電子回路論第4回

Electric Circuits for Physicists \＃4

東京大学理学部•理学系研究科

物性研究所勝本信吾
Shingo Katsumoto

Resonance: Represented as a zero-point in impedance. A pole in admittance.

$$
Z\left(s_{\mathrm{res}}\right) \sim Z_{0}\left(s-s_{\mathrm{res}}\right), \quad Y(s) \sim \frac{A}{s-s_{\mathrm{res}}}\left(s \sim s_{\mathrm{res}}\right)
$$

Bode diagram: Plots of the absolute value and the argument of a transfer function as a function of frequency.

A Pole on the Real Axis

Lear system with
Circuit example: Z of transfer function

$$
W(s)=\frac{1}{s+1}
$$

$s=\sigma+i \omega$ (dimensionless)

arrows: $s+1$

A Pole with Finite Imaginary Part

$$
\begin{equation*}
W(s)=\frac{1}{s+1-i \omega_{0}} \tag{*1}
\end{equation*}
$$

Corresponds to resonance. (This approximately holds for $\omega \sim \omega_{0}$)

(*1 Complex poles in transfer function always appear as conjugate pairs.)

$$
W(s)=B \frac{\left(s-\beta_{1}\right) \cdots\left(s-\beta_{m}\right)}{\left(s-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)} \quad\left\{\alpha_{j}\right\}: \text { Poles, } \quad\left\{\beta_{j}\right\}: \text { Zeros }
$$

(generally represented in rational formula)

Bode plot

$$
\begin{aligned}
& \ln |W(i \omega)|=\ln B+\sum_{j=1}^{m} \ln \left|i \omega-\beta_{j}\right|-\sum_{j=1}^{n} \ln \left|i \omega-\alpha_{j}\right| \\
& \arg [W(i \omega)]=\arg (B)+\sum_{j=1}^{m} \arg \left(i \omega-\beta_{j}\right)-\sum_{j=1}^{n} \arg \left(i \omega-\alpha_{j}\right)
\end{aligned}
$$

Bode plots are sum of those for single poles and zeros.

3.2 Terminal pair circuits as signal

transfer interfaces

3.2.1 Impedance matching

Efficient transfer of energy from electro-motiveforce

$$
\begin{aligned}
& V_{\text {out }}(i \omega)=V_{0}(i \omega)-Z_{\text {out }}(i \omega) J(i \omega) \\
& P=\operatorname{Re}\left(V_{\text {out }}^{*} J\right)=\operatorname{Re}\left(\frac{Z^{*} V_{0}^{*}}{Z^{*}+Z_{\text {out }}^{*}} \frac{V_{0}}{Z+Z_{\text {out }}}\right) \\
& \quad=\frac{\left|V_{0}\right|^{2}}{\left|Z+Z_{\text {out }}\right|^{2}} \operatorname{Re}(Z)
\end{aligned}
$$

Hence the maximum power transfer $P_{\max }=\frac{\left|V_{0}\right|^{2}}{4 \operatorname{Re}\left(Z_{\text {out }}\right)^{2}}$
can be obtained under the impedance matching condition:
Impedance matching condition $Z=Z_{\text {out }}^{*}$
When Z is real: $Z=Z_{\text {out }}$

3.2.3 Image parameters (matching with 4-terminal circuits)

If the 4-terminal parameters can be tuned to give the situation as

That is

Z_{1} and Z_{2} are called image impedances.

Conditions for image parameters

From definition:

$$
\begin{gathered}
\left\{\begin{array}{l}
V_{1}=A V_{2}-B J_{2}, \\
J_{1}
\end{array}=C V_{2}-D J_{2}\right.
\end{gathered}, \begin{aligned}
& V_{2}=-J_{2} Z_{2}
\end{aligned}
$$

Image (mirror)
condition

$$
\left\{\begin{array}{l}
Z_{1}=\frac{V_{1}}{J_{1}}=\frac{A Z_{2}+B}{C Z_{2}+D} \\
Z_{2}=\frac{D Z_{1}+B}{C Z_{1}+A}
\end{array}\right.
$$

