電子回路論第11回

（2））終

Electric Circuits for Physicists \＃11

Input-output parameter measurement circuit

$$
\text { Result: } \quad \begin{aligned}
Z_{\text {in }} & =25.0 \omega+8.2 i \Omega \\
Z_{\text {out }} & =49.6 \Omega-19.8 i \Omega \\
S_{21} & =2.92+6.17 i \\
S_{12} & =0.027+0.047 i
\end{aligned}
$$

Transistor for hf amplification (device under test) spice model is provided by Rohm corp.

Transistor gijutsu 2015 No.1- No. 3 A. Kawada

QBFG425W noise data: (at 2.45 GHz)

$$
\begin{cases}F_{\text {min }}[\mathrm{dB}] & =2.3(\text { Noise figure }) \\ \Gamma_{\text {mag }} & =0.2 \text { (reflection amplitude) } \\ \Gamma_{\text {angle }}\left[{ }^{\circ}\right] & =-153 \text { (reflection angle) } \\ r_{n}[\Omega] & =0.21(\text { normalized to } 50 \Omega)\end{cases}
$$

Noise figure circles

$$
\begin{equation*}
C_{\mathrm{nf}}=\frac{r_{\mathrm{opt}}}{N+1} \text { (center), } \quad R_{\mathrm{nf}}=\frac{\sqrt{N\left(N+1-\left|r_{\mathrm{opt}}\right|^{2}\right)}}{N+1} \text { (radius) } \tag{1}
\end{equation*}
$$

where $\quad N \equiv \frac{F-F_{\min }}{4 R_{\mathrm{n}} Y_{0}}\left|1+r_{\mathrm{opt}}\right|^{2}$.
R_{n} : noise equivalent resistance, Y_{0} : characteristic admittance

Constant gain also gives a circle on the Smith chart

$$
\begin{aligned}
& \text { (center) } C_{\mathrm{s}}=\frac{g_{s} S_{11}^{*}}{1-\left(1-g_{s}\right)\left|S_{11}\right|^{2}}, \quad \text { (radius) } R_{s}=\frac{\sqrt{1-g_{s}}\left(1-\left|S_{11}\right|^{2}\right)}{1-\left(1-g_{s}\right)\left|S_{11}\right|^{2}} \\
& g_{s}=G_{s}\left(1-\left|S_{11}\right|^{2}\right)
\end{aligned}
$$

Find smallest NF touching point Tune to 50Ω

Gain circles
Noíse circles

Impedance matching circuit simulation (LTSpice)

Tuning of input matching circuit
The lowest nf condition gives
$C_{2}=4.06 \mathrm{pF}, L_{3}=4.51 \mathrm{nH}$

6.3 Modulation and Signal Transfer

Outline

6.3 Modulation and signal transfer 6.3.1 Modulation/demodulation
6.3.2 Amplitude modulation
6.3.3 Angle modulation
6.3.4 Demodulation of frequency modulated signal
6.3.5 Modulation and noise

FM broadcast test

6.3 Signal transmission

Electric communication $\left\{\begin{array}{l}\text { Baseband communication } \\ \text { Carrier communication }\end{array}\right.$

$$
\text { Modulation }\left\{\begin{array}{ll}
\text { Amplitude modulation } & \left\{\begin{array}{l}
\text { Analog } \\
\text { Frequency (Phase) modulation }
\end{array}\right.
\end{array}\right\} \begin{aligned}
& \text { Pulse }
\end{aligned}
$$

6.3.2 Amplitude modulation

m : Modulation index

$$
0<m \leq 1
$$

6.3.2 Amplitude modulation

$$
\begin{align*}
& S(i \omega)=\int_{-\infty}^{\infty} s(t) e^{i \omega t} d t=\int_{-\infty}^{\infty} A[1+m f(t)] \cos \left(\omega_{c} t\right) e^{i \omega t} d t \\
&=A\left\{\pi\left[\delta\left(\omega-\omega_{c}\right)+\delta\left(\omega+\omega_{c}\right)\right]+\frac{m}{2}\left[F\left(i\left(\omega-\omega_{c}\right)\right)+F\left(i\left(\omega+\omega_{c}\right)\right)\right]\right\} \tag{5}\\
& F(i \omega)=\mathscr{F}\{f(t)\} \\
& f(t): \text { Real } F(i \omega)=F^{*}(-i \omega)
\end{align*}
$$

Upper side band (USB), Lower side band (LSB)

6.3.2 Amplitude modulation (circuit example)

6.3.2 Amplitude modulation (circuit example 2)

Idea: Modulation of oscillator circuit

$$
V_{L-}=-\frac{R_{4}}{R_{3}} V_{r e f}-\left(1+\frac{R_{4}}{R_{3}}\right) V_{t h} \quad: \text { controllable with } V_{\text {ref }}
$$

6.3.2 Amplitude modulation (circuit example 2)

The amplitude is softly limited with the modulation voltage.

