電子回路蜦第8 8 回

Electric Circuits for Physicists \＃8

Outline

Various transmission lines

Termination and connection Smith chart
S-matrix (S-parameters)

Transmission lines with TEM mode

Transmission lines with two conductors are "families". Electromagnetic field confinement with parallel-plate capacitor

Roll up to coaxial cable

Open to micro-strip line

Commonly
TEM is the primary mode.
Shrink to dipole (Lecher line)

Lecher line

(a)

(c)

$$
\phi_{1}=-\phi_{2}=\frac{J \sqrt{\mu}}{2 \pi} \log \frac{d}{a} \quad Z_{0}=\sqrt{\frac{\mu}{\epsilon}} \frac{1}{\pi} \log \frac{d}{a}
$$

Micro strip line

(b)
(a)

(c)

Wide (W/h>3.3) strip

$$
Z\left(W, h, \epsilon_{r}\right)=\frac{Z_{F 0}}{2 \sqrt{\epsilon_{r}}}\left\{\frac{W}{2 h}+\frac{1}{\pi} \log 4+\frac{\epsilon_{r}+1}{2 \pi \epsilon_{r}} \log \left[\frac{\pi e}{2}\left(\frac{W}{2 h}+0.94\right)\right] \frac{\epsilon_{r}-1}{2 \pi \epsilon_{r}^{2}} \log \frac{e \pi^{2}}{16}\right\}^{-1}
$$

Narrow (W/h<3.3) strip

$$
Z\left(W, h, \epsilon_{r}\right)=\frac{Z_{F 0}}{\pi \sqrt{2\left(\epsilon_{r}+1\right)}}\left\{\log \left[\frac{4 h}{W}+\sqrt{\left(\frac{4 h}{W}\right)^{2}+2}\right]-\frac{1}{2} \frac{\epsilon_{r}-1}{\epsilon_{r}+1}\left(\log \frac{\pi}{2}+\frac{1}{\epsilon_{r}} \log \frac{4}{\pi}\right)\right\}
$$

cross section

hollow

Electromagnetic field is confined into a simplyconnected space.

』

TEM mode cannot exist.
Maxwell equations give

$$
\begin{aligned}
& {\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right] E_{z}=-\left(\omega^{2} \epsilon \mu+\gamma^{2}\right) E_{z},} \\
& {\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right] H_{z}=-\left(\omega^{2} \epsilon \mu+\gamma^{2}\right) H_{z} .}
\end{aligned}
$$

Helmholtz equation

$$
\begin{aligned}
& E_{z}=0: \mathrm{TE} \text { mode }, \\
& H_{z}=0: \mathrm{TM} \text { mode }
\end{aligned}
$$

Optical fiber

Connection and termination

Termination of a transmission line with length l and characteristic impedance Z_{0} at Reflection coefficient is $r=\frac{V_{-}}{V_{+}}=-\frac{J_{-}}{J_{+}}=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}$ $x=0$ with a resistor Z_{1}.

Comment: Sign of Ohm's law in transmission lines reflects direction of waves (depends on the definitions).
$Z_{1}=Z_{0}:$ no reflection, i.e., impedance matching
$Z_{1}=+\infty($ open circuit end) $: r=1$, i.e., free end
$Z_{1}=0$ (short circuit end) : $r=-1$, i.e., fixed end

$$
\text { रeflection coefficient is } r=\overline{V_{+}}=-\overline{J_{+}}=\overline{Z_{1}+Z_{0}}
$$

Connection and termination

Finite reflection \rightarrow Standing wave Voltage-Standing Wave Ratio (VSWR): $=\frac{1+|r|}{1-|r|}$

At $\left.x=-l \quad V=V_{+0} \exp (\kappa l)+V_{-0} \exp (-\kappa l)=\left[J_{+0} \exp (\kappa l)-J_{-0} \exp (-\kappa l)\right] Z_{0}\right)$

$$
J=J_{+0} \exp (\kappa l)+J_{-0} \exp (-\kappa l)
$$

Then at $x=-l$ (at power source), the right hand side can be represented by

$$
Z_{l}=\frac{V}{J}=\frac{J_{+0} e^{\kappa l}-J_{-0} e^{-\kappa l}}{J_{+0} e^{\kappa l}+J_{-0} e^{-\kappa l}} Z_{0}
$$

