

Electric Circuits for Physicists #3

東京大学理学部・理学系研究科 物性研究所 勝本信吾 Shingo Katsumoto

電源の雑知識(続き)

Miscellaneous knowledge on power supplies (continued)

DC Stabilized Power Supply 直流安定化電源

Series (Dropper) regulation

From TDK web page

Series regulator power supply

Uni-polar

High precision

Dual tracking

Bi-polar current source

Switching regulation

Switching regulator power supply

Molecular beam epitaxy Control panel

Complicated power lines \longrightarrow Bin

Outline

2.5 Theorems for paired terminal circuits Superposition, Ho-Thevenin, Reciprocity2.6 Duality

2.7 Passive devices (elements) and active devices

Ch.3 Transfer function and transient response 3.1 Transfer function of single-pair terminal circuits Resonance circuit Bode plot General properties

Appendix BBridges and balance circuitsAppendix CGeneral properties of resonance circuits

Concept of terminal pair

Electric circuit: a viewpoint

- Local electromagnetic field

Lumped constant circuit

Two-terminal elements : linear response: Impedance : power (energy) source (electromotive force)

Two terminal-pair circuit

Linear relations between terminal-pair parameters:

terminal-pair matrices

F-matrix (cascade matrix)

$$\begin{pmatrix} V_{\rm in} \\ J_{\rm in} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} V_{\rm out} \\ J_{\rm out} \end{pmatrix} \equiv F \begin{pmatrix} V_{\rm out} \\ J_{\rm out} \end{pmatrix}$$

Impedance matrix, Admittance matrix

Impedance matrix

$$\begin{pmatrix} V_{\rm in} \\ V_{\rm out} \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} J_{\rm in} \\ J_{\rm out} \end{pmatrix} \equiv Z \begin{pmatrix} J_{\rm in} \\ J_{\rm out} \end{pmatrix}$$
$$\begin{pmatrix} J_{\rm in} \\ J_{\rm out} \end{pmatrix} = \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} \begin{pmatrix} V_{\rm in} \\ V_{\rm out} \end{pmatrix} \equiv Y \begin{pmatrix} V_{\rm in} \\ V_{\rm out} \end{pmatrix}$$

Admittance matrix

Cascade connection of 4-terminal circuits

Series connections of 4-terminal circuits

Parallel connections of 4-terminal circuits

Theorems for terminal-pair circuits

Superposition theorem:

 J_{pi} : The current caused on the output by *i*-th power source.

Ho-Thevenin's theorem

Consider a circuit with an open terminal pair (No.3). Obtain current J when the open pair is connected with impedance Z.

Then

- 1. Measure the open terminal voltage V_0 .
- 2. Turn off all the power sources (voltage sources: short, current sources: open). Measure the open circuit impedance Z_i .

Ho-Thevenin's theorem

$$J = J_t - J_0 = \frac{V_0}{Z + Z_i}$$

Norton's theorem

$$V = \frac{J_{\rm S}}{Y + Y_i}$$

Dual theorem to Ho-Thevenin

Review: Tellegen's theorem

$$i = 1, \cdots, m$$
: index of branches

$$\sum_{i=1}^{m} V_i J_i = 0 \quad V \perp J$$
Power of *i*-th branch

Comments

- 1. Power conservation law
- 2. Holds for any kind of circuit (irrespective of linear, or non-linear)
- 3. Holds for two independent circuit conditions (as long as *D* is the same)

D: incidence matrix

Reciprocity theorem

An *n*-terminal pair linear circuit At one state $(V_1, J_1), (V_2, J_2), \dots, (V_n, J_n),$ at another state $(V'_1, J'_1), (V'_2, J'_2), \dots, (V'_n, J'_n)$ $\sum_{i=1}^n V_i J'_i = \sum_{i=1}^n V'_i J_i$

Proof: Consider a two terminal-pair circuit with *m* branches.

Tellegen's theorem

$$\begin{cases} -V_1 J_1' - V_2 J_2' + \sum_k V_k J_k' = 0\\ -V_1' J_1 - V_2' J_2 + \sum_k V_k' J_k = 0 \end{cases}$$

But
$$V_k J'_k = V'_k J_k = Z_k J_k J'_k$$

 $\therefore V_1 J'_1 + V_2 J'_2 = V'_1 J_1 + V'_2 J_2$

直列接続	並列接続
開放	短絡
電場	磁場
キルヒホッフの第2法則	キルヒホッフの第1法則
電圧	電流
インピーダンス	アドミッタンス
抵抗	コンダクタンス
静電容量	インダクタンス
鳳-テブナンの定理	ノートンの定理

Series	Parallel
Open	Short
Voltage	Current
Impedance	Admittance
Capacitance	Inductance
Electric field	Magnetic field
Resistance	Conductance
Ho-Thevenin	Norton
Kirchhoff's 2nd law	Kirchhoff's 1st law

2.7 Definition: Passive elements and active elements

Two terminal: current *J*, voltage *V* $JV \ge 0$: passive element JV < 0: active element

Locally active two-terminal element

More than three-terminal: treat as a terminal pair circuit

$$P = J_{\rm in}V_{\rm in} + J_{\rm out}V_{\rm out}$$

 $P \ge 0$: passive element P < 0: active element

Ch.3 Transfer function and transient response

3.1 General Properties of Resonance and Resonance Circuits

Transfer function, resonance and phase shift

$$Z_{\rm tot}(i\omega) = \left[\frac{1}{R} + i\left(\omega C - \frac{1}{\omega L}\right)\right]^{-1}$$

$$\omega_0 \equiv \frac{1}{\sqrt{LC}}$$

Resonance: Reactance =0

Total Phase Shift Change: π

The Bode diagram (plot)

Plot of absolute value and argument of an impedance as a function of frequency.