6.3.2 Amplitude modulation (circuit example 2)

6.3.2 Amplitude modulation (demodulation)

6.3.3 Angle modulation

Signal

Frequency modulation (FM)

6.3.3 Angle modulation

$$
\begin{equation*}
s(t)=A \cos \theta_{\mathrm{i}}(t), \quad \theta_{\mathrm{i}}(t)=\omega_{\mathrm{c}} t+\phi[t, f(t)] \tag{6}
\end{equation*}
$$

Differential angular frequency: $\omega_{\mathrm{i}}(t)=\frac{d \theta_{\mathrm{i}}(t)}{d t}=\omega_{\mathrm{c}}+\frac{d \phi[t, f(t)]}{d t}$

$$
\begin{align*}
\frac{d \phi[t, f(t)]}{d t} & \left.=k_{f} f(t) \quad \text { (FrequencyModulation, } \mathrm{FM}\right) \tag{7}\\
\phi[t, f(t)]= & \left.k_{p} f(t) \quad \text { (PhaseModulation, PM }\right) \tag{9}\\
& s_{\mathrm{FM}}(t)=A \cos \left[\omega_{\mathrm{c}} t+k_{f} \int^{t} f(\tau) d \tau\right] \tag{10}\\
& s_{\mathrm{PM}}(t)=A \cos \left[\omega_{\mathrm{c}} t+k_{f} f(t)\right] \tag{11}
\end{align*}
$$

${ }^{(8)}\left(k_{f}, k_{p}\right.$: depths of
(9) modulation)

Frequency ω component: only phase shift $\pi / 2$:
No difference in signal outlook.

$$
\begin{aligned}
& f(t)=A_{p} \cos \omega_{p} t \quad: \text { Signal wave } \\
& s_{\mathrm{FM}}=A \cos \left(\omega_{\mathrm{c}} t+\beta \sin \omega_{p} t\right)=A \operatorname{Re}\left[\exp \left(i \omega_{\mathrm{c}} t\right) \exp \left(i \beta \sin \omega_{p} t\right)\right] \\
& \left(\beta \equiv \frac{k_{f} A_{p}}{\omega_{p}}=\frac{\Delta f}{f_{p}}\right)
\end{aligned}
$$

$\sin \omega_{p} t:$ Periodic function with $T=2 \pi / \omega_{p}$, hence Fourier expansion is possible.

$$
\begin{gather*}
\exp \left(i \beta \sin \omega_{p} t\right)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(i n \omega_{p} t\right) \\
c_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} \exp \left(i \beta \sin \omega_{p} t^{\prime}\right) \exp \left(-i n \omega_{p} t^{\prime}\right) d t^{\prime} \\
=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp \left[i(\beta \sin \theta-n \theta] d \theta=J_{n}(\beta) \quad\right. \text { First kind Bessel function } \tag{15}
\end{gather*}
$$

6.3.3 Angle modulation (frequency modulation)

Though the expansion series does not have clear cut-off, the actual band width falls

$$
\omega_{\mathrm{bw}}=2\left(\omega_{\mathrm{f}}+\xi \omega_{\mathrm{w}}\right) \quad(1 \leq \xi \leq 2)
$$

Let us see the reasoning both for phase modulation (PM) and frequency modulation (FM).

