Obtain the dispersion relation in the following transmission line.

Show that the power spectrum G(f) of voltage noise across the impedance Z(f) = R(f) + iY(f)

is given as

$$G(f) = 4R(f)k_{\rm B}T.$$

Assume that thermal noise energy per unit time is $k_B T \Delta f$.

(hint) From the above assumption we can skip the discussion on the mode energy in transmission line. Instead consider the case in the left figure, in which Z' is matched to Z as

$$Z'(f) = Z^*(f) = R(f) - iY(f)$$

A preamplifier with FETs for an FM receiver has the output impedance of 600Ω . The FM receiver has the input impedance of 50Ω and we need to make impedance matching. The central frequency is 85MHz, the effective with of amplification is 10MHz. Obtain C_1 , C_2 , L in the matching circuit with 3 digits significant figures.

(hint) Express L with a parallel of L_1 and L_2 as shown in (b). The left resonance circuit should be tuned to 85MHz, width10MHz. Then the left and the right circuit should be impedance matched.

FM受信機のプリアンプをFETで作ったところ,出力インピーダンスが 600Ω になった.受信機の入力インピーダンスは 50Ω なので,インピーダンスマッチを取る必要がある.中心周波数を85MHz,有効周波数幅を 10MHz,として(a)のような回路でマッチを取ると,回路定数 C_1 , C_2 , Lはどうなるか.有効数字3桁で答えよ.

(ヒント)(b)のようにインダクタンスを2つに分割し、左の共鳴回路で85MHz、10MHz幅に同調させる.この後、左右のインピーダンスが一致するように定数を求める.