Exercise C-1

In the circuit shown in the left, at point P, a waveform in the lower panel was observed. Here V+ and V- are power source voltages for + and – respectively.

Draw a rough sketch of the waveform for V_{out} .

"Rough sketch" should contain the levels and the timing of folding points. Write a short comment why V_{out} should be in such a form.

Exercise C-2

 γR

+

Α

 $(1-\gamma)R$

$$A(s) = \frac{A_0\omega_1\omega_2}{s(s+\omega_1)(s+\omega_2)}$$

So the gain diverges with $s \rightarrow 0$ but here we ignore this instability. The input impedance is ∞ , and the output impedance is 0.

It is now placed in a circuit with a feedback shown in the left.

Obtain the stability condition for γ .

(hint) Apply the Hurwitz criterion for zeros of even and odd parts of the denominator. Or just calculate H_2 .

Exercise C-3

Let us view a bipolar transistor plus an emitter resistance as a four terminal circuit as shown in the left figure.

Obtain the Y (admittance) matrix defined below for this circuit.

Calculate each element in the Y matrix for $r_e = 25\Omega$, $h_{ie} = 500 \Omega$, $h_{fe} = 200$