6.3.3 Angle modulation band width

remember: $\quad s_{\mathrm{FM}}(t)=A \cos \left[\omega_{\mathrm{c}} t+k_{f} \int^{t} f(\tau) d \tau\right], \quad s_{\mathrm{PM}}(t)=A \cos \left[\omega_{\mathrm{c}} t+k_{f} f(t)\right]$
Maximum frequency or phase shift:

$$
\begin{aligned}
\Delta \omega=\left.k_{f}|f(t)|_{\max }\left|\equiv k_{f} f_{\max }, \quad \Delta \phi=k_{f}\right| \int^{t} f(\tau) d \tau\right|_{\max } & \text { for } \mathrm{FM}, \\
\Delta \omega=k_{p}\left|f^{\prime}(t)\right|_{\max }, \quad \Delta \phi=k_{p}|f(t)|_{\max } & \text { for } \mathrm{PM}
\end{aligned}
$$

$f(t)$ band width: ω_{W} gives width $2 \omega_{W} \quad \omega_{\mathrm{bw} 1}=2\left(k_{f} f_{\max }+2 \omega_{\mathrm{w}}\right)=2\left(\omega_{\mathrm{f}}+2 \omega_{\mathrm{w}}\right)$
98% of total power in the whole frequency region $\omega_{\mathrm{bw} 2}=2\left(\omega_{\mathrm{f}}+\omega_{\mathrm{w}}\right)$
Actually, some value between (16) and (17) is taken for the band width.

$$
2\left(\omega_{f}+\xi \omega_{\mathrm{W}}\right) \quad 1 \leq \xi \leq 2
$$

6.3.3 Angle modulation (circuit example)

Voltage Controlled Oscillator (VCO)

,

Phase Lock Loop (PLL)

Signal flow block diagram of a phase lock loop (PLL) circuit

6.3.3 Angle modulation (circuit example)

6.3.4 Angle modulation (frequency demodulation)

Doubly tuned circuit
Two transformers are connected in anti-phase direction.
$\mathrm{FM} \rightarrow \mathrm{AM} \rightarrow$ demodulation

6.3.4 Angle modulation (frequency demodulation by PLL)

$g(t)$: Frequency modulation signal (original)

$$
\phi(t)=k_{f} \int_{-\infty}^{t} g(\tau) d \tau, \quad s X(s)=k_{f} G(s)
$$

$$
\therefore Y(s)=\frac{k_{f} k_{e} H(s)}{s+k_{e} k_{o} H(s)} G(s) \approx \frac{k_{f}}{k_{o}} G(s)
$$

6.3.5 Modulation and noise

Received signal

Demodulated output

$$
r(t)=A_{r}[1+m f(t)] \cos \omega_{\mathrm{c}} t+n_{\mathrm{i}}(t)
$$

$$
g(t)=A_{r} m f(t)+n_{\mathrm{o}}(t)
$$

Averaged signal power
received: $S_{\mathrm{pr}}=\frac{A_{r}^{2}}{2}+\frac{\left(A_{r} m\right)^{2}}{2}\left\langle f^{2}\right\rangle$, output: $S_{\mathrm{po}}=A_{r}^{2} m^{2}\left\langle f^{2}\right\rangle$

6.3.5 Modulation and noise

ω_{W} : Noise bandwidth (assumption: white)
Noise power: $\quad 2 \times \frac{n_{a}}{2 \times 2 \pi} \times 2 \omega_{\mathrm{w}}=\frac{n_{a} \omega_{\mathrm{w}}}{\pi}, \quad \frac{n_{a} \times 2 \omega_{\mathrm{w}}}{2 \pi}=\frac{n_{a} \omega_{\mathrm{w}}}{\pi}$
Received
Demodulated

$$
\left.\frac{S}{N}\right|_{\mathrm{in}}=\frac{\pi\left[A_{r}^{2}+\left(A_{r} m\right)^{2}\left\langle f^{2}\right\rangle\right]}{2 n_{a} \omega_{\mathrm{w}}},\left.\quad \frac{S}{N}\right|_{\mathrm{out}}=\frac{\pi A_{r}^{2} m^{2}\left\langle f^{2}\right\rangle}{n_{a} \omega_{\mathrm{w}}}=\left.2 \eta \frac{S}{N}\right|_{\mathrm{in}}
$$

$$
\eta=\frac{m^{2}\left\langle f^{2}\right\rangle}{1+m^{2}\left\langle f^{2}\right\rangle} \quad: \text { is called "power transmission efficiency" }
$$

$$
0<m \leq 1 \rightarrow \eta<\frac{1}{2}
$$

Input sinusoidal: $\left\langle f^{2}\right\rangle=\frac{1}{2} \rightarrow \eta<\frac{1}{3}$