When $A B C D \neq 0$,

$$
Z_{1}=\sqrt{\frac{A B}{C D}}, \quad Z_{2}=\sqrt{\frac{D B}{C A}}
$$

$$
\frac{V_{1}}{V_{2}}=\sqrt{\frac{A}{D}}(\sqrt{A D}+\sqrt{B C}), \quad \frac{J_{1}}{-J_{2}}=\sqrt{\frac{D}{A}}(\sqrt{A D}+\sqrt{B C})
$$

The 4-terminal interface costs some power loss:

$$
e^{\theta} \equiv \sqrt{\frac{V_{1} J_{1}}{-V_{2} J_{2}}}=\sqrt{\frac{Z_{1}}{Z_{2}}} \frac{J_{1}}{-J_{2}}=\sqrt{\frac{Z_{2}}{Z_{1}}} \frac{V_{1}}{V_{2}}=\sqrt{A D}+\sqrt{B C}
$$

θ : Image propagation constant $\theta=\alpha+i \beta \quad(\alpha, \beta \in \mathbb{R})$

$$
\begin{aligned}
& \alpha=\frac{1}{2} \ln \left|\frac{V_{1} J_{1}}{V_{2} J_{2}}\right| \quad \text { (image attenuation constant), } \\
& \beta=\frac{1}{2} \arg \left[\frac{V_{1} J_{1}}{-V_{2} J_{2}}\right] \quad \text { (image phase shift) }
\end{aligned}
$$

$$
\begin{aligned}
& A=\sqrt{\frac{Z_{1}}{Z_{2}}} \cosh \theta, \quad B=\sqrt{Z_{1} Z_{2}} \sinh \theta, \\
& C=\frac{1}{\sqrt{Z_{1} Z_{2}}} \sinh \theta, \quad D=\sqrt{\frac{Z_{2}}{Z_{1}}} \cosh \theta
\end{aligned}
$$

．

$$
B=\sqrt{Z_{1} Z_{2}} \sinh \theta
$$

\square
\square
路

E

$$
D
$$

E

O
（
－
 \square \square

$$
\square
$$

3.2.4 Impedance matching with two terminal-pair circuits

$$
\square \quad A B C D \neq 0 \quad R_{\text {out }}=\sqrt{\frac{A B}{C D}}, \quad R=\sqrt{\frac{B D}{A C}}
$$

$\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$

$$
\begin{aligned}
A=D=0 \quad R_{\mathrm{out}} & =\frac{A R+B}{C R+D}, R=\frac{D R_{\mathrm{out}}+B}{C R_{\mathrm{out}}+A} \\
& \rightarrow R R_{\mathrm{out}}=B / C
\end{aligned}
$$

$$
B=C=0 \quad R_{\text {out }} / R=A / D
$$

When a linear response $w(t)=\mathscr{L}\{u(t)\}$ is just a time delay with τ_{0}, that is

$$
\begin{aligned}
w(t)=A_{0} u\left(t-\tau_{0}\right) \quad \therefore W(i \omega) & =A_{0} e^{-i \omega \tau_{0}} U(i \omega), \\
\Xi(i \omega) & =A_{0} e^{-i \omega \tau_{0}}
\end{aligned}
$$

No distortion conditions are:

$$
(1)|\Xi(i \omega)|=A_{0},(2) \arg [\Xi(i \omega)]=-\omega \tau_{0}
$$

In other words the conditions can be described as
(1) A_{0} does not depend on frequency: No filter effect
${ }^{(2)} \phi(\omega) \equiv \arg [\Xi(i \omega)], \quad \tau(\omega) \equiv-\frac{d \phi(\omega)}{d \omega} \quad$:group delay $\quad \tau(\omega)=\tau_{0}$
No dispersion in group delay
(1) Sinusoidal amplitude distortion (amplitude modulation)

$$
A(\omega)=a_{1} \cos \left(\tau_{1} \omega\right)+a_{0}, \phi(\omega)=-\tau_{0} \omega
$$

$$
w(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} A(\omega) U(i \omega) e^{i(\omega t+\phi(\omega))} d \omega
$$

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega U(i \omega)\left\{a_{1} \cos \left(\tau_{1} \omega\right)+a_{0}\right\} e^{i \omega\left(t-\tau_{0}\right)}
$$

