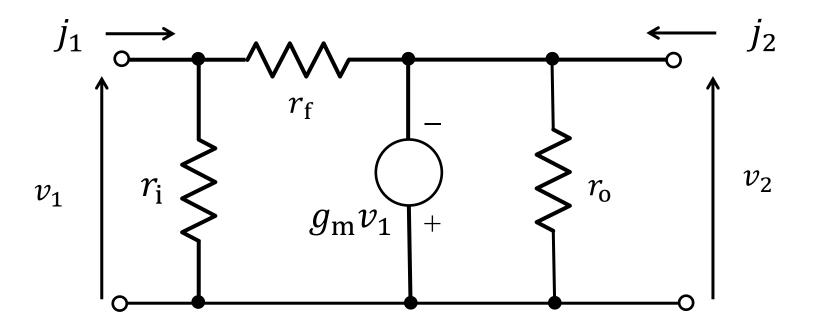

Exercise 4-1

Let us view a bipolar transistor plus an emitter resistance as a four terminal circuit as shown in the left figure.


Obtain the Y (admittance) matrix defined below for this circuit.

Calculate each element in the Y matrix for

$$r_e = 25\Omega, h_{ie} = 500 \Omega, h_{fe} = 200$$

$$\begin{pmatrix} j_1 \\ j_2 \end{pmatrix} = \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Exercise 4-2

Obtain the Y matrix for the above equivalent circuit (π -shape circuit).

Exercise 4-3

l=1km の伝送線路がある. 終端側を短絡したところ, 電源側から 測定したインピダンスは0.6i Ωであった. 一方, 終端側を開放して 電源側からアドミタンスを測定すると4x10-6i Sであった. この伝送線路の特性インピダンスを求めよ.

Consider a transmission line with the length $l=1 \mathrm{km}$. First we short-circuited the end and measured the impedance from the signal source and obtained $0.6i~\Omega$. Next we opened the end and measured the admittance from the signal source and obtained $4 \mathrm{x} 10^{-6} i~\mathrm{S}$.

What is the characteristic impedance of the transmission line?