Reflection coefficient: $\quad r_{l}=\frac{V_{-}}{V_{+}}=\frac{V_{0-} \exp (-\kappa l)}{V_{0+} \exp (\kappa l)}=r \exp (-2 \kappa l)$

Connection and termination

Z_{0}	$Z^{\prime}{ }_{0}$

Transmission line connection.
Characteristic impedance $Z_{0}, Z_{0}{ }^{\prime}$

At the connection point, only the local relation between V and J affects the reflection coefficient.

The local impedance from the left hand side is $Z_{0}{ }^{\prime} . \quad r=\frac{Z_{0}^{\prime}-Z_{0}}{Z_{0}^{\prime}+Z_{0}}$

antenna
$Z_{0}^{\mathrm{v}}=120 \pi \approx 377 \Omega$
$Z^{\prime}{ }_{0}$: input impedance of antenna

SWR measurement

desktop types

cross-meter

handy type

End impedance Z_{1} : Normalized end impedance $Z_{n} \equiv Z_{1} / Z_{0}$
$Z_{n}=x+i y, \quad r=u+i w \quad(x, y, u, w \in \mathbb{R})$
$\left.u+i w=r=\frac{Z_{n}-1}{Z_{n}+1}=\frac{(x-1)+i y}{(x+1)+i y} \quad \begin{array}{l}\text { real: } \quad x-1=(x+1) u-y w \\ \text { imaginary: } \quad y=y u+w(x+1)\end{array}\right\}$
y : erase
x : constant

$$
\left(u-\frac{x}{x+1}\right)^{2}+w^{2}=\frac{1}{(x+1)^{2}}
$$

constant reactance circle
x : erase
y : constant

$$
(u-1)^{2}+\left(w-\frac{1}{y}\right)^{2}=\frac{1}{y^{2}}
$$

5.2.3 Smith chart, immittance chart

Circles with constant x

$$
\begin{aligned}
& r=u+i w \\
& |r| \leq 1 \\
& \left(u-\frac{x}{x+1}\right)^{2}+w^{2}=\frac{1}{(x+1)^{2}}
\end{aligned}
$$

Common point: $\quad(u, w)=(1,0)$

Circles with constant y

$$
\begin{aligned}
& r=u+i w \\
& |r| \leq 1 \\
& (u-1)^{2}+\left(w-\frac{1}{y}\right)^{2}=\frac{1}{y^{2}}
\end{aligned}
$$

Common point: $\quad(u, w)=(1,0)$

Smith chart, immittance chart

5.3 Scattering (S) matrix (S parameters)

How to treat multipoint (crossing point) in transmission lines systematically?
Transmission lines: wave propagating modes \rightarrow Channels
Take $\left|a_{i}\right|^{2},\left|b_{i}\right|^{2}$ to be powers (energy flow).

S-matrix symmetries
(In case no dissipation, no amplification)

Reciprocity $S_{i j}=S_{j i}$
Unitarity $\quad \sum_{j} S_{j i} S_{j k}^{*}=\delta_{i k}$

$$
\begin{aligned}
& \begin{cases}a_{n}=\frac{V_{n+}}{\sqrt{Z_{0 n}}}=J_{n+} \sqrt{Z_{0 n}}, & \text { Incident power wave } \\
b_{n}=\frac{V_{n-}}{\sqrt{Z_{0 n}}}=J_{n-} \sqrt{Z_{0 n}} & \begin{array}{l}
\text { Reflected (transmitted) } \\
\text { power wave }
\end{array} \\
\left|a_{n}\right|^{2}=\frac{\left|V_{n+}\right|^{2}}{Z_{0 n}}=\left|J_{n+}\right|^{2} Z_{0 n} & \end{cases}
\end{aligned}
$$

Propagation with no dissipation

matrix (S parameters)

Simplest example: series impedance Z_{S}
Take voltage as the "flow" quantity. (assume common characteristic impedance)

$$
\binom{b_{1}}{b_{2}}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{a_{1}}{a_{2}} \quad\binom{V_{1-}}{V_{2-}}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{V_{1+}}{V_{2+}}
$$

Measurement (calculation) of the S-matrix in the case the above is placed in transmission line with characteristic impedance Z_{0}.