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega U(i \omega)\left[a_{0}+\frac{a_{1}}{2}\left(e^{i \tau_{1} \omega}+e^{-i \tau_{1} \omega}\right)\right] e^{i \omega\left(t-\tau_{0}\right)}
$$

$$
=a_{0} u\left(t-\tau_{0}\right)+\frac{a_{1}}{2}\left[u\left(t-\tau_{0}+\tau_{1}\right)+u\left(t-\tau_{0}-\tau_{1}\right)\right]
$$

Paired echo

Sinusoidal group delay distortion

$$
\begin{aligned}
& A(\omega)=A_{0}, \phi(\omega)=-\tau_{0} \omega+b_{1} \sin \left(\tau_{1} \omega\right) \\
& \exp \left[i b_{1} \sin \left(\tau_{1} \omega\right)\right] \approx 1+\frac{i b_{1}}{2 i}\left(e^{i \tau_{1} \omega}-e^{-i \tau_{1} \omega}\right) \\
& w(t)=A_{0}\left[u\left(t-\tau_{0}\right)+\frac{b_{1}}{2}\left\{u\left(t-\tau_{0}+\tau_{1}\right)-u\left(t-\tau_{0}-\tau_{1}\right)\right\}\right]
\end{aligned}
$$

Paired echo with inverted sign

Distortion (paired echo)

Cosine Amplitude Distortion

Sine Delay Distortion

Terms for Filters

$$
\Xi(i \omega)=A(\omega) e^{i \phi(\omega)} \quad \uparrow A(\omega) \quad \text { (Transient Band) }
$$

Transmission
$A(\omega)$ is sometimes called as "gain"

Can an ideal filter exist?

Transfer function is written as Heaviside function
$w(t)$: output to δ-function input at $t=0$

$$
\begin{aligned}
\frac{w(t)}{A_{0}} & =\int_{-\omega_{0}}^{\omega_{0}} e^{i \omega t} \frac{d \omega}{2 \pi} \\
& =\int_{-\omega_{0}}^{\omega_{0}} \frac{d \omega}{2 \pi} \cos \omega t=2 f_{0} \frac{\sin \omega_{0} t}{\omega_{0} t} \\
& =2 f_{0} \operatorname{sinc}\left(2 f_{0} t\right)
\end{aligned}
$$

The output begins $t<0$ hence breaks the causality. No ideal low pass filter can exist.

Transmission

Voltage transmission coefficient:
$T(i \omega) \equiv \frac{V_{2}(i \omega)}{V_{1}(i \omega)}$
$\log T=\log |T|+i \arg T=-\alpha-i \beta$
attenuation
phase shift
Square root power transmission coefficient

$$
S_{\mathrm{B}} \equiv \sqrt{\frac{P_{0}}{P_{2}}}=\frac{R_{2} A+B+C R_{1} R_{2}+D R_{1}}{2 \sqrt{R_{1} R_{2}}} \begin{array}{r}
\text { Sometimes called as "gain" }
\end{array}
$$

An example: Constant K type filter

definition

$$
\begin{aligned}
Z_{1} Z_{2}=R^{2}=K \\
\quad: \text { constant }
\end{aligned}
$$

Image parameters are
$Z_{01}=R \sqrt{1-\omega^{2} L C}, \quad Z_{02}=\frac{R}{\sqrt{1-\omega^{2} L C}}$,
$\operatorname{coth} \theta=\sqrt{1-\frac{1}{\omega^{2} L C}} \equiv \sqrt{1-\frac{1}{\Omega^{2}}}$

$$
\theta=\alpha+i \beta
$$

$\cosh (\alpha+i \beta)=\cosh \alpha \cos \beta+i \sinh \alpha \sin \beta$

$$
=\sqrt{1-\Omega^{2}}
$$

Butterworth Filter

$$
G^{2}\left(i \omega / \omega_{0}\right)=|H(i \omega)|^{2}=\frac{1}{1+\left(\omega / \omega_{0}\right)^{2 n}}
$$

Inverse Bessel Polynomial

$$
\begin{aligned}
B_{0} & =1, \quad B_{1}(s)=s+1 \\
B_{n}(s) & =(2 n-1) B_{n-1}(s)+B_{n-2}(s) s^{2}
\end{aligned}
$$

$$
\Xi(s)=\frac{B_{n}(0)}{B_{n}(s)}
$$

Chebyshev Filter

$$
G_{n}(i \Omega)=\left|H_{n}(i \Omega)\right|=\frac{1}{\sqrt{1+\epsilon^{2} T_{n}^{2}(\Omega)}} \quad \begin{aligned}
& \varepsilon \text { : Ripple coefficeint } \\
& T_{n}: n \text {-th order Chebyshev polynomial }
\end{aligned}
$$

$$
\varepsilon=0.2 \quad n=11
$$

Packaged Filters

Web selection page
https://ww3.minicircuits.com/WebStore/RF-Filters.html
Mini-Circuits
Band Pass
19.2 - 23.6 MHz 50 Ohm

