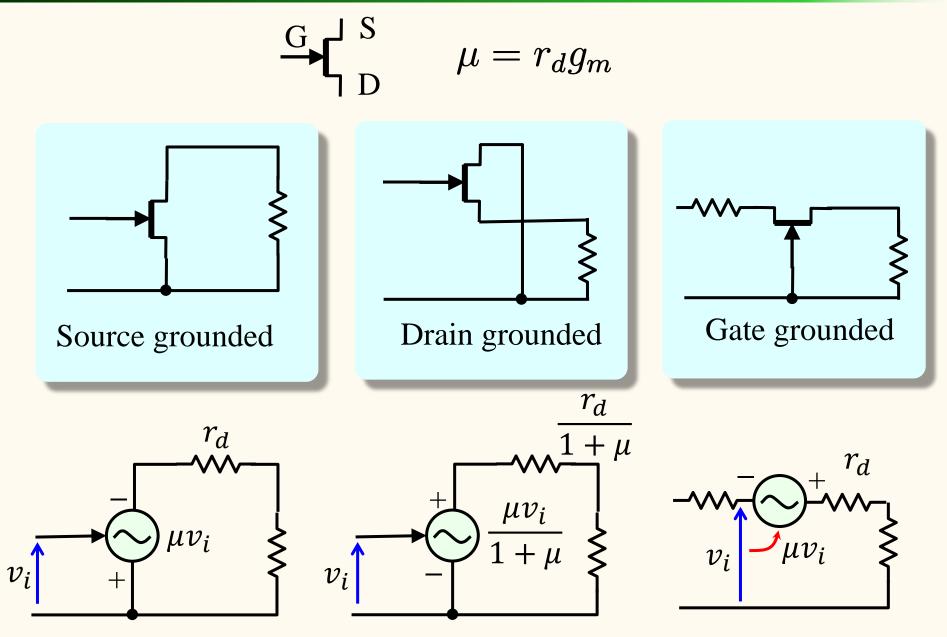
Static characteristics of FET



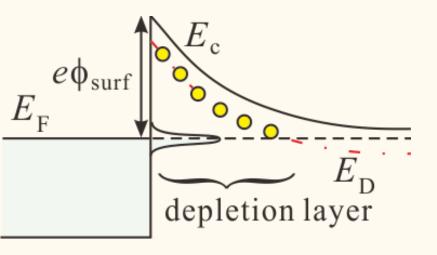
Biasing circuits for FETs

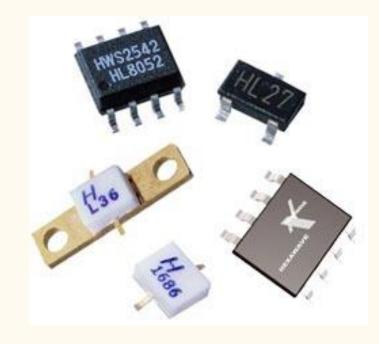


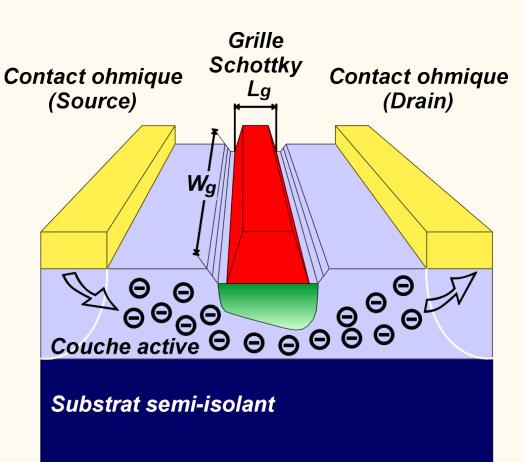
Equivalent signal circuits for FET



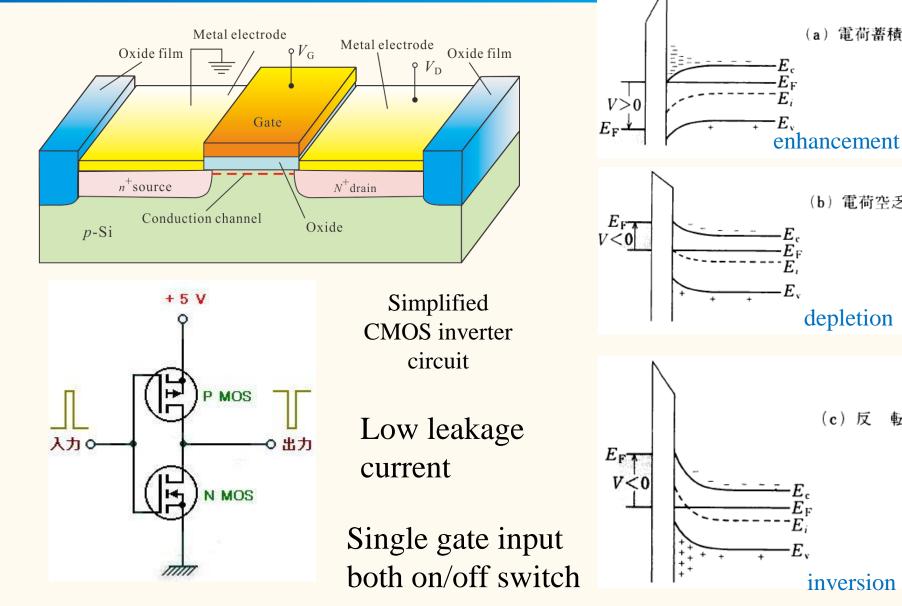