Consider the case that the ends of the line is terminated with Z_{0} and the source is connected at the left end.

Terminate 2 with $Z_{0} \rightarrow a_{2}=0$ (no reflection, no wave source at the right end)

$$
\begin{aligned}
& S_{11}=\frac{V_{1-}}{V_{1+}}=\frac{V_{1}-Z_{0} J_{1}}{V_{1}+Z_{0} J_{1}}=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}=\frac{\left(Z_{S}+Z_{0}\right)-Z_{0}}{\left(Z_{S}+Z_{0}\right)+Z_{0}}=\frac{Z_{S}}{Z_{S}+2 Z_{0}} \\
& S_{21}=\frac{V_{2-}}{V_{1+}}=\frac{V_{2}-Z_{0} J_{2}}{V_{1}+Z_{0} J_{1}}=\frac{Z_{0} J_{1}+Z_{0} J_{1}}{\left(Z_{S}+Z_{0}\right) J_{1}+Z_{0} J_{1}}=\frac{2 Z_{0}}{Z_{S}+2 Z_{0}}\left(J_{2}=-J_{1}\right)
\end{aligned}
$$

From symmetry of S-matrix: $\quad S_{22}=S_{11}=\frac{Z_{S}}{Z_{S}+2 Z_{0}}, \quad S_{12}=S_{21}=\frac{2 Z_{0}}{Z_{S}+2 Z_{0}}$
When the impedance matrix $Z=\left\{Z_{i j}\right\}$ is given, the S-matrix is obtained as

$$
S=\frac{1}{\operatorname{det} Z}\left(\begin{array}{cc}
\left(Z_{11}-Z_{0}\right)\left(Z_{22}+Z_{0}\right)-Z_{12} Z_{21} & 2 Z_{0} Z_{12} \\
2 Z_{0} Z_{21} & \left(Z_{11}-Z_{0}\right)\left(Z_{22}+Z_{0}\right)-Z_{12} Z_{21}
\end{array}\right)
$$

Cascade connection of S-matrices

$\binom{b_{1}}{b_{2}}=\mathbf{S}\binom{a_{1}}{a_{2}}=\left(\begin{array}{ll}r_{\mathrm{L}} & t_{\mathrm{R}} \\ t_{\mathrm{L}} & r_{\mathrm{R}}\end{array}\right)\binom{a_{1}}{a_{2}} \quad \begin{aligned} & r_{L, R}, t_{L, R}: \text { complex reflection, transmission } \\ & \text { coefficients satisfying }\end{aligned}$

$$
T_{\mathrm{L}, \mathrm{R}}=\left|t_{\mathrm{L}, \mathrm{r}}\right|^{2}=1-R_{\mathrm{L}, \mathrm{R}}=1-\left|r_{\mathrm{L}, \mathrm{R}}\right|^{2}
$$

$\mathbf{S}_{\mathrm{AB}}=\left(\begin{array}{cc}r_{\mathrm{L}}^{\mathrm{AB}} & t_{\mathrm{R}}^{\mathrm{AB}} \\ t_{\mathrm{L}}^{\mathrm{AB}} & r_{\mathrm{R}}^{\mathrm{AB}}\end{array}\right)=\left(\begin{array}{cc}r_{\mathrm{L}}^{\mathrm{A}}+t_{\mathrm{R}}^{\mathrm{A}} r_{\mathrm{L}}^{\mathrm{B}}\left(I-r_{\mathrm{R}}^{\mathrm{A}} r_{\mathrm{L}}^{\mathrm{B}}\right)^{-1} t_{\mathrm{L}}^{\mathrm{A}} & t_{\mathrm{R}}^{\mathrm{A}}\left(I-r_{\mathrm{L}}^{\mathrm{B}} r_{\mathrm{R}}^{\mathrm{A}}\right)^{-1} t_{\mathrm{R}}^{\mathrm{B}} \\ t_{\mathrm{L}}^{\mathrm{B}}\left(I-r_{\mathrm{R}}^{\mathrm{A}} r_{\mathrm{L}}^{\mathrm{B}}\right)^{-1} t_{\mathrm{L}}^{\mathrm{A}} & r_{\mathrm{R}}^{\mathrm{B}}+t_{\mathrm{L}}^{\mathrm{B}}\left(I-r_{\mathrm{R}}^{\mathrm{A}} r_{\mathrm{L}}^{\mathrm{B}}\right)^{-1} r_{\mathrm{R}}^{\mathrm{A}} t_{\mathrm{R}}^{\mathrm{B}}\end{array}\right)$