Absolute value: log-log mode Argument: semi-log mode

Transient response of resonant circuit

Damped oscillation with time constant γ^{-1} , frequency ω_s

Transient response of resonance circuit (transfer function)

Synthesized impedance, admittance $Z_{\text{tot}}(s) = sL + R + \frac{1}{sC}, \quad Y_{\text{tot}}(s) = Z_{\text{tot}}(s)^{-1}$ Zero (pole) of $Z_{\text{tot}}(s)$ ($Y_{\text{tot}}(s)$) $s = (-\omega_0 \pm \sqrt{\omega_0^2 - 4\alpha^2})(\omega_0/2\alpha)$ $Z_{tot}(s_0) = 0$ Time constant: $Re(s_0)$ Frequency: $Im(s_0)$ Laplace transformation of voltage: V(s) $\underline{J(t)} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Y(s)V(s)e^{st}ds = \sum_{i} R(s_i)V(s_i)e^{s_it} \quad (c>0)$ Natural current S_i : poles of Y(s) $R(s_i) = Y(s)(s - s_i)|_{s = s_i}$

Quartz crystal filter

Kondo Resonance and Phase shift

Schneider et al., Phys. Rev. B65, 121406 (2002).

Resistance bridge 抵抗ブリッジ

Wheatstone bridge

Not a "bridge" circuit!

Schering Bridge

$$Z_1 Z_x = Z_2 Z_3, \quad Z_x = Z_2 Z_3 Y_1$$

= $R_x + \frac{1}{i\omega C_x}, \quad Z_2 = R_2, \quad Z_3 = \frac{1}{i\omega C_3}, \quad Y_1 = \frac{1}{R_1} + i\omega C_1$
$$R_x + \frac{1}{i\omega C_x} = R_2 \frac{1}{i\omega C_3} \left(\frac{1}{R_1} + i\omega C_1\right)$$

$$R_x = \frac{R_2 C_1}{C_3}, \quad C_x = \frac{R_1}{R_2} C_3$$

Magnetic moment measurement

Resistance measurement

Capacitance bridge キャパシタンス ブリッジ

Agilent E4981A

General Radio 3-terminal Capacitance bridge

What is Spice?

SPICE: Simulation Program with Integrated Circuit Emphasis

A language which describes electronic circuits (corresponding to circuit diagrams).

ex) a CR circuit and a dc power source

* 0---R1---1---C1---2---V1---0 R1 0 1 10 C1 1 2 20 V1 2 0 5 .END

Graphical user interface: Circuit diagram

Linear Technology web site

+Shingoさん Gmail 画像 🏭 🗘	Download LTSpice from the web site of Linear Technology
Google	
Google 検索 I'm Feeling Lucky	

Operation example

		_
製品 ソリューション デザインサポート 購入	会	沽

Design Simulation and Device Models

リニアテクノロジーは高性能なスイッチング・レギュレータやアンブ、データ・コンバータ、フィルターなどを使用した回路を、初めての設計者でも短時間に容易に評価できるよう ムデザイン・シミュレーション・ツールを提供しています。

- LTspice IV
- LTpowerCAD
- LTpowerPlay
- Amplifier Simulation & Design
- Filter Simulation & Design
- Timing Simulation & Design
- Data Converter Evaluation Software
- Dust Networks Starter Kits

LTSPICE IV

LTspice IV

LTspice IVは高性能なSpice IIIシミュレータと回路図入力、波形ビューワに改善を加え、ス イッチング・レギュレータのシミュレーションを容易にするためのモデルを搭載しています。 Spiceの改善により、スイッチング・レギュレータのシミュレーションは、通常のSpiceシミュレ ータ使用時に比べて著しく高速化され、ほとんどのスイッチング・レギュレータにおいて波形 表示をほんの数分で行なうことができます。Spiceとリニアテクノロジーのスイッチング・レギ ュレータの80%に対応するMacro Model、200を超えるオペアンブ用モデルならびに抵抗、 トランジスタ、MOSFETモデルをここからダウンロードできます。 ・ LTspice IV (Windows用)をダウンロード(2014年5月5日更新)

- ・・LTspice IV (Mac OS X 10.7+用)をダウンロード
- ・関連情報&ショートカット
- ・ Mac OS X用ショートカット
- スタート・ガイド
- ユーザ・ガイド(ヘルブ・ファイル参照)
- ・トランスの使用
- デモ回路集
- セミナーの開催予定を見る

LTspiceのツイッターをフォロー

LTspiceに関するビデオを見る

MYLINEAR ログイン

Summary

Theorems for paired terminal circuits Superposition, Ho-Tevenin, Reciprocity Duality Passive devices (elements) and active devices

Transfer function and transient response Transfer function of single-pair terminal circuits Resonance circuit Bode plot General properties