Problems for Final Report (physics of semiconductors)

Shingo Katsumoto

Dept. Physics and Inst. for Solid State Physics, University of Tokyo

July 13, 2016

Problem1

Let us consider a pn-junction of Si at the temperature 300 K. In the p-layer the acceptor (boron, B) concentration is 10^{21} m⁻³ and in the n-layer the donor (phosphorous, P) concentration is 10^{20} m⁻³. The doping profile is abrupt.

- 1. Obtain the built-in potential.
- 2. Calculate the depletion layer widths for p- and n-layers at reverse bias voltage -5 V.
- 3. Calculate the differential capacitance at reverse bias voltage -5 V for the area 1 mm×1 mm.

Let put another *p*-layer and make a *pnp* transistor (gedanken experiment). The hole diffusion length in the base is 10 μ m.

4. Calculate $h_{\rm FE}$ for base widths 0.5 μ m and 0.1 μ m. (Ignore depletion layer widths, other non-ideal factors. Calculate under the simplest approximation.)

Problem2

Figure 1 (in the next page) shows the Shubnikov-de Haas oscillation and the quantum Hall effect in twodimensional electrons.

- 1. Calculate the electron concentration from the low (≤ 0.5 T) field data.
- 2. Something happened around 0.65T. What is it?

Problem3

Consider a double barrier resonant diode with GaAs as the well material and $Al_{0.4}Ga_{0.6}As$ as the barrier material. Let us adopt $E_g=1.424$ eV for GaAs and $E_g=1.424+1.265x+0.265x^2$ (eV) for $Al_xGa_{1-x}As$ and ΔE_c : $\Delta E_v = 6:4$. The electron effective mass in GaAs is $0.067m_0$ and ignore the change in $AlxGa_{1-x}As$. Consider *n*-type electrodes (note that in the lecture we considered *p*-type).

- 1. Obtain the transfer matrix of 5 nm thickness GaAs-Al_{0.4}Ga_{0.6}As.
- 2. Calculate the transmission probability of resonant diode with two 5 nm barriers and a 5 nm well region as a function of incident energy (from 0 to the top of the barrier with an appropriate interval) and plot in a figure.

Figure 1: Shubnikov-de Haas oscillation of a two-dimensional electron system

Problem4

Let us consider the rectangular potential illustrate in the right.

- 1. First consider the most coarse approximation. Choosing a kinetic energy E determines the effective potential with E/a. Now let us approximate the potential with a rectangular potential of width E/a, bottom V(0), infinite barrier height. Let m^* be the effective mass and obtain the eigen energies from lower level with index $n = 1, 2, \cdots$.
- 2. Compare the above result with more accurate one on Airy functions.
- 3. Also try comparison with Wenzel-Kramers-Brillouin (WKB) approximation for wavefunction penetration into the barrier.

Problem5

In the left figure the green region indicates 2DEG, 1 to 6 are the electric contacts, the yellow regions are metallic gates. The structure has a quantum point contact in the middle. In the integer quantum Hall state with filling factor ν , the sample has ν edge modes. With applying gate voltage, we can tune the number of modes which transmit through the QPC, to χ . Other modes are completely reflected by the QPC. The current is through 1 and 4.

- 1. Obtain the longitudinal resistance $R_{\rm L}$, which is measured from the voltage between 2 and 3 V_{23} or 6 and 5 V_{65} .
- 2. Obtain the Hall resistance $R_{\rm H}$, measured from V_{26} or V_{35} .

Problem6

Consider a 2DEG under IQHE with $\nu = 1$. The edge modes can bring finite current without energy dissipation and the resistance is zero. The conductance of one-dimensional edge mode is then the inverse of the resistance and infinity. Let write the quantum resistance h/e^2 as R_q .

Two dimensional resistivity tensor is written as

$$oldsymbol{
ho} = egin{pmatrix} 0 & R_{
m q} \ -R_{
m q} & 0 \end{pmatrix}.$$

Then the two dimensional conductivity tensor defined by the inverse of resistivity tensor is

$$\boldsymbol{\sigma} = \boldsymbol{\rho}^{-1} = rac{1}{R_{\mathrm{q}}^2} \begin{pmatrix} 0 & -R_{\mathrm{q}} \\ R_{\mathrm{q}} & 0 \end{pmatrix}.$$

That is, $\sigma_{xx}=0!$ Does the calculation contain an error? If it does, what is the error? Or can you solve the puzzle?