電子回路論第5回 Electric Circuits for Physicists ins

東京大学理学部•理学系研究科
 物性研究所
 勝本信吾

Shingo Katsumoto

Chapter 4 Amplification circuits

Linear amplifier

passive filter

four terminal circuit model

Circuit symbol

Controlled power source models

Off-diagonal: $J-V, V-J$

$$
\begin{aligned}
v_{\mathrm{out}} & =r_{\mathrm{m}} j_{\mathrm{in}} \\
j_{\mathrm{out}} & =g_{\mathrm{m}} v_{\mathrm{in}}
\end{aligned}
$$

Transducers
r_{m} : trans (mutual) resistance
g_{m}
: trans (mutual) conductance
Diagonal: $J-J, V-V$

$$
\begin{aligned}
& j_{\mathrm{out}}=\alpha j_{\mathrm{in}} \\
& v_{\mathrm{out}}=\alpha v_{\mathrm{in}}
\end{aligned}
$$

Amplifiers with gain $=|\alpha|$

Gain, and "Unit" for gain

Voltage gain: $\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right| \quad$ Current gain: $\quad\left|\frac{j_{\text {out }}}{j_{\text {in }}}\right| \quad$ Power gain: $\left|\frac{v_{\text {out }} j_{\text {out }}}{v_{\text {in }} j_{\text {in }}}\right|$
When we say "the gain of the amplifier ...", the gain usually means power gain.
quantity Q, unit $Q_{0}: Q$ in \log scale: $\quad L=\log _{10} \frac{Q}{Q_{0}}$
Alexander Graham Bell (B, bel) 1847-1922

$$
\begin{gathered}
c f . \text { deca- } 10 \quad \mathrm{~dB}:(\text { decibel }) \\
1 / 10 \\
G=10 \times \log _{10}\left(\frac{v_{\text {out }}}{v_{\text {in }}}\right)^{2}=20 \log _{10} \frac{v_{\text {out }}}{v_{\text {in }}}
\end{gathered}
$$

dB units: $\mathrm{dBm}(1 \mathrm{~mW}: 0 \mathrm{dBm}), \mathrm{dBv}(1 \mathrm{~V}: 0 \mathrm{dBv})$, etc.

Linear response:

$$
W(s)=\Xi(s) U(s) \quad U(s)
$$

Cascade connection of linear response systems:

$$
W(s)=\Xi_{\mathrm{tot}}(s) U(s)=\Xi_{2}(s)\left[\Xi_{1}(s) U(s)\right]=\left[\Xi_{2}(s) \Xi_{1}(s)\right] U(s)
$$

$U(s)$

Parallel lines can be expressed as a single line. Such diagram representation can be applied to any linear response system.

$W(s)$

$$
\begin{aligned}
& W(s)=\Xi(s) U(s) \\
& \begin{aligned}
& W(s)=\Xi(s)[U(s)-h(s) W(s)] \\
& W(s)=\frac{\Xi(s)}{1+\Xi(s) h(s)} U(s) \stackrel{\text { def }}{=} G(s) U(s) \\
&|1+\Xi(s) h(s)|>1: \text { Negative feedback, } \\
& \quad<1: \text { Positive feedback }
\end{aligned}
\end{aligned}
$$

Why negative feedback?

$$
|\Xi(s)| \gg 1 \rightarrow G(s) \approx \frac{1}{h(s)}
$$

Can be very stable, linear. Easy to calculate.

$|1+\Xi(s) h(s)|>1:$ Negative feedback
 <1 : Positive feedback

$$
\left\{\begin{array}{l}
D(s)=0(\Xi(s) h(s)=-1) \\
G(s)=\infty
\end{array}\right.
$$

Output without input: oscillation point If $\Xi(s) h(s)=-1$ has solutions, the circuit may be unstable.

How can we judge? \longrightarrow Criteria (Routh-Hurwitz, Nyqust, Liapunov, ...)

