Exercise C-6-20

Energy gap opening in one-dimensional lattice can be easily understood by solving 2×2 Schrodinger equation:

$$
i \hbar \frac{\partial}{\partial t} \boldsymbol{a}=\left(\begin{array}{cc}
E & \xi \\
\xi & E
\end{array}\right) \boldsymbol{a} \quad \text { which gives eigenvalues } E \pm \xi
$$

For systematic treatment, the space group theory is the best method to consider this kind of symmetry. But in the case of graphene, a simple consideration similar to the above is enough to understand why we the off-diagonal terms in Hamiltonian leave degeneracy. Consider the case illustrated in the left figure and calculate the eigenvalues. Write a brief comment why the degeneracy is not lifted.

