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Here is an example of answers. There are many other possibilities.

1 DA conversion circuits

1.1 Resistance-ladder type

There is a difference at the right end from the one introduced in the lecture and the logic used there
cannot be applied directly.
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Figure 1: (a) A resistance-ladder type DA conversion circuit, in which the output should be amplified
with high input impedance circuit. (b) An equivalent circuit around point Ak under the condition
dk = 1, dl ̸=k = 0.

There still is a common point, however, for the “resistance viewed from the right to the left at a
joint. For example in Fig.1(a), when point d1 is grounded, the MOS switch also grounds the resistance
2R standing from point A1, and the total resistance from A2 to the left is 2R. This holds for point Ai

as long as dk = 0 (k < i).
Next we write the voltage at point Ai (1 < i < n) as Vi. Application of the Kirchhoff’s first law

to point Ai gives
(Vi − Vi+1)/R+ (Vi − Vi−1)R+ (Vi − Vsdi)/2R = 0. (1)

In case di = 0, 2Vi+1 − 5Vi + 2Vi−1 = 0 holds. The characteristic equation 2x2 − 5x + 2 =
(2x − 1)(x − 2) = 0 has solutions x = 1/2, 2 and the recurrence equation can be decomposed into
2Vi+1 − Vi = a02

i, Vi+1 − 2Vi = b02
−i (a0 b0: constants). Then the general solution has the form

Vi = D12
i +D22

−i, (2)

where D1 = a0/3, D2 = −2b0/3 are constants.
Now we consider the condition dk = 1, dl ̸=k = 0, under which we can determine D1 and D2

(note that they depend on n and k) from the boundary condition. First the situation at the right end
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gives Vout = Vn = (2/3)Vn−1. Substituting (2) into the above equation, we get the relation

D2 = D12
2n+1. (3)

Next we consider the condition at i = k (Fig.1(b)). At point Ak, the Kirchhoff’s first law gives

(Vs − Vk)/(2R)− Vk/(2R)− (Vk − Vk+1)/R = 0,

∴ D2 =
Vs

3
2k. (4)

Equations (3) and (4) result in D1 = (Vs/3)2
k−2n−1. Substituting the above results into eq.(2), we get

the expression for the output voltage Vout as

Vout = Vn =
Vs

3
2k−2n−12n +

Vs

3
2k2−n =

Vs

2
2k−n. (5)

Finally from the superposition theorem, for general sequence {dk} the following DA conversion
output is obtained.

Vout =
Vs

2n+1

n∑
k=1

dk2
k. (6)

1.2 Binary sequential resistance DA conversion circuit

If resistors with resistances R0/2
k (k = 0, · · · , n) are available, the currents through them when a

fixed voltage Vs is applied, are (V/R0)2
k. A current adder with an OP amp can easily accomplish the

required circuit.
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1.3 Binary sequential capacitance DA conversion circuit
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In the Japanese version of the problem I miswrote “resistances" {2kC0} (k = 0, · · · , n), but they
are actually capacitances as in the English version. I hope the students reading this did not have any
confusion. Also, I gave a comment “another C0 capacitance" to some students’ answers but this is just
for stabilisation of charge in the output electrode and also for sample and hold. Just for answering the
question this is not required. This does not affect the final scoring.

2



To answer the question, just like 1.2, we apply a voltage Vs to the capacitor with capacitance 2kC0

and measure the total charge. In the above figure, the charge in the k-the capacitor is (Vout−dkVs)2
kC0

the total charge in the output electrode should be zero because there is no in/out of charge from it. Then,

n∑
k=0

(Vout − dkVs)2
kC0 = 0. (7)

And we obtain

Vout =
Vs

2n+1 − 1

n∑
k=0

dk2
k. (8)

Practically it is very hard to prepare stable capacitors with accurate capacitance over several decades
and I do not know any real example of such DA converter. In serious practical application, we need to
prepare many additional circuits, e.g., sample and hold capacitors, discharging switches etc.