MES-FET







MOS-FET



inversion

(a) 電荷蓄積

電荷空乏

depletion

(c) 反

E.

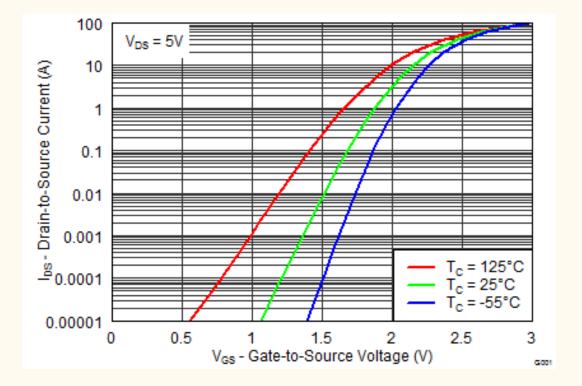
 E_{v}

転

(**b**)

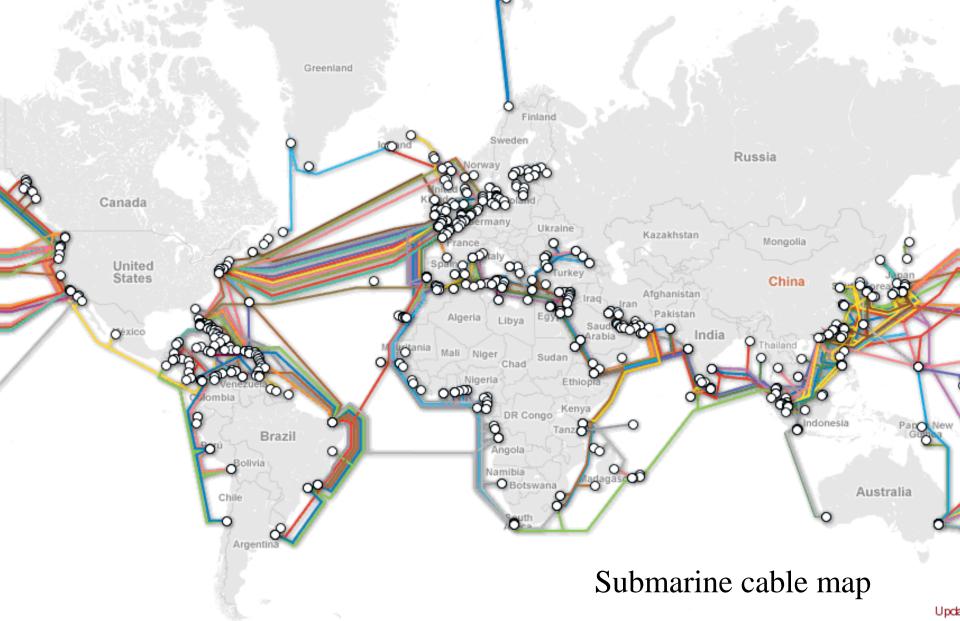
MOSFET switching characteristics

From datasheet CSD87381P power MOSFET (Texas instr.).



