電子回路論第11回 Electric Circuits for Physicists #11

VIAVA TA

東京大学理学部・理学系研究科 物性研究所 勝本信吾 Shingo Katsumoto

Noise matching circuit simulation (LTSpice)

Transistor for dc bias

Input-output parameter measurement circuit

Result:
$$Z_{in} = 25.0 \ \omega + 8.2i \ \Omega$$

 $Z_{out} = 49.6 \ \Omega - 19.8i \ \Omega$
 $S_{21} = 2.92 + 6.17i$
 $S_{12} = 0.027 + 0.047i$

Transistor for hf amplification (device under test) spice model is provided by Rohm corp.

Transistor gijutsu 2015 No.1- No.3 A. Kawada

Noise matching circuit simulation (LTSpice)

QBFG425W noise data:
(at 2.45 GHz) $F_{min} [dB]$
 Γ_{mag} = 2.3 (Noise figure)
= 0.2 (reflection amplitude)
= -153 (reflection angle)
= 0.21 (normalized to 50 Ω)

Noise figure circles

$$C_{\rm nf} = \frac{r_{\rm opt}}{N+1} \quad \text{(center)}, \quad R_{\rm nf} = \frac{\sqrt{N(N+1-|r_{\rm opt}|^2)}}{N+1} \quad \text{(radius)} \quad (1)$$
where $N \equiv \frac{F-F_{\rm min}}{4R_{\rm n}Y_0} |1+r_{\rm opt}|^2.$ (2)

 R_n : noise equivalent resistance, Y_0 : characteristic admittance

Noise matching circuit simulation (LTSpice)

Constant gain also gives a circle on the Smith chart

(center)
$$C_{\rm s} = \frac{g_s S_{11}^*}{1 - (1 - g_s)|S_{11}|^2}$$
, (radius) $R_s = \frac{\sqrt{1 - g_s}(1 - |S_{11}|^2)}{1 - (1 - g_s)|S_{11}|^2}$ (3)
 $g_s = G_s(1 - |S_{11}|^2)$

Find smallest NF touching point Tune to 50 Ω

Impedance matching circuit simulation (LTSpice)

Tuning of input matching circuit The lowest nf condition gives $C_2 = 4.06$ pF, $L_3 = 4.51$ nH

6.3 Modulation and Signal Transfer

Outline

6.3 Modulation and signal transfer 6.3.1 Modulation/demodulation 6.3.2 Amplitude modulation 6.3.3 Angle modulation 6.3.4 Demodulation of frequency modulated signal 6.3.5 Modulation and noise

FM broadcast test

6.3 Signal transmission

Electric communication

Baseband communication Carrier communication

6.3.2 Amplitude modulation

6.3.2 Amplitude modulation

$$S(i\omega) = \int_{-\infty}^{\infty} s(t)e^{i\omega t}dt = \int_{-\infty}^{\infty} A[1 + mf(t)]\cos(\omega_{c}t)e^{i\omega t}dt$$

$$= A\left\{\pi[\delta(\omega - \omega_{c}) + \delta(\omega + \omega_{c})] + \frac{m}{2}[F(i(\omega - \omega_{c})) + F(i(\omega + \omega_{c}))]\right\} (5)$$

$$F(i\omega) = \mathscr{F}\{f(t)\}$$

$$f(t): \text{Real} \quad F(i\omega) = F^{*}(-i\omega)$$

$$\bigcup_{\substack{i \in I \\ -\omega_{c}}} x \frac{1}{4}$$

$$\int_{-\omega_{c}} \frac{|S(i\omega)|^{2}}{|\omega_{c}|^{2}} \int_{-\omega_{c}} \frac{|S(i\omega)|^{2}}{|$$

6.3.2 Amplitude modulation (circuit example)

6.3.2 Amplitude modulation (circuit example 2)

Idea: Modulation of oscillator circuit

6.3.2 Amplitude modulation (circuit example 2)

The amplitude is softly limited with the modulation voltage.