6.3.5 Modulation and noise

In the case of angle modulation

$$
\begin{aligned}
r(t) & =\frac{A_{r} \cos \left[\omega_{\mathrm{c}} t+\phi(t)\right]}{\text { Signal }}+\frac{\text { In phase }}{\frac{n_{l}(t) \cos \omega_{\mathrm{c}} t}{}-\frac{\text { Out of phase }}{n_{r}(t) \sin \omega_{\mathrm{c}} t}} \\
& =A_{r} \cos \left[\omega_{\mathrm{c}} t+\phi(t)\right]+A_{\mathrm{n}}(t) \cos \left[\omega_{\mathrm{c}} t+\phi_{\mathrm{n}}(t)\right] \\
& =V_{r}(t) \cos \left[\omega_{\mathrm{c}} t+\theta(t)\right] \quad\left(\theta(t)=\phi(t)+\frac{\left.\phi_{\mathrm{no}}(t)\right)}{\text { Phase noise }}\right. \\
V_{r}(t) & =\sqrt{A_{r}^{2}+A_{n}^{2}(t)+2 A_{r} A_{\mathrm{n}}(t) \cos \left[\phi_{\mathrm{n}}(t)-\phi(t)\right]}, \\
\phi_{\mathrm{no}}(t) & =\arctan \frac{A_{\mathrm{n}}(t) \sin \left[\phi_{\mathrm{n}}(t)-\phi(t)\right]}{A_{r}+A_{\mathrm{n}}(t) \cos \left[\phi_{\mathrm{n}}(t)-\phi(t)\right]}
\end{aligned}
$$

Time-dependent part in $V_{r}(t)$ can be cut with a limiter circuit.

6.3.5 Modulation and noise (amplitude limiter)

6.3.5 Modulation and noise

$A_{r} \gg A_{n}(t) \quad \phi_{\mathrm{no}} \cong \arctan \left[\frac{A_{\mathrm{n}}(t)}{A_{r}} \sin \left[\phi_{\mathrm{n}}(t)-\phi(t)\right]\right] \cong \frac{A_{\mathrm{n}}(t)}{A_{r}} \sin \left[\phi_{\mathrm{n}}(t)-\phi(t)\right]$
Noise power: $N_{i}=\frac{n_{a} \omega_{B}}{2 \pi} \quad$ Signal power: $\frac{A_{r}^{2}}{2} \quad \frac{S_{\mathrm{i}}}{N_{\mathrm{i}}}=\frac{\pi A_{r}^{2}}{n_{a} \omega_{\mathrm{B}}}$

Phase modulation $\quad \phi[t, f(t)]=k_{p} f(t)$

Averaged signal power: $\quad k_{p}^{2}\left\langle f^{2}\right\rangle$
Averaged noise power: $\quad N_{\mathrm{oPM}} \cong \frac{1}{A_{r}^{2}}\left\langle A_{\mathrm{n}}(t)^{2} \sin ^{2}\left[\phi_{\mathrm{n}}(t)-\phi(t)\right]\right\rangle$
$\phi_{n}(t):$ Uniform in $[0,2 \pi] \rightarrow$ ignored

$$
N_{\mathrm{oPM}} \cong \frac{1}{A_{r}^{2}}\left\langle A_{\mathrm{n}}(t)^{2} \sin ^{2} \phi(t)\right\rangle=\frac{n_{a} \omega_{\mathrm{w}}}{\pi A_{r}^{2}}
$$

6.3.5 Modulation and noise

$$
\begin{gathered}
f(t)=A_{p} \cos \omega_{p} t, \quad \beta \equiv k_{p} A_{p} \rightarrow S_{o}=\frac{\beta^{2}}{2}, \omega_{\mathrm{B}}=2(\beta+\xi) \omega_{\mathrm{w}}(1 \leq \xi \leq 2) \\
\frac{S_{\mathrm{o}}}{N_{\mathrm{o}}}=\frac{\beta^{2}}{2} \frac{\pi A_{r}^{2}}{n_{a} \omega_{\mathrm{w}}}=\frac{\beta^{2}}{2} \frac{\omega_{\mathrm{B}}}{\omega_{\mathrm{w}}} \frac{\pi A_{r}^{2}}{n_{a} \omega_{\mathrm{B}}}=\beta^{2}(\beta+\xi) \frac{S_{i}}{N_{i}}
\end{gathered}
$$

