

Outline

Various transmission lines Termination and connection Smith chart
S-matrix (S-parameters)

An example FET power matching

NEC | data SHet |
| :---: |

C to Ku BAND LOW NOISE AMPLIFIER N-CHANNEL GaAs MES FET

C band: $4-8 \mathrm{GHz}$
X band: $8-12 \mathrm{GHz}$
Ku band: $12-18 \mathrm{GHz}$

S_{12} and S_{21} are normalized with some constants

$\Gamma_{\mathrm{s}, 1, \text { in }, \text { out }}$: reflection coefficients.

$$
\binom{b_{1}}{b_{2}}=\left(\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right)\binom{a_{1}}{a_{2}}
$$

FET S-matrix

The situation can be seen as:
Source with reflection coefficient Γ_{S}, load with reflection coefficient Γ_{l} are connected.

Power matching with S-parameters

That is

Then the total coefficients are $\Gamma_{\mathrm{in}}=S_{11}+\frac{S_{12} S_{21} \Gamma_{1}}{1-S_{22} \Gamma_{1}}, \quad \Gamma_{\text {out }}=S_{22}+\frac{S_{12} S_{21} \Gamma_{\mathrm{s}}}{1-S_{11} \Gamma_{\mathrm{s}}}$
The power matching conditions are $\quad \Gamma_{1}=\Gamma_{\text {out }}^{*}, \quad \Gamma_{\mathrm{s}}=\Gamma_{\text {in }}^{*}$
The quadratic equation gives

$$
\Gamma_{\mathrm{s}}=\frac{B_{1} \pm \sqrt{B_{1}^{2}-4|M|^{2}}}{2 M}, \quad \Gamma_{l}=\frac{B_{2} \pm \sqrt{B_{2}^{2}-4|N|^{2}}}{2 N}
$$

$$
\begin{aligned}
B_{1} & =1+\left|S_{11}\right|^{2}-\left|S_{22}\right|^{2}-|\operatorname{det} S|^{2}, \quad B_{2}=1-\left|S_{11}\right|^{2}+\left|S_{22}\right|^{2}-|\operatorname{det} S|^{2}, \\
N & =S_{22}-S_{11}^{*} \operatorname{det} S, \quad M=S_{11}-S_{22}^{*} \operatorname{det} S
\end{aligned}
$$

Then the problem is reduced to tune the passive circuits to Γ_{s} and Γ_{1}

A simplified way to make impedance matching

Series and parallel connection of passive elements and traces on charts

6.1.2 Wiener-Khintchine theorem

Autocorrelation function $\quad C(\tau)=\overline{\langle x(t) x(t+\tau)\rangle}$

$$
\begin{aligned}
&=\sum_{n, m}\left\langle\left[a_{n} \cos \omega_{n} t+b_{n} \sin \omega_{n} t\right]\left[a_{m} \cos \omega_{m}(t+\tau)+b_{m} \sin \omega_{m}(t+\tau)\right]\right\rangle \\
&=\frac{1}{2} \sum_{n} \overline{\left\langle a_{n}^{2}+b_{n}^{2}\right\rangle} \cos \omega_{n} \tau=\sum_{n} \overline{\left\langle\mathscr{P}_{n}\right\rangle} \cos \omega_{n} \tau \\
&=\int_{0}^{\infty} G(\omega) \cos \omega \tau \frac{d \omega}{2 \pi} \\
& C(\tau)=\int_{0}^{\infty} G(\omega) \cos \omega \tau \frac{d \omega}{2 \pi} \quad \text { Wiener-Khintchine theorem } \\
& G(\omega)=4 \int_{0}^{\infty} C(\tau) \cos \omega \tau d \tau \quad
\end{aligned}
$$

An example of impedance matching

Similarly $L_{P} \approx 65 \mathrm{nH}$

Introduction of useful freeware Smith v4.0 (present version 4.1)
http://fritz.dellsperger.net/smith.html

Home
Personal Smith Chart Downloads Links

Download New Version 4.0 Octobre 2016

Computer Smith-Chart Tool and s -Parameter Plot, Setup Smith V4.0.exe

1. Smith-Chart Diagram

- Matching ladder networks with capacitors, inductors, resistors, serie and parallel RLC, transformers, serie lines and open or shorted stubs
Free settable normalisation impedance for the Smith chart
- Circles and contours for stability, noise figure, gain, VSWR and Q