6.3.2 Amplitude modulation (circuit example 2)

6.3.2 Amplitude modulation (demodulation)

6.3.3 Angle modulation

6.3.3 Angle modulation

d

$$s(t) = A \cos \theta_{i}(t), \quad \theta_{i}(t) = \omega_{c}t + \phi[t, f(t)]$$
(6)
Differential angular frequency: $\omega_{i}(t) = \frac{d\theta_{i}(t)}{dt} = \omega_{c} + \frac{d\phi[t, f(t)]}{dt}$ (7)

$$\frac{\phi[t, f(t)]}{dt} = k_{f}f(t) \quad (\text{FrequencyModulation, FM}), \qquad (8) \quad (k_{f}, k_{p} : \text{depths of modulation})$$
(9)

$$s_{FM}(t) = A \cos \left[\omega_{c}t + k_{f} \int^{t} f(\tau) d\tau \right], \qquad (10)$$

$$s_{PM}(t) = A \cos [\omega_{c}t + k_{f}f(t)] \qquad (11)$$

Frequency ω component: only phase shift $\pi/2$: No difference in signal outlook.

6.3.3 Angle modulation (frequency modulation)

$$f(t) = A_p \cos \omega_p t$$
 : Signal wave

(5)

$$s_{\rm FM} = A\cos(\omega_{\rm c}t + \beta\sin\omega_p t) = A \operatorname{Re}\left[\exp(i\omega_{\rm c}t)\exp(i\beta\sin\omega_p t)\right]$$
(13)
$$\left(\beta \equiv \frac{k_f A_p}{\omega_p} = \frac{\Delta f}{f_p}\right)$$

 $\sin \omega_p t$: Periodic function with $T = 2\pi/\omega_p$, hence Fourier expansion is possible.

$$\exp(i\beta\sin\omega_p t) = \sum_{n=-\infty}^{\infty} c_n \exp(in\omega_p t), \qquad (14)$$
$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} \exp(i\beta\sin\omega_p t') \exp(-in\omega_p t') dt'$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp[i(\beta\sin\theta - n\theta)] d\theta = J_n(\beta) \qquad \text{First kind Bessel function} \quad (14)$$

6.3.3 Angle modulation (frequency modulation)

Though the expansion series does not have clear cut-off, the actual band width falls

$$\omega_{\rm bw} = 2(\omega_{\rm f} + \xi \omega_{\rm w}) \quad (1 \le \xi \le 2)$$

Let us see the reasoning both for phase modulation (PM) and frequency modulation (FM).

remember:
$$s_{\rm FM}(t) = A \cos\left[\omega_{\rm c}t + k_f \int^t f(\tau)d\tau\right], \quad s_{\rm PM}(t) = A \cos[\omega_{\rm c}t + k_f f(t)]$$

| rt |

Maximum frequency or phase shift:

$$\Delta \omega = k_f |f(t)|_{\max} |\equiv k_f f_{\max}, \quad \Delta \phi = k_f \left| \int f(\tau) d\tau \right|_{\max} \quad \text{for FM},$$
$$\Delta \omega = k_p |f'(t)|_{\max}, \quad \Delta \phi = k_p |f(t)|_{\max} \quad \text{for PM}$$

f(t) band width: ω_W gives width $2\omega_W \quad \omega_{bw1} = 2(k_f f_{max} + 2\omega_w) = 2(\omega_f + 2\omega_w)$ (16)
98% of total power in the whole frequency region $\omega_{bw2} = 2(\omega_f + \omega_w)$ (17)
Actually, some value between (16) and (17) is taken for the band width.

$$2(\omega_f + \xi \omega_{\rm W}) \quad 1 \le \xi \le 2$$

6.3.3 Angle modulation (circuit example)

Phase Lock Loop (PLL)

Signal flow block diagram of a phase lock loop (PLL) circuit

- Phase comparator: (1)creates error signal (signal subtraction)
- (2) Loop filter: permits frequency band to transmit.
- (3) VCO is an oscillator

6.3.3 Angle modulation (circuit example)

6.3.4 Angle modulation (frequency demodulation)

Doubly tuned circuit

Two transformers are connected in anti-phase direction.