More than 7 orders change in J_D within 3 V change of V_{GS} .

Ch.5 Distributed constant circuits



Distributed constant circuit concept

1. In what case we need to consider distributed constant circuits?

Characteristic sizes of devices ≥ wavelength of electromagnetic signal

2. A typical scheme to make the shift for distributed circuit

Lumped constant circuit

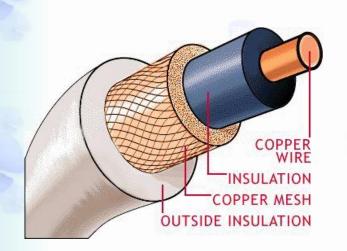
Connection of unit circuits
 Taking the infinitesimal limit

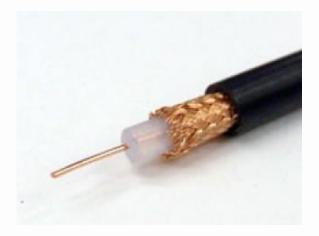
Distributed constant circuit

3. Distributed constant circuits : transmission lines

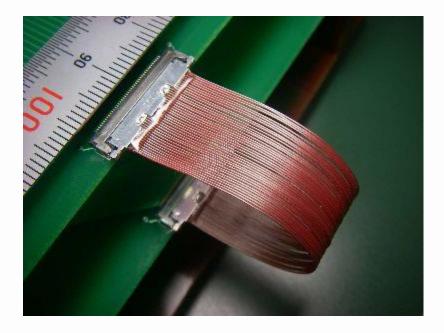
Coaxial cables, Lecher lines, micro-strip lines, waveguides, optical fibers

5.1.1 Coaxial cable



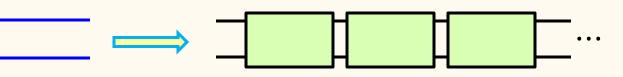


Thin coaxial cable AWG50 (ϕ 25 μ m)

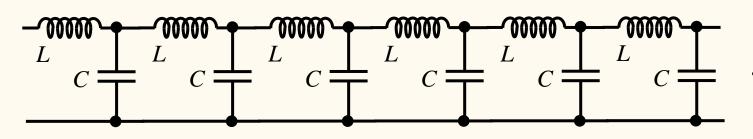


Transmission line as a series of infinitesimal terminal-pairs

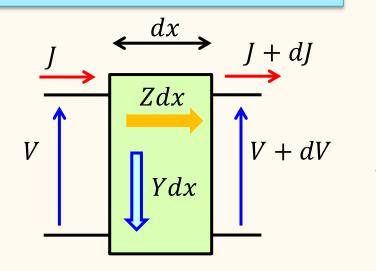
Transmission line \rightarrow divide into four terminal circuits



Each unit should have delay. Ignore energy dissipation.



Then take the infinitesimal limit



Width $\rightarrow 0$, Number $\rightarrow \infty$

$$dV = -JZdx, \quad dJ = -VYdx$$
$$\frac{d^2J}{dx^2} = YZJ,$$
$$\frac{d^2V}{dx^2} = YZV$$
Telegraphic equation