Edit element values after insertion
Tune element values using sliders (Tuning Cockpit) NEW

- Sweep versus frequency or datapoints
- Serial transmission line with loss
- Export datapoint and circle info to ASCII-file for post-processing in spreadsheets or math software
Import datapoints from S -parameter files (Touchstone, CITI EZNEC)
Undo- und Redo-Function
- Save and load designs (licensed version only)

Save netlist (licensed version only)

- Print Smith-Chart, schematic, datapoints, circle info and S-Plot graphs
- Copy to clipboard for documentation purposes
- Settings for color and line widths for all graphs

2. s-Plot

- Read S-Parameter - Files in Touchstone(®), CITI- and EZNECFormat
- Graphical display of $s 11, s 12, s 21$ and $s 22$
- Graphical display and listing of MAG (maximum operating power gain), MSG (maximum stable gain), stability factor k and u and returnloss
- Linear or logarithmic frequency axis

Impedance matching with Smith v4 (1)

Smith V4.0
File Edit Mode Tools Zoom Window Help
W

Cursor	
Return Loss 0.46 dB	Vswr 37.41:1
Q 15.28	г $0.948 / 54.843^{\circ}$
r $(0.68-10.37) \mathrm{ms}$	$z \longdiv { (6 . 2 9 + j 9 6 . 0 5) \Omega }$
zo 50.00	Frea 100.000 MHz

Impedance matching with Smith V4 (2)

File Edit Mode Tools Zoom Window Help

Introduction of useful freeware Qucs 0.0.19

Latest News
Latest stable release: 0.0.19
Source
Windows Ubuntu os X
Official SourceForge repository.
GitHub Mirror
Qucs Wiki

22 January 2017 Released Qucs 0.0.19, News
18 September 2015 Publication "Qucs: An introduction to the new simulation and compact device modelling features implemented in release $0.0 .19 / 0.0 .19 \mathrm{Src} 2$ of the popular GPL circuit simulator.", 13th MOS-AK Workshop, Graz (A). The presentation slides by Mike Brinson are available online.
19 January 2015 Enabled automatic generation and deployment of Doxygen source

Qucs: Quite Universal Circuit Simulator

 http://qucs.sourceforge.net/The Qucs project was begun by Michael Margraf in Germany in 2004.

- Based on SPICE simulation language.
- Free but no restriction in the number of nodes, etc.
- Can read S-parameter files. Have Sparameter analysis options.
- In that sense, better than LTSpice.

Introduction of useful freeware Qucs 0.0.19

Example: Frequency characteristics of a bipolar transistor

- Qucs 0.0 .19

[^0]\qquad

S-parameter simulation of a bipolar transistor with Qucs

Simulation of matching circuit

Comments: Impedance match

Propagation of a wave: ${ }^{\text {Impedance match: complete absorption (propagation without reflection) }}$ Mismatch: wave reflection

Impedance match/mismatch is an important concept applicable to a broad area of physics.
$>$ Antenna: should be matched to the vacuum.
EM wave propagation simulation: boundary is shunted with the characteristic impedance of vacuum.
$>$ Optics: impedance mismatch \rightarrow disagreement in refractive index
$>$ Plasma: should be matched to electrodes for excitation.
> Phonon impedance mismatch at low temperatures: Kapitza resistance
$>$ Sound insulated booth: should have sound impedance mismatch.

5.4 Non TEM mode transmission lines

The inductance represents magnetic fields circulating the core and the capacitance electric fields directing from the core to the shield.

$$
Z_{0}=\sqrt{\frac{L}{C}} \quad \begin{aligned}
& : \text { real, dispersionless (linear } \\
& \omega-k \text { relation) }
\end{aligned}
$$

Non-linear ω-term in Z or $Y \rightarrow$ dispersion (longitudinal components)

$$
Y=i \omega C+\frac{1}{i \omega L}
$$

C : capacitance per unit length
L : inductance per inverse unit length
K : inductance per unit length

$$
-k^{2}=Y Z=\left(i \omega C+\frac{1}{i \omega L}\right) i \omega K=-C K \omega^{2}+\frac{K}{L}
$$