Stability of linear response systems with poles

Rational representation of a transfer function

$$
\Xi(s)=B \frac{\left(s-\beta_{1}\right) \cdots\left(s-\beta_{m}\right)}{\left(s-\alpha_{1}\right) \cdots\left(s-\alpha_{n}\right)} \quad\left\{\alpha_{j}\right\}: \text { Poles }
$$

Partial fraction expansion (ignore zeros)

$$
\sim \frac{B_{1}}{s-\alpha_{1}}+\frac{B_{2}}{s-\alpha_{2}}+\cdots+\frac{B_{n}}{s-\alpha_{n}}
$$

$$
=\sum_{j=1}^{n} \frac{B_{j}}{s-s_{j}} \quad\left\{B_{j}\right\}: \text { Residues }
$$

With inverse Laplace transform

$$
\xi(t)=\sum_{j=1}^{n} B_{j} \exp \left(\alpha_{j} t\right)
$$

For $\xi(t)$ to be finite with $t \rightarrow+\infty$ all the real parts of α_{j} should be negative.
For a linear system to be stable, all the poles of the transfer function should be in the left half of the complex plane.

Zeros and poles of $D(s)$

Assumption 1: $\Xi(s), \Xi(s) h(s)$ are stable \rightarrow Poles are on the left half plane of s.
Assumption 2: $\Xi(i \omega), \Xi(i \omega) h(i \omega) \rightarrow 0$ for $|\omega| \rightarrow \infty$ (a cut of frequency should exist)

$$
\begin{aligned}
& \Xi(s)=\frac{Q(s)}{P(s)}, h(s)=\frac{q(s)}{p(s)}: P(s), Q(s), p(s), q(s) \text { polynomials } \\
& \operatorname{deg}(P)>\operatorname{deg}(Q), \operatorname{deg}(p) \geq \operatorname{deg}(q) \\
& D(s)=1+\Xi(s) h(s)=\frac{P(s) p(s)+Q(s) q(s)}{P(s) p(s)} \quad \begin{array}{l}
P(s) p(s) \text { should be dominant } \\
\text { in determining the order }
\end{array} \\
& \quad D(s)=D_{0} \frac{\left(s-\beta_{1}\right) \cdots\left(s-\beta_{n}\right)}{\left(s-\alpha_{1}\right) \cdots\left(s-\alpha_{n}\right)}
\end{aligned}
$$

The numerator and the denominator are in the same order in s.

Zeros and poles of $D(s)$

$$
D(s)=D_{0} \frac{\left(s-\beta_{1}\right) \cdots\left(s-\beta_{n}\right)}{\left(s-\alpha_{1}\right) \cdots\left(s-\alpha_{n}\right)} \quad\left\{\beta_{i}\right\}: \text { Zeros of } D(s) \rightarrow \text { Poles of } G(s)
$$

Then we say that $\exists \beta_{i} \in$ right half plane of $s \rightarrow$ The circuit is unstable.
Taking the argument we write:

$$
\arg (D)=\sum_{i=1}^{n} \arg \left(s-\beta_{i}\right)-\sum_{i=1}^{n} \arg \left(s-\alpha_{i}\right)
$$

Left half plane

Right half plane

Imagine you are on the imaginary axis $s=i \omega$. And ω : $-\infty \rightarrow+\infty$.

Number of zeros on the right half plane: m All the poles should be on the left plane from the assumption 1.

$$
\Delta \arg (D)=(n-m) \pi-m \pi-n \pi=-2 m \pi
$$

$\Delta \arg (D)=0$
Stable

$\Delta \arg (D)=-4 \pi$
Unstable

Harry Nyquist (1889-1976)

Operational amplifier (OP amp.)

- Differential amplifier

$$
\begin{aligned}
& V_{\mathrm{out}}=A_{o}\left(V_{+}-V_{-}\right) \\
& A_{\mathrm{o}} \gg 1 \therefore \underline{V_{-} \approx V_{+}}=0
\end{aligned}
$$

Virtual short circuit

$$
J=-\frac{v_{\mathrm{out}}}{R_{f}}=\frac{v_{\mathrm{in}}}{R_{\mathrm{in}}}
$$

$\therefore v_{\text {out }}=-\frac{R_{f}}{R_{\text {in }}} v_{\text {in }} \quad$ Inverting amplifier

OP amp. packages

(a)
(b)

(d)

$V_{\text {out }}=-V_{\mathrm{BE}}=-\frac{k_{\mathrm{B}} T}{e} \ln \left(\frac{J_{s}}{J_{0}}+1\right)$
Logarithmic amplifier

Amplifiers with specialized function

Logarithmic amplifier

Low Cost, DC to $500 \mathrm{MHz}, 92 \mathrm{~dB}$
Logarithmic Amplifier

From virtual shortage, simply $V_{\text {out }}=V_{\text {in }}$

Very high input impedance, very low output impedance.