Oliver Heaviside

1850-1925

Characteristic impedance

$$\kappa \equiv \sqrt{YZ} \quad \text{(dimension: } L^{-1}\text{)}$$

 $J(x,t) = J(0,t) \exp(\pm \kappa x), \quad V(x,t) = V(0,t) \exp(\pm \kappa x)$

-: Progressive, +: Retrograde

$$\frac{V}{J} = \mp \frac{Z}{\kappa} = \mp \sqrt{\frac{Z}{Y}}$$

Characteristic impedance

Pure reactance $Y = i\omega C$, $Z = i\omega L$

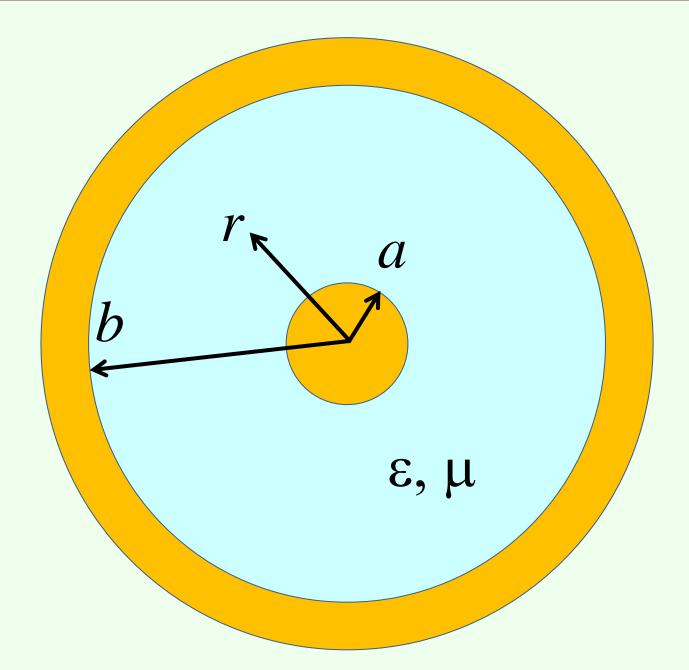
For L and C model

$$\kappa = \sqrt{-\omega^2 LC} = i \frac{\omega}{\omega_0}, \quad \omega_0 \equiv \frac{1}{\sqrt{LC}}$$

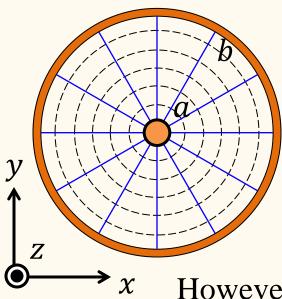
(dimension: velocity)

$$Z_0 = \sqrt{\frac{L}{C}}$$

Coaxial cable setup



Maxwell theory



 $E = E_0(x, y)e^{i\omega t - \gamma z}, \quad H = H_0(x, y)e^{i\omega t - \gamma z}$ From Maxwell equations $(\omega^2 \epsilon \mu + \gamma^2) \begin{pmatrix} E_x \\ E_y \end{pmatrix} = \begin{pmatrix} -\gamma \partial_x & -i\omega \mu \partial_y \\ -\gamma \partial_y & i\omega \mu \partial_x \end{pmatrix} \begin{pmatrix} E_z \\ H_z \end{pmatrix},$ $(\omega^2 \epsilon \mu + \gamma^2) \begin{pmatrix} H_x \\ H_y \end{pmatrix} = \begin{pmatrix} i\omega \mu \partial_y & -\gamma \partial_x \\ -i\omega \mu \partial_x & -\gamma \partial_y \end{pmatrix} \begin{pmatrix} E_z \\ H_z \end{pmatrix}.$

However in TEM (transverse electric and magnetic) mode: $E_z = H_z = 0$ *i.e.*, the RHSs are zero.

For the fields along x and y to survive, $\omega^2 \epsilon \mu + \gamma^2 = 0$ $\therefore \gamma = \pm i \omega \sqrt{\epsilon \mu}$ Propagation velocity $v = \frac{\omega}{\omega \sqrt{\epsilon \mu}} = \frac{1}{\sqrt{\epsilon \mu}}$

In such a case, from Maxwell equations: $\operatorname{rot}_{xy} H = 0$, $\operatorname{rot}_{xy} E = 0$

 \rightarrow Potentials are conceivable for *H* and *E*.

Maxwell theory

$$oldsymbol{E} =
abla_{xy} \mathcal{U} / \sqrt{\epsilon}, \quad oldsymbol{H} =
abla_{xy} \mathcal{V} / \sqrt{\mu}$$

$$\frac{\partial \mathcal{U}}{\partial x} = \frac{\partial \mathcal{V}}{\partial y}, \quad \frac{\partial \mathcal{U}}{\partial y} = -\frac{\partial \mathcal{V}}{\partial x}$$
 Cauchy-Riemann theorem

Characteristic impedance:
$$Z_0 = \frac{\mathcal{U}_a - \mathcal{U}_b}{J\sqrt{\epsilon}}$$

If we can express V and J in the form of distributed constant circuit model (L and C model), the equivalence is certified.

