電子回路論第7回 Electric Circuits for Physicists #7

東京大学理学部・理学系研究科 物性研究所 勝本信吾

Shingo Katsumoto

Outline

4.5 Field Effect Transistors (FETs)

Ch.5 Distributed constant circuits
5.1 Transmission lines
5.1.1 Coaxial cables
5.1.2 Lecher lines
5.1.3 Micro-strip lines
5.2 Wave propagation through transmission lines
5.2.2 Connection and termination of transmission lines

Combination of op-amp and discrete transistors

Voltage, current booster

pn-junction in reverse bias region

Built-in potential
$$\rightarrow$$
 Depletion layer
bisson equation $\frac{d^2\phi}{dx^2} = -aq(x)$ $(a \equiv (\epsilon\epsilon_0)^{-1})$
Space charge density:
$$\begin{cases} q = -eN_A & (-w_p \le x \le 0), \\ q = eN_D & (0 \le x \le w_n) \end{cases}$$
Boundary condition: $\phi(-w_p) = 0, \quad \phi(-\infty) = 0$

$$\left. \frac{d\phi}{dx} \right|_{-w_p} = 0, \ \phi(w_n) = V + V_{\text{bi}}, \quad \left. \frac{d\phi}{dx} \right|_{w_n} = 0$$

Solution:

$$\phi(x) = \begin{cases} (aeN_A/2)(x+w_p)^2 & (-w_p \le x \le 0), \\ V+V_{\rm bi} - (aeN_D/2)(x-w_n)^2 & (0 \le x \le w_n) \end{cases}$$

Varicap diode

 $-V_{bi}$

 $1/C_{
m eff}^2$

KB505

Reverse bias voltage widens depletion layer.

Frequency modulation (FM), Phase lock loop (PLL)

4.4 Field effect transistor (FET)

Static characteristics of FET

Space-charge limitation of source-drain current

S

Travel distance (y) \mathcal{D}^+ $V(y) = V_{g} + V_{vi} - V_{ch}(y)$ dependent potential $w_d(y)$ Depletion layer width $w_{\rm d}(y) = \sqrt{\frac{2\epsilon\epsilon_0 V(y)}{eN_{\rm D}}}$ $2w_t$ D $J_{\rm ch} = eN_{\rm D}\mu_n \frac{dV_{\rm ch}}{du} \cdot 2[w_{\rm t} - w_{\rm d}(y)]W$ n V_{σ} channel width conductivity electric field $J_{\rm ch}L = \int_{0}^{L} J_{ch}dy = 2eN_{\rm D}\mu_{n}W \int_{0}^{L} (w_{\rm t} - w_{\rm d})\frac{dV}{dy}dy = 2w_{\rm t}eN_{\rm D}\mu_{n}W \int_{V}^{V_{L}} \left(1 - \frac{w_{\rm d}}{w_{\rm t}}\right)dV$ $w_{\rm d}(V_{\rm c}) = w_{\rm t}$ $\therefore V_{\rm c} = \frac{eN_{\rm D}w_{\rm t}^2}{2\epsilon\epsilon_0}$ $J_{\rm ch} = \frac{2N_{\rm D}e\mu_n W w_{\rm t}}{L} \left| V_L - V_0 + \frac{2}{3\sqrt{V_{\rm c}}} (V(V_0)^{3/2} - V(V_L)^{3/2}) \right|$ Approx. for $w_{\rm d} < w_{\rm t}/2$

Static characteristics of FET

$$J_{\rm G} \simeq 0, \quad J_{\rm D} = f(V_{\rm G}, V_{\rm DS})$$

$$g_{\rm m} \equiv \left(\frac{\partial J_{\rm D}}{\partial V_{\rm GS}}\right)_{V_{\rm DS}={\rm const}}$$

transconductance

$$r_{\rm d} \equiv \left(\frac{\partial V_{\rm DS}}{\partial J_{\rm D}}\right)_{V_{\rm GS}={\rm const.}}$$

drain resistance

Local linear approximation:
$$j_{d} = g_m v_{gs} + \frac{v_{ds}}{r_d}$$

$$v_{\rm ds} = -r_{\rm d}g_{\rm m}v_{\rm gs} + r_{\rm d}j_{\rm d}$$

Amplification factor (voltage gain) $\mu \equiv r_{\rm d}g_{\rm m}$

Biasing circuits for FETs: Fixed bias circuit

Local linear approximation \rightarrow action point (the center of parameters)

The action point is determined by resistors and dc power sources.