Constant finite mass: $E=\hbar \omega \propto k^{2}$ (Schrodinger eq.: Parabolic partial differential equation) Coupling between linear dispersions: mass mechanism (cf. Higgs)

$$
\begin{array}{ll}
\frac{1}{\sqrt{L C}}=\omega_{0} \text { unchanged with } d x \rightarrow 0 & Z=i \omega K, \quad Y=\frac{1-\left(\omega / \omega_{0}\right)^{2}}{i \omega L} \quad \text { then } \\
\hbar \omega_{0}=m^{*} c^{* 2} & i k=\kappa=\sqrt{Y Z}=i \sqrt{\frac{K}{L}\left[\left(\frac{\omega}{\omega_{0}}\right)^{2}-1\right]} \\
& k=\eta \sqrt{\left(\omega / \omega_{0}\right)^{2}-1}, \quad \eta^{2} \equiv(K / L)
\end{array}
$$

5.4 Non TEM mode gives mass to the transmission mode

$$
\begin{aligned}
& \omega \gg \omega_{0} \rightarrow k \sim \eta \frac{\omega}{\omega_{0}} \quad \text { No dispersion }
\end{aligned}
$$

$$
\begin{aligned}
& \text { velocity } \quad c^{*}=\frac{\omega}{k}=\frac{\omega_{0}}{\eta}=\frac{1}{\sqrt{K C}} \\
& \omega \sim \omega_{0} \quad \omega=\omega_{0}+\delta \omega \quad \rightarrow k^{2} \approx 2 \eta^{2} \frac{\delta \omega}{\omega_{0}} \\
& \therefore \epsilon \equiv \hbar \delta \omega=\frac{\hbar k^{2}}{2\left(\eta^{2} / \omega_{0}\right)}=\frac{\hbar^{2} k^{2}}{2 m^{*}} \quad\left(m^{*} \equiv \frac{\hbar \eta^{2}}{\omega_{0}}\right) \\
& E_{0}=\hbar \omega_{0}=\frac{\hbar \eta^{2}}{\omega_{0}} \cdot\left(\frac{\omega_{0}}{\eta}\right)^{2}=m^{*} c^{* 2}
\end{aligned}
$$

5.5 Non-linear LC transmission line and Toda lattice

Toda lattice is a typical non-linear system with exact (soliton) solutions. It is defined as follows:
The springs in (a) have Toda-potential: $\quad \phi(r)=\frac{a}{b} e^{-b r}+a r \quad(a b>0)$
Equation of motion: $m \frac{d^{2} u_{n}}{d t^{2}}=-a \exp \left[-b\left(u_{n+1}-u_{n}\right)\right]+a \exp \left[-b\left(u_{n}-u_{n-1}\right)\right]$
For relative shift

$$
r_{n}=u_{n+1}-u_{n}
$$

$$
m \frac{d^{2} r_{n}}{d t^{2}}=a\left(2 e^{-b r_{n}}-e^{-b r_{n+1}}-e^{-b r_{n-1}}\right)
$$

Force of a spring: $\quad f=-\phi^{\prime}(r)=a\left(e^{-b r}-1\right)$

Solitons in Toda lattice

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}} \log \left(1+\frac{f_{n}}{a}\right)=\frac{b}{m}\left(f_{n+1}+f_{n-1}-2 f_{n}\right) \\
& u_{n}=\omega^{2} \operatorname{sech}^{2}(\kappa n+\sigma \omega t+\delta), \\
& \sigma= \pm 1, \quad \omega=\sinh \kappa,
\end{aligned}
$$

$$
\kappa, \delta: \text { constants }
$$

$N=2$ soliton solution:
$u_{n}=\frac{\tau_{n+1} \tau_{n-1}}{\tau_{n}^{2}}-1$,

$$
\tau_{n}=1+e^{2 \eta_{1}}+e^{2 \eta_{2}}+A_{12} e^{2\left(\eta_{1}+\eta_{2}\right)},
$$

$$
\eta_{i}=\kappa_{i} n+\sigma_{i} \omega_{i} t+\delta_{i}, \quad \sigma_{i}= \pm 1, \quad \omega_{i}=\sinh \kappa_{i},
$$

$$
A_{12}=\frac{a b \sinh ^{2}\left(\kappa_{1}-\kappa_{2}\right)-m\left(\sigma_{1} \omega_{1}-\sigma_{2} \omega_{2}\right)^{2}}{m\left(\sigma_{1} \omega_{1}+\sigma_{2} \omega_{2}\right)^{2}-a b \sinh ^{2}\left(\kappa_{1}+\kappa_{2}\right)}
$$