Impedance transformer

Instrumentation amplifier

Instrumentation amplifier

Precision
 INSTRUMENTATION AMPLIFIER

Data Sheet

Ultralow Offset Voltage
Operational Amplifier
OP07

OP amp. data sheet

Parameters

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT CHARACTERISTICS						
$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$						
Input Offset Voltage ${ }^{1}$	Vos			60	150	$\mu \mathrm{V}$
Long-Term Vos Stability ${ }^{2}$	Vos/Time			0.4	2.0	$\mu \mathrm{V} /$ Month
Input Offset Current	los			0.8	6.0	nA
Input Bias Current	I_{B}			± 1.8	± 7.0	nA
Input Noise Voltage	$e_{n} \mathrm{p}-\mathrm{p}$	0.1 Hz to $10 \mathrm{~Hz}^{3}$		0.38	0.65	$\mu \mathrm{V}$ p-p
Input Noise Voltage Density	en_{n}	$\mathrm{fo}_{0}=10 \mathrm{~Hz}$		10.5	20.0	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}_{0}=100 \mathrm{~Hz}^{3}$		10.2	13.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}_{0}=1 \mathrm{kHz}$		9.8	11.5	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Current	$I_{n} \mathrm{p}-\mathrm{p}$			15	35	pA p-p
Input Noise Current Density	In_{n}	$\mathrm{f}_{0}=10 \mathrm{~Hz}$		0.35	0.90	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{f}_{0}=100 \mathrm{~Hz}^{3}$		0.15	0.27	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
		$\mathrm{fo}_{0}=1 \mathrm{kHz}$		0.13	0.18	$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Input Resistance, Differential Mode ${ }^{4}$	RIN		8	33		$\mathrm{M} \Omega$
Input Resistance, Common Mode	Rincm			120		$G \Omega$

Common mode rejection ratio (CMRR)

OP amp. data sheet

Unity gain frequency

Voltage follower

Frequency dependent characteristics of OP amps

Cut-off frequency $\omega_{T}=2 \pi f_{T}$
Phase rotates by $\pi / 2$

If gain is larger than 1 at phase shift π :

Dangerous!

π phase shift: negative feedback \rightarrow
positive feedback

Why dangerous?

10X Buffer Amplifier

Inverting amplifier and cut-off frequency (LT Spice simulation)

$A=200 f_{\mathrm{T}}=30 \mathrm{kHz}$
$A=50 f_{\mathrm{T}}=90 \mathrm{kHz}$

Inverting amplifier and cut-off frequency (LT Spice simulation)

$A=10 f_{\mathrm{T}}=300 \mathrm{kHz}$

$A=2 f_{\mathrm{T}}=2 \mathrm{MHz}$

Oscillation in an OP amp. circuit

Use of OP amps at saturation voltages

$$
G(s)=\frac{\Xi(s)}{1+h(s) \Xi(s)}
$$

Pole equation:
$($ denominator $)=a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$

$$
\forall j=0,1, \cdots, n: \quad a_{j}>0(\text { or }<0)
$$

$$
=a_{n}\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)=0
$$

Otherwise the system is unstable (no proof is given here).
Then we assume all $a_{j}>0$.
Define Hurwitz matrix
$H=\left(\begin{array}{ccccc}a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0 \\ a_{n} & a_{n-2} & a_{n-4} & \cdots & 0 \\ \hline 0 & a_{n-1} & a_{n-3} & \cdots & 0 \\ 0 & a_{n} & a_{n-2} & \cdots & 0 \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{0}\end{array}\right)$ n is even (poles are paired).

Hurwitz determinants $\quad H_{j} \equiv|H[1, \cdots, j ; 1, \cdots, j]|$
$H_{1}=a_{n-1}, H_{2}=\left|\begin{array}{cc}a_{n-1} & a_{n-3} \\ a_{n} & a_{n-2}\end{array}\right|, H_{3}=\left|\begin{array}{ccc}a_{n-1} & a_{n-3} & a_{n-5} \\ a_{n} & a_{n-2} & a_{n-4} \\ 0 & a_{n-1} & a_{n-3}\end{array}\right|, \cdots$.
Hurwitz criterion

$$
H_{j}>0(j=2, \cdots, n-1)
$$

$H_{1}, H_{n}>0$ is trivial from the assumption.

Another expression:
Divide the denominator to odd and even parts $O(s)$ and $E(s)$. If the zeros of $O(s)$ and $E(s)$ are aligned on the imaginary axis alternatively, the system is stable.

PDF password

\rightarrow

\qquad