 $FM \rightarrow AM \rightarrow$ demodulation

6.3.4 Angle modulation (frequency demodulation by PLL)

g(t): Frequency modulation signal (original)

$$\phi(t) = k_f \int_{-\infty}^t g(\tau) d\tau, \quad sX(s) = k_f G(s)$$

$$\therefore Y(s) = \frac{k_f k_e H(s)}{s + k_e k_o H(s)} G(s) \approx \frac{k_f}{k_o} G(s)$$

 $\omega_{\rm W}$: Noise bandwidth (assumption: white)

Noise power: $2 \times \frac{n_a}{2 \times 2\pi} \times 2\omega_w = \frac{n_a \omega_w}{\pi}, \quad \frac{n_a \times 2\omega_w}{2\pi} = \frac{n_a \omega_w}{\pi}$ Received Demodulated $\left|\frac{S}{N}\right|_{\cdot} = \frac{\pi [A_r^2 + (A_r m)^2 \langle f^2 \rangle]}{2n_a \omega_{\rm w}}, \quad \left|\frac{S}{N}\right|_{\rm out} = \frac{\pi A_r^2 m^2 \langle f^2 \rangle}{n_a \omega_{\rm w}} = 2\eta \left|\frac{S}{N}\right|_{\rm in}$ $\eta = \frac{m^2 \langle f^2 \rangle}{1 + m^2 \langle f^2 \rangle} \qquad : \text{ is called "power transmission efficiency"}$ $0 < m \le 1 \to \eta < \frac{1}{2}$ Input sinusoidal: $\langle f^2 \rangle = \frac{1}{2} \rightarrow \eta < \frac{1}{2}$

In the case of angle modulation In phase Out of phase $r(t) = A_r \cos[\omega_c t + \phi(t)] + n_l(t) \cos \omega_c t - n_r(t) \sin \omega_c t$ Noise Signal $= A_r \cos[\omega_c t + \phi(t)] + A_n(t) \cos[\omega_c t + \phi_n(t)]$ $= V_r(t) \cos[\omega_c t + \theta(t)] \quad (\theta(t) = \phi(t) + \phi_{no}(t))$ Phase noise $V_r(t) = \sqrt{A_r^2 + A_n^2(t) + 2A_r A_n(t) \cos[\phi_n(t) - \phi(t)]},$ $\phi_{\rm no}(t) = \arctan \frac{A_{\rm n}(t) \sin[\phi_{\rm n}(t) - \phi(t)]}{A_{\rm n} + A_{\rm n}(t) \cos[\phi_{\rm n}(t) - \phi(t)]}$

Time-dependent part in $V_r(t)$ can be cut with a limiter circuit.

6.3.5 Modulation and noise (amplitude limiter)

$$\begin{split} A_r \gg A_n(t) \quad \phi_{no} &\cong \arctan \left[\frac{A_n(t)}{A_r} \sin[\phi_n(t) - \phi(t)] \right] \cong \frac{A_n(t)}{A_r} \sin[\phi_n(t) - \phi(t)] \\ \text{Noise power: } N_i &= \frac{n_a \omega_B}{2\pi} \quad \text{Signal power: } \frac{A_r^2}{2} \qquad \frac{S_i}{N_i} = \frac{\pi A_r^2}{n_a \omega_B} \\ \hline \text{Phase modulation} \quad \phi[t, f(t)] &= k_p f(t) \\ \text{Averaged signal power: } k_p^2 \langle f^2 \rangle \\ \text{Averaged noise power: } N_{oPM} \cong \frac{1}{A_r^2} \langle A_n(t)^2 \sin^2[\phi_n(t) - \phi(t)] \rangle \\ \phi_n(t) \text{: Uniform in } [0, 2\pi] \rightarrow \text{ ignored} \end{split}$$

$$N_{\rm oPM} \cong \frac{1}{A_r^2} \langle A_{\rm n}(t)^2 \sin^2 \phi(t) \rangle = \frac{n_a \omega_{\rm w}}{\pi A_r^2}$$

