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6.4.1 Sampling theorem 

2π/τ 

“Cutting out” the frequency spectrum 

𝜔ℎ: Highest frequency in 𝑋�𝜏(𝜔) 
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Here we consider to reproduce the original waveform from the sampled data. We assume the signal spectrum has the highest frequency omega_h. The separation of the Fourier transformed signals is 2pi/tau and if this is larger than twice of omega_h, then we can cut out a full Fourier spectrum from the transformed signal when the sampling frequency 1/tau is higher than the twice of the highest frequency in the original wave.This is called Nyquist frequency. And this is the simplest form of the sampling theorem.



6.4.1 Sampling theorem: reconstructing signal 
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The “cutting out” of the spectrum for a limited band is equivalent to take a product of the spectrum with this kind of rectangular window function. That is one for omega within –pi/tau to pi/tau and zero for others.To reproduce the original signal, we calculate the inverse Fourier transform of the product P and X-tilder and tau.This tau is attached because the band width is taken as 2pi/tau.The right hand side can be re-written in a convolution form like this. Here sinc is the sinc function defined as sine pi-x over pi-x and the lineshape is like this as you already know in the filter section. x-tilder is of course the sampling signal. So the convolution is written down like this and this can be re-written as the summation of sinc-function with shifted origin multiplied by the sampled data.



6.4.2 Pulse amplitude modulation (PAM) 
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Carrier: 𝛿𝜏(𝑡) 

Demodulation = Reconstruction of continuous signal  
from sampled data. 

In the sampling theorem, though we only have discrete-
time data, we can reconstruct complete original signal. 

↑ 
Assumption: we have data in infinite period [−∞, +∞]. 
However in actual situations we can never have 
such data. 

Need to consider handling data in a finite period. 
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We apply the sampling theorem to a carrier communication method.In the pulse amplitude modulation method, the carrier is a series of short pulses, which is approximated here with a series of delta functions with a period tau. Now the signal is nothing but the time-discrete wave sampled with time period tau. Then the demodulation is readily the reconstruction of the original continuous signal.But here is a trick. In the sampling theorem, though we only have discrete-time data, we can reconstruct complete original continuous signal. This comes from the assumption that we have the data over infinite period.Actually we can never have such data and this method cannot be applied without any modification.Then we need to consider handling data in a finite period.



6.4.3 Discrete Fourier transform 
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𝑓(𝑡) 

Assumption: 

can be assumed without loosing generality 

Then we consider a periodic function 𝑓(𝑡). 
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A remedy here is to expand a data for finite period to infinite by assuming periodic wave.



6.4.3 Discrete Fourier transform 

Fourier transform: 

Discreteness: 

Twiddle factor: 
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Then the Fourier transform changes to the Fourier expansion.



6.4.3 Discrete Fourier transform 

Properties of twiddle factor: 



6.4.3 Discrete Fourier transform 

Discrete Fourier transform (DFT): 



6.4.4 z-transform 

Discrete Laplace transform: z-transform 

one-sided z-transform 



6.4.4 z-transform (typical examples) 



6.4.4 z-transform (properties) 



6.4.5 Transfer function for discrete time signal 
ℎ𝑛: (impulse) response to 𝛿(𝑛𝜏), response to discrete signal 𝑓𝑛 = 𝑓 (𝑛𝜏) 

:Transfer function 
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Ch.7 Digital signal and circuits 
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Discrete time analog 

t 

d (t) Value discretized 
↓ 

Digital signal 

Signal unit : 0 xor 1 (bit) 
Boolean algebra : F xor T 

Voltage level : L xor H 

Multiple bit → binary operation 
→ parallel signal 



7.2 Logic gates 
Digital signal=logic value → Logic operation : logic gates → obeys Boolean algebra 

(or → + (sum), and → ∙ (product), not 𝐴 → �̅�) 

Logic variables: 𝑥,𝑦   𝑥 + 𝑥 = 𝑥, (𝑥 + �̅�) ∙ 𝑦 = 𝑦, �̿� = 𝑥 

De Morgan's laws: 𝑥 + 𝑦 = �̅� ∙ 𝑦�,  𝑥 ∙ 𝑦 = �̅� + 𝑦� 

Combinational logic → Truth table (in practice, every gate has some time delay) 
Sequential logic → Timing chart 

