電子回路論第5回 Electric Circuits for Physicists #5

東京大学理学部・理学系研究科 物性研究所 勝本信吾 Shingo Katsumoto

Chapter 4 Amplification circuits

Linear amplifier

Which quantity is "amplified"?

Controlled power source models

Off-diagonal: J-V, V-J $v_{out} = r_m j_{in}$ $j_{out} = g_m v_{in}$ Transducers r_m : trans (mutual) resistance g_m : trans (mutual) conductance

Diagonal: J-J, V-V

 $j_{\rm out} = \alpha j_{\rm in}$

 $v_{\rm out} = \alpha v_{\rm in}$

Amplifiers with gain = $|\alpha|$

Gain, and "Unit" for gain

Voltage gain:
$$\left| \frac{v_{out}}{v_{in}} \right|$$
 Current gain: $\left| \frac{j_{out}}{j_{in}} \right|$ Power gain: $\left| \frac{v_{out}j_{out}}{v_{in}j_{in}} \right|$
When we say "the gain of the amplifier ...", the gain usually means power gain.
quantity Q , unit $Q_0 : Q$ in log scale: $L = \log_{10} \frac{Q}{Q_0}$ (B, bel) 1847 - 1922
 cf . deca- 10 dB : (decibel)
 $1/10$ From: G. Bell
 $G = 10 \times \log_{10} \left(\frac{v_{out}}{v_{in}} \right)^2 = 20 \log_{10} \frac{v_{out}}{v_{in}}$

dB units: dBm (1mW: 0dBm), dBv (1V: 0dBv), etc.

Linear response and transfer function diagram

Linear response: $W(s) = \Xi(s)U(s)$ U(s)

Cascade connection of linear response systems:

$$W(s) = \Xi_{\text{tot}}(s)U(s) = \Xi_2(s)[\Xi_1(s)U(s)] = [\Xi_2(s)\Xi_1(s)]U(s)$$

Parallel lines can be expressed as a single line. Such diagram representation can be applied to any linear response system.

•
$$\Xi_1(s)$$
 \to $\Xi_2(s)$ • (arrow is used for specifying signal flow)

Feedback

Feedforward \iff Feedback $W(s) = \Xi(s)U(s)$ $W(s) = \Xi(s)[U(s) - h(s)W(s)]$

$$W(s) = \frac{\Xi(s)}{1 + \Xi(s)h(s)} U(s) \stackrel{\text{def}}{=} G(s)U(s)$$

 $|1 + \Xi(s)h(s)| > 1$: Negative feedback, < 1: Positive feedback

Why negative feedback?

$$|\Xi(s)| \gg 1 \to G(s) \approx \frac{1}{h(s)}$$

Can be very stable, linear. Easy to calculate.

Condition for negative feedback

 $|1 + \Xi(s)h(s)| > 1$: Negative feedback < 1: Positive feedback

$$\begin{cases} D(s) = 0 \ (\Xi(s)h(s) = -1) \\ G(s) = \infty \end{cases}$$

Output without input: oscillation point

If $\Xi(s)h(s) = -1$ has solutions, the circuit may be unstable.

How can we judge? — Criteria (Routh-Hurwitz, Nyqust, Liapunov, ...)

Stability of linear response systems with poles

Rational representation of a transfer function

Partial fraction expansion (ignore zeros)

$$\Xi(s) = B \frac{(s - \beta_1) \cdots (s - \beta_m)}{(s - \alpha_1) \cdots (s - \alpha_n)} \quad \{\alpha_j\}: \text{ Poles}$$
$$\sim \frac{B_1}{s - \alpha_1} + \frac{B_2}{s - \alpha_2} + \dots + \frac{B_n}{s - \alpha_n}$$
$$= \sum_{j=1}^n \frac{B_j}{s - s_j} \quad \{B_j\}: \text{ Residues}$$
$$\xi(t) = \sum_{j=1}^n B_j \exp(\alpha_j t)$$

With inverse Laplace transform

For $\xi(t)$ to be finite with $t \to +\infty$ all the real parts of α_i should be negative.

For a linear system to be stable, all the poles of the transfer function should be in the left half of the complex plane.

j=1

Zeros and poles of D(s)

Assumption 1: $\Xi(s), \Xi(s)h(s)$ are stable \rightarrow Poles are on the left half plane of *s*. Assumption 2: $\Xi(i\omega), \Xi(i\omega)h(i\omega) \rightarrow 0$ for $|\omega| \rightarrow \infty$ (a cut of frequency should exist)

$$\Xi(s) = \frac{Q(s)}{P(s)}, \ h(s) = \frac{q(s)}{p(s)} : P(s), Q(s), p(s), q(s) \text{ polynomials}$$

$$\deg(P) > \deg(Q), \deg(p) \ge \deg(q)$$

$$D(s) = 1 + \Xi(s)h(s) = \frac{P(s)p(s) + Q(s)q(s)}{P(s)p(s)} \qquad P(s)p(s) \text{ should be dominant}$$

$$n \text{ determining the order}$$

$$D(s) = D_0 \frac{(s - \beta_1) \cdots (s - \beta_n)}{(s - \alpha_1) \cdots (s - \alpha_n)} \sum \text{ The same order}$$

The numerator and the denominator are in the same order in *s*.