Capacitance part

$$V = \frac{q}{\epsilon} \int_{a}^{b} \frac{dr}{2\pi r} = \frac{q}{2\pi\epsilon} \log \frac{b}{a} = \frac{q}{C}$$
$$\therefore C = \frac{2\pi\epsilon}{\log(b/a)}$$

Maxwell theory

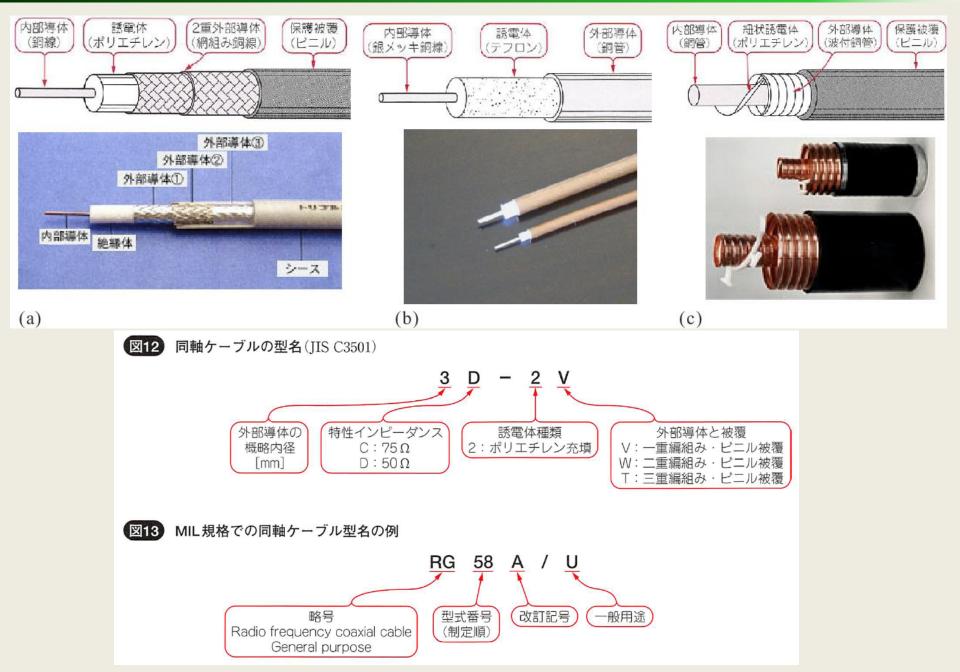
Inductance part Core current *J*, shield current -J $H(r) = \frac{J}{2\pi r}, \quad B(r) = \frac{\mu J}{2\pi r}$ Flux per length: $\Phi = \int_{a}^{b} dr B(r) = \frac{\mu J}{2\pi} \log \frac{b}{a}$ Self inductance per length: $L = \frac{\mu}{2\pi} \log(b/a)$ $Z_0 = \sqrt{\frac{L}{C}} = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \log\left(\frac{b}{a}\right)$

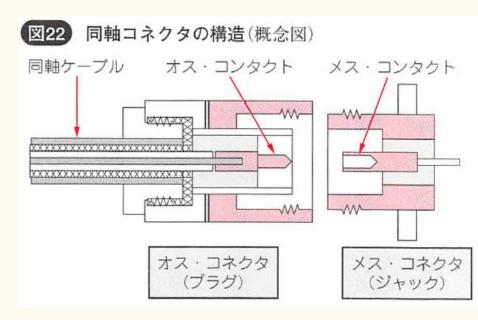
cf. Characteristic impedance of vacuum

$$= \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 376\Omega$$

 Z_0

Coaxial cable 2

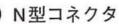




代表的な同軸コネクタの最高使用周波数例

形 式	外部導体内径	最高使用周波数
BNC	約 7 mm	$2 \sim 4 \text{ GHz}$
Ν	約 7 mm	$10 \sim 18 \mathrm{GHz}$
7 mm	7 mm	$\sim 18~{ m GHz}$
SMA	4.15 mm	18 GHz
3.5 mm	3.5 mm	26.5 GHz
Κ	2.92 mm	40 GHz
2.4 mm	2.4 mm	50 GHz
V	1.85 mm	65 GHz
W	1.1 mm	110 GHz
1.0 mm	1.0 mm	110 GHz