2 Distributed constant circuit
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The title “distributed constant circuit" is not ap-
propriate. Here the continuum limit is not taken
and “circuit with repetition" or “periodic circuit"
are appropriate expressions. There are various
ways for taking unit of repetition. Anyway one
of the general properties of periodic circuits tells
us that the boundary between transparent and
opaque (decaying) frequency regions is the same
as that of the unit of repetition.

Let us take the unit of repetition as a T-
shaped circuit composed of two inductors with
inductance L/2 and a capacitor with capacitance
C as shown in the left. The F-matrix of a unit is

given as

F (ω) =

(
iωL

(
1− ω2LC

4

)
1− ω2LC

2

1− ω2LC
2 iωC

)
. (9)

The F-matrix for cascade connection of n units is, then, written as Fn(ω) = Fn(ω).
Let q±(ω) be the two eigenvalues of F (ω), then F can be written by unitary matrix U and diagonal

matrix G, which has q±(ω) as the diagonal elements, as F = U−1GU . Then Fn is expressed as

Fn(ω) = U−1GUU−1GU · · ·U−1GU = U−1GnU = U−1

(
qn+(ω) 0

0 qn−(ω)

)
U. (10)

Specific expression of q±(ω) is

q±(ω) = 1− ω2LC

2
±

√
ω2LC

(
ω2LC

4
− 1

)
. (11)

When the inside the square root is negative, that is,

ω <
2√
LC

, (12)

then

|q±| =

√(
1− ω2LC

2

)2

− ω2LC

(
ω2LC

4
− 1

)
= 1. (13)
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Namely in this frequency region, in the limit n → ∞ in (10), the voltage (current) that propagate
through the circuit does not decay but has phase rotation. Hence eq.(12) represents the condition
of transparent region and ω > 2/

√
LC corresponds to attenuation region. 2/

√
LC is the cut-off

frequency.
The above can be reproduced in the calculation under the concept of image impedance. The image

impedance (introduced in lecture no.4 slide no.12) for the present case is

Z1 = Z−1
2 =

√
L

C

(
1− ω2LC

4

)
. (14)

From the expression given in slide no.14 in lecture no.4 and the properties of hyperbolic functions,
the F-matrix for n-cascade circuit is given as

F (ω)n =

(
coshnθ Z1 sinhnθ

Z−1
1 sinhnθ coshnθ

)
. (15)

This means, again, the transmission range of the total circuit is the same as that of the unit circuit. And
the condition is equivalent to the image attenuation constant (introduced in slide no.13) is zero. That
is

1 =

∣∣∣∣V1J1
V2J2

∣∣∣∣ ⇔ 1 =

√∣∣∣∣V1J1
V2J2

∣∣∣∣ = ∣∣∣√AD +
√
BC

∣∣∣ = ∣∣∣∣∣1− ω2LC

2
+

√(
ω2LC

4
− 1

)
ω2LC

∣∣∣∣∣ ,
which is the same as from (11) to (13).

L/2L/2

C Z

From the F-matrix in (15) the two-wire impedance for
the left end terminals is nothing but the image impedance
(14). Or, the same can be obtained in the following way.
To get the result for n → ∞, we consider the circuit being
resemble to the Dyson equation, that is, the impedance Z
should be the same as the cascade connection of a single
unit and Z itself. Namely

Z = iω
L

2
+

1

iωC + 1
iωL/2+Z

. (16)

Then Z is given as

Z =

√
L

C

(
1− ω2

LC

4

)
, (17)

which is, as expected, the same as the image impedance. I wrote some wrong comments that the edge
inductance should give some imaginary part, but that is the case for the edge inductance of L and in
the present problem, it is L/2 and there is no imaginary part. I apologise this but anyway this did not
cause any deduction for the right answer. As can be seen in the above, the impedance is zero at the
cut-off frequency, i.e. this is the resonance point.
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Such a discrete transmission line with repetition unit composed of L and C converges into a dis-
tributed constant transmission line in the limit of infinitesimal unit, which line does not have such a
cut-off frequency. This is, of course, because the limit is taken under the condition that L/C = Z2