Zeros and poles of D(s)

$$D(s) = D_0 \frac{(s - \beta_1) \cdots (s - \beta_n)}{(s - \alpha_1) \cdots (s - \alpha_n)} \qquad \{\beta_i\} : \text{Zeros of } D(s) \to \text{Poles of } G(s)$$

Then we say that $\exists \beta_i \in \text{right half plane of } s \rightarrow \text{The circuit is unstable.}$

Taking the argument we write:

Imagine you are on the imaginary axis $s = i\omega$. And $\omega: -\infty \to +\infty$.

Number of zeros on the right half plane: mAll the poles should be on the left plane from the assumption 1.

 $\arg(D) = \sum \arg(s - \beta_i) - \sum \arg(s - \alpha_i)$

i=1

$$\Delta \arg(D) = (n-m)\pi - m\pi - n\pi = -2m\pi$$

Nyquist plot and criterion

Harry Nyquist (1889–1976)

Operational amplifier (OP amp.)

- Differential amplifier
- Input impedance $\sim \infty$
- Open loop gain $A_o \gg 1$
- Output resistance ≈ 0

OP amp. packages

Various applications of OP amps

$$V_{\rm out} = -V_{\rm BE} = -\frac{k_{\rm B}T}{e} \ln\left(\frac{J_s}{J_0} + 1\right)$$

Logarithmic amplifier

Amplifiers with specialized function

Logarithmic amplifier

Voltage follower

From virtual shortage, simply $V_{out} = V_{in}$

Very high input impedance, very low output impedance.

Instrumentation amplifier

Precision INSTRUMENTATION AMPLIFIER

OP amp data sheet

Data Sheet

Ultralow Offset Voltage Operational Amplifier

OP07

Figure 2. Simplified Schematic

Parameters

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS				•	•	
$T_A = 25^{\circ}C$						
Input Offset Voltage ¹	Vos			60	150	μV
Long-Term Vos Stability ²	Vos/Time			0.4	2.0	µV/Month
Input Offset Current	los			0.8	6.0	nA
Input Bias Current	IB			±1.8	±7.0	nA
Input Noise Voltage	en p-p	0.1 Hz to 10 Hz ³		0.38	0.65	µV р-р
Input Noise Voltage Density	en	fo = 10 Hz		10.5	20.0	nV/√Hz
		$f_0 = 100 \text{ Hz}^3$		10.2	13.5	nV/√Hz
		$f_0 = 1 \text{ kHz}$		9.8	11.5	nV/√Hz
Input Noise Current	In p-p			15	35	рАр-р
Input Noise Current Density	In	$f_0 = 10 \text{ Hz}$		0.35	0.90	pA/√Hz
		$f_0 = 100 \text{ Hz}^3$		0.15	0.27	pA/√Hz
		$f_0 = 1 \text{ kHz}$		0.13	0.18	pA/√Hz
Input Resistance, Differential Mode⁴	RIN		8	33		MΩ
Input Resistance, Common Mode	RINCM			120		GΩ

Common mode rejection ratio (CMRR)

OP amp. data sheet

Frequency dependent characteristics of OP amps

Cut-off frequency $\omega_T = 2\pi f_T$

Phase rotates by $\pi/2$

Multiple cut-off frequency: Phase rotates more than π

If gain is larger than 1 at phase shift π : Dangerous!

Why dangerous?

 π phase shift: negative feedback \rightarrow positive feedback

Phase compensation

logf

Inverting amplifier and cut-off frequency (LT Spice simulation)

 $A = 200 f_{\rm T} = 30 \rm{kHz}$ $A = 50 f_{\rm T} = 90 \rm{kHz}$

Inverting amplifier and cut-off frequency (LT Spice simulation)

 $A = 10 f_{\rm T} = 300 \rm kHz$

 $A = 2 f_{\rm T} = 2 {\rm MHz}$

Oscillation in an OP amp. circuit

Use of OP amps at saturation voltages

Hurwitz criterion (no proof)

Otherwise the system is unstable (no proof is given here).

Then we assume all $a_i > 0$.

Define Hurwitz matrix $n \times n$ *n* is even (poles are paired).

$$H = \begin{pmatrix} a_{n-1} & a_{n-3} & a_{n-5} & \cdots & 0\\ a_n & a_{n-2} & a_{n-4} & \cdots & 0\\ 0 & a_{n-1} & a_{n-3} & \cdots & 0\\ 0 & a_n & a_{n-2} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & a_0 \end{pmatrix}$$

Hurwitz criterion (no proof)

Hurwitz determinants
$$H_j \equiv |H[1, \cdots, j; 1, \cdots, j]|$$

$$H_1 = a_{n-1}, \ H_2 = \begin{vmatrix} a_{n-1} & a_{n-3} \\ a_n & a_{n-2} \end{vmatrix}, \ H_3 = \begin{vmatrix} a_{n-1} & a_{n-3} & a_{n-5} \\ a_n & a_{n-2} & a_{n-4} \\ 0 & a_{n-1} & a_{n-3} \end{vmatrix}, \cdots$$

Hurwitz criterion
$$H_j > 0 \ (j = 2, \cdots, n-1)$$

 $H_1, H_n > 0$ is trivial from the assumption.

Another expression:

Divide the denominator to odd and even parts O(s) and E(s). If the zeros of O(s) and E(s) are aligned on the imaginary axis alternatively, the system is stable.

PDF password

.....

......

.....