Biasing circuits for FETs: Self-biasing circuit

Equivalent signal circuits for FET

Example of source-grounded FET amplifier

Simulation by LTSpice

$$R_5 = 1 \times 10^6 \ \Omega \quad A_{\rm V} \approx 2$$

Metal-Semiconductor (MES) FET

Metal-Oxide-Semiconductor (MOS) FET

Complementary MOS logic gates

Simplified CMOS inverter circuit

Low leakage current

14-nm FinFET by UMC

14-nm FinFET by Intel

FinFET structure

Single gate input both on/off switch

MOSFET switching characteristics

From datasheet CSD87381P power MOSFET (Texas instr.).

More than 7 orders change in J_D within 3 V change of V_{GS} .

Feedback (feedforward)

Transfer function diagram Stability criteria

Operational amplifier

Elements for amplification (non-linear treatment. Bias circuits + signal circuits.) Bipolar transistors (Semiconductor physics) Field effect transistors

OP amp selection

BT input

High precision Low voltage noise Large power output

FET input

Low bias current/ High input impedance Low power consumption

Ch.5 Distributed constant circuits

Distributed constant circuit concept

1. In what case we need to consider distributed constant circuits?

Characteristic sizes of devices \geq wavelength of electromagnetic signal

2. A typical scheme to make the shift for distributed circuit

Lumped constant circuit Connection of unit circuits
 Taking the infinitesimal limit

Distributed constant circuit

3. Distributed constant circuits : transmission lines

Coaxial cables, Lecher lines, micro-strip lines, waveguides, optical fibers

5.1.1 Coaxial cable

Thin coaxial cable AWG50 (ϕ 25µm)

Transmission line as a series of infinitesimal terminal-pairs

Transmission line \rightarrow divide into four terminal circuits

Each unit should have delay. Ignore energy dissipation.

Then take the infinitesimal limit

Width $\rightarrow 0$, Number $\rightarrow \infty$

$$dV = -JZdx, \quad dJ = -VYdx$$

Z, Y: Impedance, Admittance per unit length

Oliver Heaviside 1850- 1925

Characteristic impedance

$$\frac{d^2V}{dx^2} = YZV, \quad \frac{d^2J}{dx^2} = YZJ \quad : \text{telegraphic equation}$$
$$J(x,t) = J(0,t) \exp(\pm \kappa x), \quad V(x,t) = V(0,t) \exp(\pm \kappa x) \quad \kappa \equiv \sqrt{YZ}$$
$$-: \text{Progressive, +: Retrograde}$$
$$\text{Impedance:} \quad \frac{V}{J} = \mp \frac{Z}{\kappa} = \mp \sqrt{\frac{Z}{Y}}$$

Pure reactance $Y = i\omega C$, $Z = i\omega L$ for L and C model

$$\kappa = \sqrt{-\omega^2 LC} = i \frac{\omega}{\omega_0}, \quad \omega_0 \equiv \frac{1}{\sqrt{LC}}$$
 (physical dimension: velocity)

Characteristic impedance:

$$Z_0 = \sqrt{\frac{L}{C}}$$

Maxwell theory for coaxial cable

a: inner metal radius, *b*: radius of outer cylinder, ϵ : insulator dielectric constant, μ : magnetic permeability $E = E_0(x, y)e^{i\omega t - \gamma z}, \quad H = H_0(x, y)e^{i\omega t - \gamma z}$