0 is
kept constant. Under that the cut-off frequency 2/

√
LC, on the other hand, diverges. There are many

similar phenomena, in which some cut-off frequencies appear with discretising continuous spaces.
For example, the above figure is the dispersion relation of acoustic phonon in one-dimensional lat-
tice, taken from J. M. Ziman “Electrons and Phonons". Around zero-frequency (ν = 0), the acoustic
phonon has no dispersion (massless) because the wave does not “see" the lattice discreteness. With in-
creasing the wavenumber q (or the frequency), the linear relation changes into a convex curve forming
cut-off frequency νth. The cut-off wavelength is just a half of the lattice period and there is a resonance
between the phonon and the lattice. This also corresponds to the Nyquist frequency in the sampling
theorem. In the continuum limit, as indicated in the figure as “Continuum", the cut-off frequency or
the resonant point escapes to infinite.

3 OPamp circuit
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The above is an example of circuits which satisfy the requirements. The Zener diode creates a
constant voltage, which is converted into a constant current. In this case the electrostatic potential of
the sample is apart from the ground and the voltage across the sample is taken by a differential amplifier
with high input impedance (in the lecture this is introduced as “instrumentation amplifier"). In realistic
low-temperature measurement, the thermopower imbalance should be cancelled out by changing the
direction of driving current or by using low frequency lock-in technique.

4 Digital filter

4.1 Input-output relation

+

+ +

+

v1

v2

v3

This is a famous circuit, which works as a notch
IIR filter. The solution can be obtained straight-
forwardly by following the block diagram. The
vertices are symbolised v1,2,3 as shown in the
left. Then the relations

v2 = v1z
−1,

v1 = xn + a1v2 + a2v3,

v3 = v2z
−1,

yn = c0(v1 + b1v2 + v3) (18)
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are obtained. The upper three equations give

(1− a1z
−1 − a2z

−2)v1 = xn. (19)

Then from (18), and ynz
−k = yn−k,

yn − a1yn−1 − a2yn−2

= c0[(1− a1z
−1 − a2z

−2)v1 + b1(1− a1z
−1 − a2z

−2)v1z
−1 + (1− a1z

−1 − a2z
−2)v1z

−2]

= c0(xn + b1xn−1 + xn−2). (20)

This is the relation required in the problem.

4.2 Frequency response

From (20),

yn−a1yn−1−a2yn−2 = (1−a1z
−1−a2z−2)yn = c0(xn+b1xn−1+xn−2) = c0(1+b1z

−1+z−2)xn,

f/fs

|H
|

g0=fs/20

g0=fs/100
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then the transfer function H(z) is written as

H(z) =
c0(1 + b1z

−1 + z−2)

1− a1z−1 − a2z−2
. (21)

The frequency dependence is obtained by substituting
z = eiωτ into the above.

|H(eiωτ )| =
∣∣∣∣c0(1 + b1e

−iωτ + e−2iωτ )

1− a1e−iωτ − a2e−2iωτ

∣∣∣∣ . (22)

Before the analysis of (22), let us write a simple program
on a convenient language like Scilab, and draw |H(eiωτ )|
as a function of ω. As shown in the left, it (transmission
coefficient or gain, if you prefer to call) has a sharp dip at
f/fs = 0.1. Such a filtering characteristic is called notch
filter or band stopping filter. When g0 is set to fs/100,
as indicated by the broken line, the dip sits at the same

position but is narrowed. From this numerical test, we infer that g0 determines the dip width whereas
f0 is the dip position.

Now let us check eqs.(21), (22) along the inference. From the relation c0 = (1−a1−a2)/(2+b1),
H = 1 for f = 0. Namely c0 is the normalization constant for the condition. Next the numerator can
be written as 1−(eif0+e−if0)e−if+e−2if = (e−if−e−if0)(e−if+e−if0), where we adopt simplified
notation f0 as 2πf0τ etc. This actually has the only zero at f = f0.