Varicap BB505

$$
V_{\mathrm{b}}=\frac{e n}{\epsilon} \int_{-l_{d}}^{0} 2\left(x+l_{d}\right) d x+\frac{e n}{\epsilon} \int_{0}^{l_{d}} 2\left(l_{d}-x\right) d x=\frac{2 e n l_{d}^{2}}{\epsilon}
$$

$$
V+V_{\mathrm{b}}=\frac{2 e n}{\epsilon}\left(l_{d}+\frac{Q}{n S}\right)^{2}
$$

$$
\therefore C=\frac{d Q}{d V}=\sqrt{\frac{\epsilon}{2 e n}} \frac{n S}{\sqrt{V+V_{\mathrm{b}}}}
$$

$$
V+V_{\mathrm{b}}=V_{0}+\delta V \quad \delta V \rightarrow V
$$

L-Varicap transmission line

$$
\begin{aligned}
L \frac{d J_{n}}{d t} & =v_{n}-v_{n-1}, \\
\frac{d q_{n}}{d t} & =J_{n-1}-J_{n}, \\
q_{n} & =\int_{0}^{v_{n}} C(V) d V, \quad C(V)=\frac{Q\left(V_{0}\right)}{F\left(V_{0}\right)+V-V_{0}} \\
& q_{n}=Q\left(V_{0}\right) \log \left[1+\frac{V_{n}}{F\left(V_{0}\right)}\right]+\text { const. } \\
& \frac{d^{2}}{d t^{2}} \log \left[1+\frac{V_{n}}{F\left(V_{0}\right)}\right]=\frac{1}{L Q\left(V_{0}\right)}\left(V_{n-1}^{n}+V_{n+1}-2 V_{n}\right)
\end{aligned}
$$

Solitons in non-linear circuit

Toda lattice circuit, Soliton circuit

Fig. 1. A nonlinear network equivalent to a one-dimensional anharmonic lattice. The circuit elements have an inductance $L=22 \mu \mathrm{H}$ or capacitance $C(V)=27 V^{-0.48} \mathrm{pF}$.
a)

d)

Studies on Lattice Solitons by Using Electrical Networks

Ryogo Hirota and Kimio Suzuki

Fig. 16. Microwave soliton oscillator prototype.

Ch. 6 Noises and Signals

Chapter 6 Noises and Signals

Outline

6.1 Fluctuation
6.1.1 Fluctuation-Dissipation theorem
6.1.2 Wiener-Khintchine theorem
6.1.3 Noises in the view of circuits
6.1.4 Nyquist theorem
6.1.5 Shot noise
6.1.6 1/f noise
6.1.7 Noise units
6.1.8 Other noises
6.2 Noises from amplifiers
6.2.1 Noise figure
6.2.2 Noise impedance matching

Electric circuits transport 1) Information; 2) Electromagnetic power, on some physical quantities like voltages, current, ...

Noises: stochastic (uncontrollable, unpredictable by human) variation in other words, fluctuation in such a quantity.

External noise: EMI, microphone noise, etc.

6.1 Fluctuation

Quantity x, fluctuation $\delta x=x-\bar{x} \quad \overline{(\delta x)^{2}}=\overline{(x-\bar{x})^{2}}=\overline{x^{2}}-\bar{x}^{2} \quad(\overline{\delta x}=0)$

$$
g(x): \text { distribution function of } x
$$

Fourier transform: $\quad u(q)=\mathscr{F}\{g(x)\}=\int_{-\infty}^{\infty} g(x) e^{i x q} \frac{d x}{\sqrt{2 \pi}}$
$u(q)$: characteristic function of the distribution
From Taylor expansion, n-th order moment can be obtained as

$$
\overline{x^{n}}=\frac{\sqrt{2 \pi}}{i^{n}}\left[\frac{d^{n}}{d q^{n}} u(q)\right]_{q=0}
$$

Moments to high orders \rightarrow reconstruction of $g(x)$

6.1 Fluctuation

In electric circuits we need to consider two kinds of averages:

Random process to distribution

The averaging interval should be longer than m in m-th order Markovian.