$$
\left(I-r_{R}^{A} r_{L}^{B}\right)^{-1}=I+r_{R}^{A} r_{L}^{B}+\left(r_{R}^{A} r_{L}^{B}\right)^{2}+\cdots
$$

Difficulty in measurement of voltage at high frequencies.

oscilloscope

1. Cannot ignore distributed capacitance
2. Probe line should also be treated as a transmission line

Vector network analyzer

On the other hand, S-parameters can be obtained from power measurements.

S-parameters give enough information for designing high frequency circuits.

Application of S-matrix to quantum transport

Electron (quantum mechanical) waves also have propagating modes in solids.
\rightarrow Conduction channel
Landauer equation: the conductance of a single perfect quantum $\frac{e^{2}}{h}$
channel is
Rolf Landauer

Practical impedance matching with Smith chart

Impedance matching designer

http://home.sandiego.edu/~ekim/e194rfs01/jwmatcher/matcher2.html

Impedance Matching Network Designer

(Now with 16 networks!)

Source Resistance: 50	Source Reactance: 0
Load Resistance: 50	Load Reactance: 0
Desired Q: 0	Frequency: 169
Calculate	

Please send comments and questions to John Wetherell at wetherel@eecs.berkeley.edu HIGHPASS Hi-Low MATCHING NETWORK Lowpass hi-Low MATCHING NETWORK

L Value: \qquad nH

http://leleivre.com/rf lcmatch.html

An example FET power matching

$\Gamma_{\mathrm{s}, 1, \text { in }, \text { out }}:$ reflection coefficients.

$$
\binom{b_{1}}{b_{2}}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{a_{1}}{a_{2}}
$$

FET S-matrix

The situation can be seen as:
Source with reflection coefficient Γ_{S}, load with reflection coefficient Γ_{l} are connected.

Power matching with S-parameters

That is

Then the total coefficients are $\Gamma_{\mathrm{in}}=S_{11}+\frac{S_{12} S_{21} \Gamma_{1}}{1-S_{22} \Gamma_{1}}, \quad \Gamma_{\text {out }}=S_{22}+\frac{S_{12} S_{21} \Gamma_{\mathrm{s}}}{1-S_{22} \Gamma_{\mathrm{s}}}$
The power matching conditions are

$$
\Gamma_{\mathrm{l}}=\Gamma_{\text {out }}^{*}, \quad \Gamma_{\mathrm{s}}=\Gamma_{\text {in }}^{*}
$$

The quadratic equation gives

$$
\Gamma_{\mathrm{s}}=\frac{B_{1} \pm \sqrt{B_{1}^{2}-4|M|^{2}}}{2 M}, \quad \Gamma_{l}=\frac{B_{2} \pm \sqrt{B_{2}^{2}-4|N|^{2}}}{2 N}
$$

$$
\begin{aligned}
B_{1} & =1+\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}-|\operatorname{det} S|^{2}, \quad B_{2}=1-\left|S_{11}\right|^{2}+\left|S_{22}\right|^{2}-|\operatorname{det} S|^{2}, \\
N & =S_{22}-S_{11}^{*} \operatorname{det} S, \quad M=S_{11}-S_{22}^{*} \operatorname{det} S
\end{aligned}
$$

Then the problem is reduced to tune the passive circuits to Γ_{s} and Γ_{1}