Coaxial connectors



(a) フランジ付きジャック

(b) プラグ

(c) プラグ

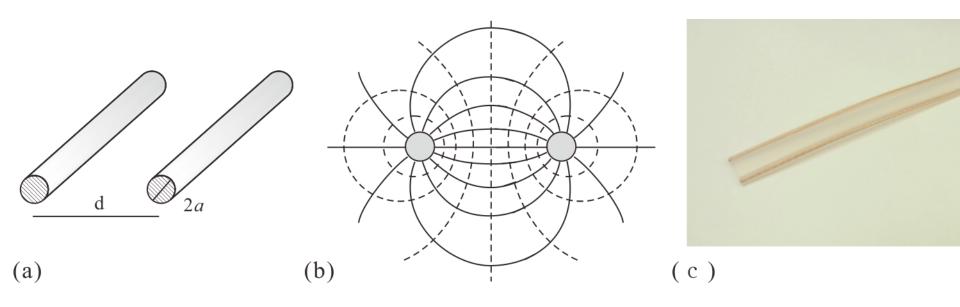
Coaxial connectors 2

LEMO cables and connectors

http://www.lemo.com/

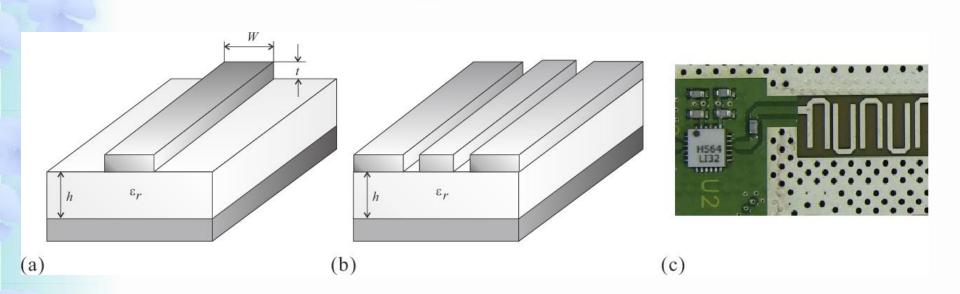
High-energy physics experiment, etc.

Lecher line



$$\phi_1 = -\phi_2 = \frac{J\sqrt{\mu}}{2\pi}\log\frac{d}{a} \qquad Z_0 = \sqrt{\frac{\mu}{\epsilon}}\frac{1}{\pi}\log\frac{d}{a}$$

Micro strip line

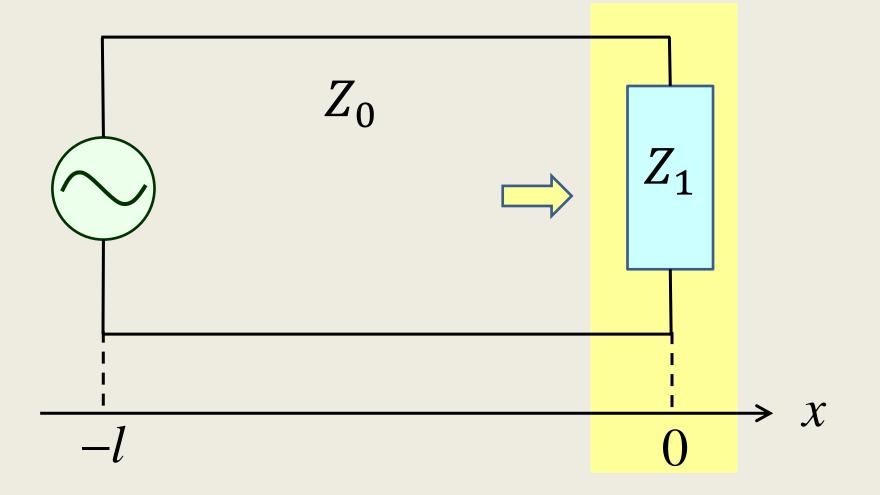


Wide (W/h>3.3) strip

$$Z(W,h,\epsilon_r) = \frac{Z_{F0}}{2\sqrt{\epsilon_r}} \left\{ \frac{W}{2h} + \frac{1}{\pi} \log 4 + \frac{\epsilon_r + 1}{2\pi\epsilon_r} \log \left[\frac{\pi e}{2} \left(\frac{W}{2h} + 0.94 \right) \right] \frac{\epsilon_r - 1}{2\pi\epsilon_r^2} \log \frac{e\pi^2}{16} \right\}^{-1}$$

Narrow (W/h<3.3) strip

$$Z(W,h,\epsilon_r) = \frac{Z_{F0}}{\pi\sqrt{2(\epsilon_r+1)}} \left\{ \log\left[\frac{4h}{W} + \sqrt{\left(\frac{4h}{W}\right)^2 + 2}\right] - \frac{1}{2}\frac{\epsilon_r - 1}{\epsilon_r + 1}\left(\log\frac{\pi}{2} + \frac{1}{\epsilon_r}\log\frac{4}{\pi}\right) \right\}$$