From Maxwell equations

$$(\omega^{2}\epsilon\mu + \gamma^{2}) \begin{pmatrix} E_{x} \\ E_{y} \end{pmatrix} = \begin{pmatrix} -\gamma\partial_{x} & -i\omega\mu\partial_{y} \\ -\gamma\partial_{y} & i\omega\mu\partial_{x} \end{pmatrix} \begin{pmatrix} E_{z} \\ H_{z} \end{pmatrix},$$

$$(\omega^{2}\epsilon\mu + \gamma^{2}) \begin{pmatrix} H_{x} \\ H_{y} \end{pmatrix} = \begin{pmatrix} i\omega\mu\partial_{y} & -\gamma\partial_{x} \\ -i\omega\mu\partial_{x} & -\gamma\partial_{y} \end{pmatrix} \begin{pmatrix} E_{z} \\ H_{z} \end{pmatrix}.$$

In TEM (transverse electric and magnetic) mode: $E_z = H_z = 0$ For the fields along x and y to survive, $\omega^2 \epsilon \mu + \gamma^2 = 0$ $\therefore \gamma = \pm i \omega \sqrt{\epsilon \mu}$

Propagation velocity
$$v = \frac{\omega}{\omega\sqrt{\epsilon\mu}} = \frac{1}{\sqrt{\epsilon\mu}}$$

Maxwell theory for coaxial cable

In TEM mode: $\operatorname{rot}_{xy} H = 0$, $\operatorname{rot}_{xy} E = 0 \rightarrow \operatorname{potentials} \mathcal{U}, \mathcal{V}$ are available. That is $E = \nabla_{xy} \mathcal{U} / \sqrt{\epsilon}, \quad H = \nabla_{xy} \mathcal{V} / \sqrt{\mu}$ $\frac{\partial \mathcal{U}}{\partial x} = \frac{\partial \mathcal{V}}{\partial y}, \quad \frac{\partial \mathcal{U}}{\partial y} = -\frac{\partial \mathcal{V}}{\partial x}$ Cauchy-Riemann condition $f(w) = \mathcal{U} + i\mathcal{V}$ is an analytic function of w = x + iyCharacteristic impedance: $Z_0 = \frac{V}{J} = \frac{\mathcal{U}_a - \mathcal{U}_b}{J\sqrt{\epsilon}}$ $\mathcal{U}_{a,b}$: potential at a, b

This expression represents the equivalence of distributed constant circuit model and the Maxwell theory for coaxial cable.

Capacitance part

$$V = \frac{q}{\epsilon} \int_{a}^{b} \frac{dr}{2\pi r} = \frac{q}{2\pi\epsilon} \log \frac{b}{a} = \frac{q}{C} \qquad \therefore C = \frac{2\pi\epsilon}{\log(b/a)}$$

Maxwell theory for coaxial cable

Inductance part

Core current *J*, shield current -J $H(r) = \frac{J}{2\pi r}$, $B(r) = \frac{\mu J}{2\pi r}$

Flux per length:
$$\Phi = \int_{a}^{b} dr B(r) = \frac{\mu J}{2\pi} \log \frac{b}{a}$$

Self inductance per length: $L = \frac{\mu}{2\pi} \log(b/a)$

$$Z_0 = \sqrt{\frac{L}{C}} = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \log\left(\frac{b}{a}\right)$$

cf. Characteristic impedance of the vacuum

$$Z_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 376\Omega$$

Coaxial cable 2

Coaxial connectors

代表的な同軸コネクタの最高使用周波数例

形式	外部導体内径	最高使用周波数
BNC	約7mm	$2 \sim 4 \text{ GHz}$
Ν	約 7 mm	$10 \sim 18 \mathrm{GHz}$
7 mm	7 mm	$\sim 18\mathrm{GHz}$
SMA	4.15 mm	18 GHz
3.5 mm	3.5 mm	26.5 GHz
K	2.92 mm	40 GHz
2.4 mm	2.4 mm	50 GHz
V	1.85 mm	65 GHz
W	1.1 mm	110 GHz
1.0 mm	1.0 mm	110 GHz

Coaxial connectors

(a) フランジ付きジャック

写真3 BNC型コネクタ

(a) 絶縁型ジャック (高周波に向かない)

(b) フランジ付きジャック

(c) プラグ

Coaxial connectors 2

SMA型コネクタ 写真4

SMA-type

plug

(a) ジャック

(b) プラグ

V-type

K-type

V型コネクタ 写真7

(a) ジャック

(b) プラグ

(b) プラグ

(a) ジャック

LEMO cables and connectors

http://www.lemo.com/

High-energy physics experiment, etc.