In the same notation, the denominator is (eg0/2−if −e−if0)(eg0/2−if +e−if0), which does not have
zero (pole of H) due to the factor eg0/2. To see the behavior in the vicinity of f0, we write ∆f ≡ f−f0
and check the anomaly around f0 in the factor eg0/2−if − e−if0 . We expand the term with ∆f ∼ 0
and g0 ≪ π and take to the first order of ∆f , g0 to obtain

|eg0/2−if − e−if0 | ∼ |g0/2− i∆f | =
√

(∆f)2 +
(g0
2

)2
.

This represents a dip at ∆f = 0 with width g0. The above results justify what we inferred from the
numerical check.
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5 Discrete Fourier transform

This problem can be straghtfowardly solved just with a little perspiration on numerical calculation (if
you possess a convenient data analysis program, this can easily be accomplished).

The above is the given signal, which is, at the first sight, like white noise.
But in the FFT power spectrum, as shown in the upper left figure, a clear peak appears at 12.7 Hz

if we assume the unit of x-parameter in the data is second. Hence the signal carrier is there. Now we
repeat the FFT on a narrow window and check the amplitude at 12.7 Hz with shifting the center of the
window. Then a triangular wave pattern over three periods should be reproduced with fluctuation due
to the difference in analysis parameters.

6 Impedance matching

L1

L2

21
LLM =

I thought the problem is easy for most of the students to
solve but in practice many were suffered from this to my
surprise. The main reason seems to be that I forgot to ex-
plain how we treat in the simplest approximation the situ-
ation of “take an intermediate tap to a coil". I apologize
for lacking the explanation though I thought is a kind of
common sense. I introduced the technique of matching
transformer in the lecture for impedance matching. At high
frequencies, the winding numbers of coils are small and
we often adopt such a middle tap method instead of trans-
former. Many students who tried this problem considered
equivalent circuits with deviding the coil into two at the
middle tap. At this point the fact that these two coils have

magnetic fluxes in common slipped out. Such “independent coils" approximation makes the calcula-
tion even more complicated and leads to wrong answers.

As in the above figure, when two coils have magnetic flux in common (interlinkage flux), we need
to consider the mutual inductance M . In the simplest approximation that there is no leakage in flux
(close coupling), M =

√
L1L2, where L1, L2 are the inductances for the two independent coils. Here
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the total inductance L is

L = L1 + L2 + 2M = L1 + L2 + 2
√

L1L2 = (
√
L1 +

√
L2)

2. (23)

This is consistent with the simplest approximation that the “inductance is proportional to the square of
winding number".

Then the voltage (electromotive force) ratio of the tap side to the total coil side is that of inductance
L2/L. Hence the condition is the same for a matching transformer and

L2

L
=

N2
1

N2
2

=
50

800
=

1

16
∴ N1

N2
=

1

4
= 0.250.

Most of the students reached the right answer for the values of L and C. First the ratio of resonance
frequency to the width (Q-value) should be

Q =
ω0

|ω1 − ω2|
=

85

10
≈ 2π × 85× 106 × 800× C,

giving
C = 1.99× 10−11 F = 19.9 pF.

Next from the resonance condition

L =
1

Cω2
0

=
1

1.99× 10−11 × (2π × 85× 106)2
= 1.76× 10−7 H = 0.176 µH.

An interesting question here may be “in problem no.2,
we linearly devide or connect the inductances. Why there
is such difference from eq.(23)?" This is because when we
consider LC unit periodic circuit model, we assume trans-
verse electromagnetic field (TEM) mode for propagation.
As in the left figure, in such case, the magnetic flux does
not have longitudinal component, which corresponds to the
mutual inductance between the coils in series. Hence we
can add or devide the inductances in linear approximation.
This is an example that we need to remember we are treat-

ing electromagnetc field even in the circuit approximation.
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