3.3 Transient response of circuits composed of passive elements

3.3.1 Classification with the number of storages

(a)

(b)
(a) Single energy storage

$$
\Xi(s)=\frac{1}{1+s / s_{0}}
$$

(b) Double energy storage

$$
\Xi(s)=\frac{1}{b+s+a s^{-1}}
$$

Number of storages: order of polynomial in the denominator of rational expression for transfer function

Ex) Transient response to step function input

Responses are obtained as $w(t)=\mathscr{F}^{-1}\{\Xi(i \omega) U(i \omega)\}=\int_{-\infty}^{\infty} \Xi(i \omega) U(i \omega) e^{i \omega t} \frac{d \omega}{2 \pi}$

Heaviside function

$$
H(x)= \begin{cases}0 & x<0 \\ 1 / 2 & x=0 \\ 1 & x>0\end{cases}
$$

Fourier transform

$$
\mathscr{F}\{H(t)\}=\frac{1}{i \omega}+\pi \delta(\omega)
$$

$$
\begin{aligned}
g(t) & =\int_{-\infty}^{\infty} \frac{e^{i \omega t}}{1+i \omega}\left[\frac{1}{i \omega}+\pi \delta(\omega)\right] \frac{d \omega}{2 \pi} \\
& =\int_{-\infty}^{\infty} \frac{e^{i \omega t}}{(i-\omega) \omega} \frac{d \omega}{2 \pi}+\frac{1}{2}
\end{aligned}
$$

Ex) Transient response to step function input

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{e^{i \omega t}}{(i-\omega) \omega} \frac{d \omega}{2 \pi} \\
& =-2 \pi i \frac{e^{-t}}{2 \pi i}-\lim _{\epsilon \rightarrow 0}\left[\int_{\pi}^{0} \frac{e^{i \epsilon e^{i \theta} t}}{\epsilon e^{i \theta}\left(\epsilon e^{i \theta}-i\right)} \frac{i \epsilon e^{i \theta} d \theta}{2 \pi}\right] \\
& =-e^{-t}-\frac{1}{2} \\
& \therefore \quad g(t)=-e^{-t}
\end{aligned}
$$

From the initial condition and renormalization of t we obtain

$$
V=V_{0}\left[1-\exp \left(-\frac{t}{C R}\right)\right]
$$

Introduction of freeware: Scilab

https://www.scilab.org/

MATLAB clone but free!
Graphical linear response analysis: Scicos

Convenient set of commands for linear response analysis

4 E_{-}

Transient response: Use of Scilab

$$
\Xi(s)=\frac{1}{1+s}
$$

$$
\begin{aligned}
& -->s=p o l y\left(0, s^{\prime}\right) ; \\
& -->G=1 /(1+s) ; \\
& -->\text { sys=syslin('c', } G) ; \\
& -->t=1 \text { inspace }(0,10,100) ; \\
& -->y=c s i m(' s t e p ', t, s y s) ; \\
& -->p l o t(t, y) \\
& -->x g r i d()
\end{aligned}
$$

Transient response: Use of Scilab

$$
\begin{aligned}
& \stackrel{\square}{\square}- \\
& Y(s)=\frac{C s}{L C s^{2}+C R s+1} \\
& -->\mathrm{G}=\mathrm{s} /\left(1+\mathrm{s}+2 \boldsymbol{*} \mathrm{~s}_{\mathrm{s}}\right) \text {; } \\
& -->y s=s y s l i n\left(\sigma^{\prime}, G\right) ; \\
& -->y=c s i m(\text { 'step', t, sys); } \\
& -->p \text { lot (t, } y \text {) }
\end{aligned}
$$

| [\|V|craphic window number 0 | -回区 |
| :---: | :---: |
| Elle Iools Edtr ? | |
| | | Graphic window number 0 nx