At
$$x = 0$$
:
$$\int_{V} J = J_{+} + J_{-} \quad \text{(definition right positive)}$$

progressive retrograde
$$V = V_{+} + V_{-} = Z_{0}(J_{+} - J_{-})$$
$$Z_{1} = \frac{V}{J} = \frac{J_{+} - J_{-}}{J_{+} + J_{-}}Z_{0}$$

Reflection coefficient:

$$r = \frac{V_{-}}{V_{+}} = -\frac{J_{-}}{J_{+}} = \frac{Z_{1} - Z_{0}}{Z_{1} + Z_{0}}$$

 $Z_1 = Z_0$: no reflection, i.e., impedance matching $Z_1 = +\infty$ (open circuit end): r = 1, i.e., free end

 $Z_1 = 0$ (short circuit end) : r = -1, i.e., fixed end

Finite reflection \rightarrow Standing wave

Voltage-Standing Wave Ratio (VSWR):

$$=\frac{1+|r|}{1-|r|}$$

At x = -l

$$V = V_{+0} \exp(\kappa l) + V_{-0} \exp(-\kappa l) = [J_{+0} \exp(\kappa l) - J_{-0} \exp(-\kappa l)]Z_0$$

$$J = J_{+0} \exp(\kappa l) + J_{-0} \exp(-\kappa l)$$

$$Z_l = \frac{V}{J} = \frac{J_{+0}e^{\kappa l} - J_{-0}e^{-\kappa l}}{J_{+0}e^{\kappa l} + J_{-0}e^{-\kappa l}}Z_0$$

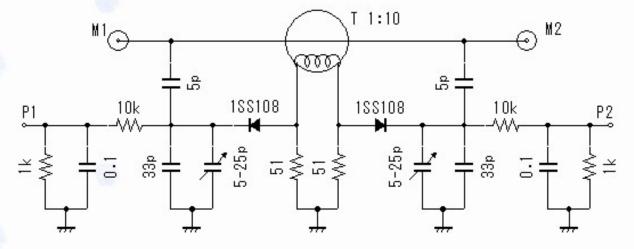
Reflection coefficient:

$$r_{l} = \frac{V_{-}}{V_{+}} = \frac{V_{-0}e^{-\kappa l}}{V_{+0}e^{\kappa l}} = r\exp(-2\kappa l)$$

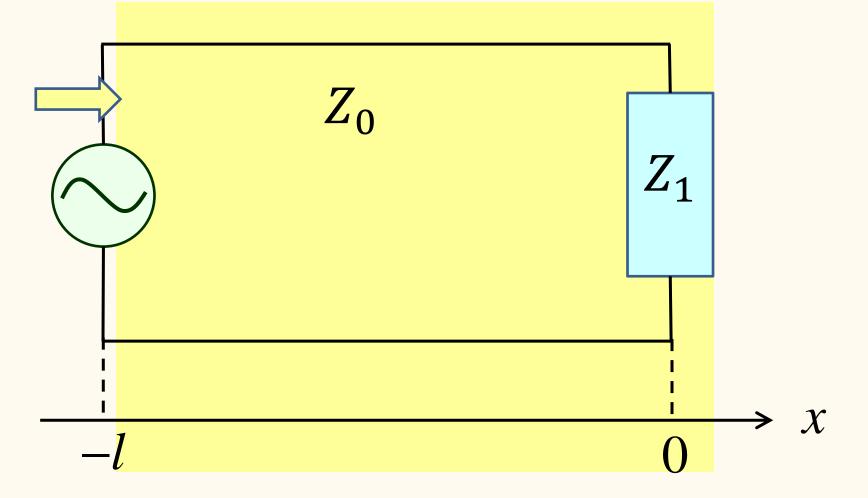
SWR measurement

SWR Meters:

Desktop types



Handy type



Transmission line connection. Characteristic impedance Z_0, Z_0'

At the connection point, only the local relation between V and J affects the reflection coefficient.

The local impedance from the left hand side is Z_0' .

$$r = \frac{Z_0' - Z_0}{Z_0' + Z_0}$$