Power spectrum

Consider probability sets in the interval $[0, T)$ with set index j.

$$
x_{j}(t)=\sum_{n=1}^{\infty}\left(a_{j n} \cos \omega_{n} t+b_{j n} \sin \omega_{n} t\right), \quad \omega_{n}=\frac{2 n \pi}{T}
$$

$\mathscr{P}_{j n}=\left(a_{n j} \cos \omega_{n} t+b_{n j} \sin \omega_{n} t\right)^{2}$
(Power)

$$
\left\langle\mathscr{P}_{n}\right\rangle=\frac{1}{2}\left\langle a_{n}^{2}+b_{n}^{2}\right\rangle
$$

\because cross product terms are averaged out

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{x^{2}}{2 \sigma^{2}}\right]
$$

$$
\overline{(\delta x)^{2}}=\sigma^{2}, \quad \overline{\left(\sum_{j=1}^{m} \delta x_{j}\right)^{2}}=m \sigma^{2} \quad \text { Then } \quad \overline{\left\langle\mathscr{P}_{n}\right\rangle}=\sigma_{n}^{2}
$$

Power spectrum $\boldsymbol{G}(\boldsymbol{\omega})$
Frequency band width $\delta \omega$: separation between two adjacent frequencies

Power spectrum

Power spectrum $\boldsymbol{G}(\boldsymbol{\omega})$

Frequency band width $\delta \omega$: separation between two adjacent frequencies

$$
\delta \omega=\omega_{n+1}-\omega_{n}=\frac{2(n+1) \pi}{T}-\frac{2 n \pi}{T}=\frac{2 \pi}{T}
$$

$$
G\left(\omega_{n}\right) \frac{\delta \omega}{2 \pi}=\overline{\left\langle\mathscr{P}_{n}\right\rangle}\left(=\sigma_{n}^{2}\right)
$$

$$
\overline{\left\langle x^{2}(t)\right\rangle}=\sum_{n=1}^{\infty} \overline{\left\langle\mathscr{P}_{n}\right\rangle} \quad(\overline{x(t)}=0)
$$

$$
=\sum_{n} G\left(\omega_{n}\right) \frac{\delta \omega}{2 \pi} \rightarrow \int_{0}^{\infty} G(\omega) \frac{d \omega}{2 \pi}
$$

6．1．1 Fluctuation－Dissipation theorem

久保亮五
Ryogo Kubo 1920－1995

Harry Nyquist 1889－1976

Nobert Wiener 1894－1964

Aleksandr Khinchin 1894－1959

Fluctuation-dissipation theorem in the language of circuit

$$
\begin{aligned}
& \omega_{0} \equiv 1 / \sqrt{L C} \\
& Z(i \omega)=\frac{R\left(\omega_{0}^{2}-\omega^{2}\right)+i \omega_{0}^{2} \omega L}{\omega_{0}^{2}-\omega^{2}} \\
& Y(i \omega)=\frac{\omega_{0}^{2}-\omega^{2}}{R\left(\omega_{0}^{2}-\omega^{2}\right)+i \omega_{0}^{2} \omega L}
\end{aligned}
$$

$V(t)$ noise power spectrum $\rightarrow G_{v}(\omega)$

$$
\begin{aligned}
G_{\mathrm{v}}(\omega) & =4 k_{\mathrm{B}} T \operatorname{Re}[Z(i \omega)] \\
& =4 k_{\mathrm{B}} T R
\end{aligned}
$$

Johnson-Nyquist noise Thermal noise

White noise (noise with no frequency dependence) in the case of frequency independent resistance
One of the representations for the fluctuation-dissipation theorem

Autocorrelation function

$$
\begin{aligned}
& C(\tau)=\overline{\langle x(t) x(t+\tau)\rangle} \\
&=\overline{\sum_{n, m}\left\langle\left[a_{n} \cos \omega_{n} t+b_{n} \sin \omega_{n} t\right]\left[a_{m} \cos \omega_{m}(t+\tau)+b_{m} \sin \omega_{m}(t+\tau)\right]\right\rangle} \\
&=\frac{1}{2} \sum_{n} \overline{\left\langle a_{n}^{2}+b_{n}^{2}\right\rangle} \cos \omega_{n} \tau=\sum_{n} \overline{\left\langle\mathscr{P}_{n}\right\rangle} \cos \omega_{n} \tau \\
&=\int_{0}^{\infty} G(\omega) \cos \omega \tau \frac{d \omega}{2 \pi} \\
& C(\tau)=\int_{0}^{\infty} G(\omega) \cos \omega \tau \frac{d \omega}{2 \pi}, \quad G(\omega)=4 \int_{0}^{\infty} C(\tau) \cos \omega \tau d \tau \\
& \quad \text { Wiener-Khintchine theorem }
\end{aligned}
$$

[^0]: Search Components Clear