Transmission lines with TEM mode

Transmission lines with two conductors are "families". Electromagnetic field confinement with parallel-plate capacitor

Shrink to dipole (Lecher line)

Lecher line

(a)

$$\phi_1 = -\phi_2 = \frac{J\sqrt{\mu}}{2\pi}\log\frac{d}{a}$$
 $Z_0 = \sqrt{\frac{\mu}{\epsilon}}\frac{1}{\pi}\log\frac{d}{a}$

Micro strip line

Wide (W/h>3.3) strip

$$Z(W,h,\epsilon_r) = \frac{Z_{F0}}{2\sqrt{\epsilon_r}} \left\{ \frac{W}{2h} + \frac{1}{\pi} \log 4 + \frac{\epsilon_r + 1}{2\pi\epsilon_r} \log \left[\frac{\pi e}{2} \left(\frac{W}{2h} + 0.94 \right) \right] \frac{\epsilon_r - 1}{2\pi\epsilon_r^2} \log \frac{e\pi^2}{16} \right\}^{-1}$$

Narrow (W/h<3.3) strip

$$Z(W,h,\epsilon_r) = \frac{Z_{F0}}{\pi\sqrt{2(\epsilon_r+1)}} \left\{ \log\left[\frac{4h}{W} + \sqrt{\left(\frac{4h}{W}\right)^2 + 2}\right] - \frac{1}{2}\frac{\epsilon_r - 1}{\epsilon_r + 1} \left(\log\frac{\pi}{2} + \frac{1}{\epsilon_r}\log\frac{4}{\pi}\right) \right\}$$

Waveguide

Electromagnetic field is confined into a simplyconnected space. TEM mode cannot exist. Maxwell equations give $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] E_z = -(\omega^2 \epsilon \mu + \gamma^2) E_z,$ $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right]H_z = -(\omega^2\epsilon\mu + \gamma^2)H_z.$ Helmholtz equation $E_{z} = 0$: TE mode,

 $H_z = 0$: TM mode

Optical fiber

 n_2

 n_{1}

Connection and termination

Termination of a transmission line with length *l* and characteristic impedance Z_0 at x = 0 with a resistor Z_1 .

Comment: Sign of Ohm's law in transmission lines reflects direction of waves (depends on the definitions).

Reflection coefficient is $r = \frac{V_{-}}{V_{+}} = -\frac{J_{-}}{J_{+}} = \frac{Z_{1} - Z_{0}}{Z_{1} + Z_{0}}$

 $Z_1 = Z_0$: no reflection, *i.e.*, impedance matching

 $Z_1 = +\infty$ (open circuit end) : r = 1, *i.e.*, free end

 $Z_1 = 0$ (short circuit end) : r = -1, *i.e.*, fixed end

Connection and termination

$$J = J_{+0} \exp(\kappa l) + J_{-0} \exp(-\kappa l)$$

Then at x = -l (at power source), the right hand side can be represented by

$$Z_{l} = \frac{V}{J} = \frac{J_{+0}e^{\kappa l} - J_{-0}e^{-\kappa l}}{J_{+0}e^{\kappa l} + J_{-0}e^{-\kappa l}}Z_{0}$$

Reflection coefficient:
$$r_l = \frac{V_-}{V_+} = \frac{V_{0-} \exp(-\kappa l)}{V_{0+} \exp(\kappa l)} = r \exp(-2\kappa l)$$

SWR measurement

desktop types cross-meter