Truth table 



7.2.1 Combinational logic: Single input gates 

Input Buffer not 
0 0 1 
1 1 0 

Truth table Circuit symbol 

( ) 
buffer 

not 



7.2.2 Combinational logic: Double input gates 

input1 input2 and or xor Nand 
0 0 0 0 0 1 
1 0 0 1 1 1 
0 1 0 1 1 1 
1 1 1 1 0 0 

Truth table 

Circuit symbols 



7.2.3 Sequential logic: Flip-Flop (FF) 
RS (reset-set) Flip-Flop (FF) 

Truth table 

Circuit symbol An equivalent circuit with discrete gates 



7.2.3 Sequential logic: Flip-Flop (with clock input) 
JK Flip-Flop 

Truth table 

Circuit symbol 

An equivalent circuit 
with discrete gates 



7.2.3 Sequential logic: D-FF, T-FF 
D-FF 

T-FF 

Symbol 

Symbol 

Truth table 

Truth table 



7.2.4 Sequential logic: Counters 

Unsynchronized 
counter 
(ripple counter) 

Timing 
chart 



7.2.4 Sequential logic: Counters 

Synchronized counter 

Equivalent 
circuit with 
discrete gates 

Timing chart 



Standard gate logic packaging and wiring 
Full pitch Half pitch surface mount 

Printed board with soldering 

Surface 
mounting 



7.3 Imprementation of logic gates 

TTL (transistor-transistor logic) CMOS (complimentary MOS) 

NAND gates 



7.4 Implementation of logic gates 
Voltage levels diagram 



7.4 Circuit implementation and simplification of logic operation 

Truth table → Simplification 
→ Circuit diagram 

Visual method: Karnaugh mapping 
Quine-McClusky algorithm 

Simplification 

Example of simplification: 𝑌 = 𝐴 ∙ 𝐵 + 𝐴 ∙ 𝐵� + �̅� ∙ 𝐵 

Karnaugh mapping: 

𝐴 + 𝐴 = 𝐴  
𝐴 + �̅� = 1  

Design procedure: 

Represent the logic on a two-dimensional table 

(1) The raw and column indices are logical expressions. 
Neighboring expressions should have a single element 
with the value reversed. 

(2) Put             to neighboring 1. 
(3) One              means a reproducible pair. 



Quein-McCluskey algorithm 

𝑌 = 𝑓(𝐴1,𝐴2,⋯ ,𝐴𝑛) 
Logic variables 

Product of all the logic variables: minimum canonical term 

This 𝑎𝑖 = {1,0,⋯ , 0} corresponds to a row in the truth 
table. 

Pick up all the 𝑎𝑖  for 𝑌 = 1 → {𝑎𝑖𝑖} with index j  {𝑔𝑖(𝑎𝑖)} 

Original form: 

For that we define 𝑔𝑖 0 = 𝐴𝑖 ,    𝑔𝑖 1 = 𝐴𝑖 
Transform to a standard starting form. 

principal disjunctive canonical expansion 
(主加法標準展開) 



Quein-McCluskey algorithm 
(Example) 

Or in binary: Y = 0011+1111+0111+1101+1100+1011 

Num.of 1 smallest compress1 compress2 
2 0011 0_11 __11 

1100 _011 __11 
3 0111 110_ 

1011 _111 
1101 1_11 

4 1111 11_1 

Classification with the number of 
1 
 
Compression with 𝐴 + �̅� = 1 
occurs between different classes. 
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This shows an example for formation of principal disjunctive canonical expansion.As shown here, a practical way to obtain the canonical form is to use A+Abar=1 and multiply this term to that does not have “A” and the same for others.Next we classify the terms with the number of 1 as in the table.With using A+Abar=1, we do the compession one by one decreasing the number of 1.



Quein-McCluskey algorithm 

Y = __11+110_+11_1 

smallest 
0011 1100 0111 1011 1101 1111 

__11 ○ ○ ○ ○ 
110_ ○ ○ 
11_1 ○ ○ 

Y = __11+110_ Final form 

Original terms → 

smallest 
0011 1100 0111 1011 1101 1111 

__11 ◎ ◎ ◎ ◎ 
110_ ◎ ◎ 
11_1 ○ ○ 

Search for redundant 
terms. 
Put circles if the original 
term contains the 
expression. 
Then indispensable ones 
should be marked with 
double circles.  

Single circle in one column 
Give priority to already 
indispensable terms. 
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