$$\begin{split} f(t) &= A_p \cos \omega_p t, \ \beta \equiv k_p A_p \to S_o = \frac{\beta^2}{2}, \ \omega_{\rm B} = 2(\beta + \xi) \omega_{\rm w} \ (1 \le \xi \le 2) \\ &\frac{S_{\rm o}}{N_{\rm o}} = \frac{\beta^2}{2} \frac{\pi A_r^2}{n_a \omega_{\rm w}} = \frac{\beta^2}{2} \frac{\omega_{\rm B}}{\omega_{\rm w}} \frac{\pi A_r^2}{n_a \omega_{\rm B}} = \beta^2 (\beta + \xi) \frac{S_i}{N_i} \end{split}$$
Frequency modulation
$$N_{\rm oFM} = \left\langle \frac{dn_{\rm no}}{dt} \right\rangle = \frac{1}{A_r^2} \left\langle \frac{dn_l}{dt} \right\rangle = \frac{1}{A_r^2} \int_{-\omega_{\rm w}}^{\omega_{\rm w}} n_a \omega^2 \frac{d\omega}{2\pi} = \frac{n_a \omega_{\rm w}^3}{3\pi A_r^2} \\ \beta \equiv k_f A_p / \omega_{\rm w} \qquad \frac{S_{\rm o}}{N_{\rm o}} = 3\beta^2 (\beta + \xi) \frac{S_{\rm i}}{N_{\rm i}} \\ \boxed{\frac{S_{\rm o}}{N_{\rm o}}}_{\rm FM} = 3\beta^2 \left. \frac{S_{\rm o}}{N_{\rm o}} \right|_{\rm AM}, \quad \frac{S_{\rm o}}{N_{\rm o}} \right|_{\rm PM} = \beta^2 \left. \frac{S_{\rm o}}{N_{\rm o}} \right|_{\rm AM} \end{split}$$

6.4 Discrete signal

6.4.1 Sampling theorem

$$\delta_{\tau}(t) = \sum_{j=-\infty}^{\infty} \delta(t-j\tau) = \sum_{n=-\infty}^{\infty} \left[\frac{1}{\tau} \int_{-\pi/\tau}^{\pi/\tau} \delta(s) ds \right] \exp\left(-in\frac{2\pi}{\tau}t\right) = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} \exp\left(-in\frac{2\pi}{\tau}t\right)$$

$$\mathscr{F}\{\delta_{\tau}(t)\} = \int_{-\infty}^{\infty} \left[\frac{1}{\tau} \sum_{-\infty}^{\infty} e^{-in(2\pi/\tau)t} \right] e^{i\omega t} dt = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left[i \left(\omega - n\frac{2\pi}{\tau}\right) t \right] dt$$
$$= \frac{2\pi}{\tau} \sum_{n=-\infty}^{\infty} \delta\left(\omega - n\frac{2\pi}{\tau}\right) = \frac{2\pi}{\tau} \delta_{2\pi/\tau}(\omega)$$

$$\begin{aligned} \mathscr{F}\{x(t)\} &= X(\omega), \ \mathscr{F}\{\tilde{x}_{\tau}(t)\} = \tilde{X}_{\tau}(\omega) \\ \tilde{X}_{\tau}(\omega) &= \frac{1}{2\pi} X(\omega) * \frac{2\pi}{\tau} \delta_{2\pi/\tau}(\omega) = \frac{1}{\tau} X(\omega) * \sum_{n=-\infty}^{\infty} \delta\left(\omega - n\frac{2\pi}{\tau}\right) \\ &= \frac{1}{\tau} \int_{-\infty}^{\infty} X(\omega') \left\{ \sum_{n=-\infty}^{\infty} \delta\left(\omega - n\frac{2\pi}{\tau} - \omega'\right) \right\} d\omega' = \frac{1}{\tau} \sum_{n=-\infty}^{\infty} X\left(\omega - n\frac{2\pi}{\tau}\right) \end{aligned}$$

6.4.1 Sampling theorem

"Cutting out" the frequency spectrum

 ω_h : Highest frequency in $\tilde{X}_{\tau}(\omega)$

$$\frac{2\pi}{\tau} > 2\omega_h, \ \tau < \frac{\pi}{\omega_h}$$

 $\frac{1}{2\tau}$: Nyquist frequency

6.4.1 Sampling theorem: reconstructing signal

$$P_{\frac{\pi}{\tau}}(\omega) \qquad \uparrow \qquad \uparrow \qquad P_{\pi/\tau}(\omega) = \begin{cases} 1 \quad |\omega| \leq \frac{\pi}{\tau}, \\ 0 \quad |\omega| > \frac{\pi}{\tau} \end{cases} \qquad x(t) = \mathscr{F}^{-1}\{\tau P_{\pi/\tau}(\omega)\tilde{X}_{\tau}(\omega)\}$$