Frequency modulation

$$
\begin{array}{r}
N_{\mathrm{oFM}}=\left\langle\frac{d n_{\mathrm{no}}}{d t}\right\rangle=\frac{1}{A_{r}^{2}}\left\langle\frac{d n_{l}}{d t}\right\rangle=\frac{1}{A_{r}^{2}} \int_{-\omega_{\mathrm{w}}}^{\omega_{\mathrm{w}}} n_{a} \omega^{2} \frac{d \omega}{2 \pi}=\frac{n_{a} \omega_{\mathrm{w}}^{3}}{3 \pi A_{r}^{2}} \\
\beta \equiv k_{f} A_{p} / \omega_{\mathrm{w}} \quad \frac{S_{\mathrm{o}}}{N_{\mathrm{o}}}=3 \beta^{2}(\beta+\xi) \frac{S_{\mathrm{i}}}{N_{\mathrm{i}}} \\
\left.\quad \frac{S_{\mathrm{o}}}{N_{\mathrm{o}}}\right|_{\mathrm{FM}}=\left.3 \beta^{2} \frac{S_{\mathrm{o}}}{N_{\mathrm{o}}}\right|_{\mathrm{AM}},\left.\quad \frac{S_{\mathrm{o}}}{N_{\mathrm{o}}}\right|_{\mathrm{PM}}=\left.\beta^{2} \frac{S_{\mathrm{o}}}{N_{\mathrm{o}}}\right|_{\mathrm{AM}}
\end{array}
$$

6．4 Discrete signal

1928 H．Nyquist

1949 C．Shannon，染谷勲
Isao Someya Claude Shannor 1915－2007 1916－2001

$$
\tilde{x}(t)=x(t) \delta_{\tau}(t)
$$

δ－functions with the period τ

6.4.1 Sampling theorem

$$
\begin{aligned}
& \delta_{\tau}(t)=\sum_{j=-\infty}^{\infty} \delta(t-j \tau)=\sum_{n=-\infty}^{\infty}\left[\frac{1}{\tau} \int_{-\pi / \tau}^{\pi / \tau} \delta(s) d s\right] \exp \left(-i n \frac{2 \pi}{\tau} t\right)=\frac{1}{\tau} \sum_{n=-\infty}^{\infty} \exp \left(-i n \frac{2 \pi}{\tau} t\right) \\
& \underline{\mathscr{F}\left\{\delta_{\tau}(t)\right\}}=\int_{-\infty}^{\infty}\left[\frac{1}{\tau} \sum_{-\infty}^{\infty} e^{-i n(2 \pi / \tau) t}\right] e^{i \omega t} d t=\frac{1}{\tau} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left[i\left(\omega-n \frac{2 \pi}{\tau}\right) t\right] d t \\
& =\frac{2 \pi}{\tau} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{\tau}\right)=\underline{\frac{2 \pi}{\tau}} \delta_{2 \pi / \tau}(\omega) \\
& \mathscr{F}\{x(t)\}=X(\omega), \mathscr{F}\left\{\tilde{x}_{\tau}(t)\right\}=\tilde{X}_{\tau}(\omega) \\
& \tilde{X}_{\tau}(\omega)=\frac{1}{2 \pi} X(\omega) * \frac{2 \pi}{\tau} \delta_{2 \pi / \tau}(\omega)=\frac{1}{\tau} X(\omega) * \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{\tau}\right) \\
& =\frac{1}{\tau} \int_{-\infty}^{\infty} X\left(\omega^{\prime}\right)\left\{\sum_{n=-\infty}^{\infty} \delta\left(\omega-n \frac{2 \pi}{\tau}-\omega^{\prime}\right)\right\} d \omega^{\prime}=\frac{1}{\tau} \sum_{n=-\infty}^{\infty} X\left(\omega-n \frac{2 \pi}{\tau}\right)
\end{aligned}
$$

6.4.1 Sampling theorem

"Cutting out" the frequency spectrum
$\omega_{h}:$ Highest frequency in $\tilde{X}_{\tau}(\omega)$
$\frac{2 \pi}{\tau}>2 \omega_{h}, \quad \tau<\frac{\pi}{\omega_{h}}$
$\frac{1}{2 \tau}:$ Nyquist frequency
6.4.1 Sampling theorem: reconstructing signal

