Exercise C-1

In the circuit shown in the left, at point P , a waveform in the lower panel was observed. Here V+ and V- are power source voltages for + and - respectively.

Draw a rough sketch of the waveform for $V_{\text {out }}$.
"Rough sketch" should contain the levels and the timing of folding points. Write a short comment why $V_{\text {out }}$ should be in such a form.

Consider a differential amplifier with the open loop gain

$$
A(s)=\frac{A_{0} \omega_{1} \omega_{2}}{s\left(s+\omega_{1}\right)\left(s+\omega_{2}\right)} .
$$

$\gamma R \quad$ So the gain diverges with $s \rightarrow 0$ but here we ignore this instability. The input impedance is ∞, and the output impedance is 0 .
It is now placed in a circuit with a feedback shown in the left.
Obtain the stability condition for γ.
(hint) Apply the Hurwitz criterion for zeros of even and odd parts of the denominator.
Or just calculate H_{2}.

Let us view a bipolar transistor plus an emitter resistance as a four terminal circuit as shown in the left figure.
Obtain the Y (admittance) matrix defined below for this circuit.

Calculate each element in the Y matrix for

$$
r_{e}=25 \Omega, h_{i e}=500 \Omega, h_{f e}=200
$$

$$
\binom{j_{1}}{j_{2}}=\left(\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right)\binom{v_{1}}{v_{2}}
$$

