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2.4 LS coupling

We explained Hund’s rule through estimation of Coulomb mutual interaction. In addition to these two terms (H0, HC),

the hamiltonian (2.1) for localized electron system in solids, has HSOI and HCF. It is difficult to treat these simultaneously

and we need to treat the term with higher priority and to treat the other as perturbation. First, let us examine the case

the effect of HSOI is stronger than that of HCF. Within this framework, there are several approaches: (i) first the ground

state LS multiplex is picked and examine how that is split into sub-levels with HSOI (LS coupling approach); (ii) Single-

electron state with spin-orbit interaction is prepared firstly, then the Coulomb effect is taken into account via Hund’s

rule to find the ground state (j-j coupling). This and the next sections are devoted to these two approaches illustrated in

Fig. 2.2.

2.4.1 Effect of spin-orbit interaction on single-electron states

Here we revisit the single electron Hamiltonian for relativistic electron. The third term in eq. (1.72) is

− eℏσ · p×E

4m2c2
= − e2ℏ

4m2c2
σ · (p×∇V ) =

e2ℏ
2m2c2

ζ(r)s · l ≡ ξ(r)l · s, (2.27)

where V (r) is a potential with spherical symmetry. We first write it as V (r) taking the origin at the center of the potential,

then define ζ(r) as ∇V = (r/r)(dV (r)/dr) ≡ ζ(r)r, and apply l = r × p for the above. Assuming it as the Coulomb

potential V (r) = −Ze2/(4πϵ0r), ξ is given by

ξ(r) =
Ze2

2m2c2
1

(4πϵ0)r3
, (2.28)

which tells that the spin-orbit interaction is important for the atoms with large atomic number Z and for the atomic

orbitals with smaller r, namely the orbitals closer to the atomic core. As examples of representative atoms, ions that have

Fig. 2.2 Illustration of two representative approaches. In LS coupling (Russell-Saunders coupling) approach, the
ground state LS multiplex split by the Coulomb interaction is further split into the levels with J as the quantum
number by the spin-orbit interaction. In j-j coupling approach, spin-orbit interaction is considered at the single-
electronic states, then the Coulomb interaction in multi-electron states is taken into account through Hund’s rule.
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open shells, we have listed 3d transition metals and Lanthanoid with 4f open shells. The above thought suggests that the

approaches of “SOI-first” (both LS and j-j) are more appropriate for Lanthanoid than 3d transition metals.

j
l

s

Fig. 2.3 Illustrates precessions of
l and s around j.

The single-electron Hamiltonian with the SOI is then given by

H = H0 +Hso =
p2

2m
+ V (r) + ξ(r)l · s. (2.29)

The Hamiltonian (2.27) does not commute with l, s, which are no longer

constants of motion. This can easily be confirmed from (1.78) and (1.79). On

the other hand, commutation relations, e.g,

[l · s, l̂z] = iℏ(−lysx + lxsy), [l · s, ŝz] = iℏ(−lxsy + lysx) = −[l · s, l̂z],

tell that the total angular momentum

j = l+ s (2.30)

commutes with Hamiltonian (2.27), and is a constant of motion. j satisfies the

commutation relations in the same forms as (1.78) and (1.79). Hence it gets

directional quantization, and the eigenfunction is indexed by (j,m) as |j,m⟩
(m = −j,−j+1, · · · , j). |j,m⟩ can be obtained, e.g., in the form of expansion

with the eigenfunctions of H0.

On the other hand, l2, s2 commute with l · s, thus with H, making them as constants of motion. l · s is also written as

l · s = (l+ s) · s− s2 = j · s− s2.

This form tells that s and l have the Zeeman-like term with j (a constant of motion) as magnetic field in eq. (2.9). In

a classical picture, l and s precess around j satisfying eq. (2.30) as illustrated in Fig. 2.3. The angular velocity of the

precession is proportional to the spin-orbit coupling strength ξ.

The eigenvalues of l · s are obtained from

2l · s = (l+ s)2 − l2 − s2 = j2 − l2 − s2 (2.31)

as

[j(j + 1)− l(l + 1)− s(s+ 1)]/2 =
1

2

[
j(j + 1)− l(l + 1)− 3

4

]
. (2.32)

Then the energy eigenvalues are given by

ϵnlj = ϵnl +
ηnl
2

[
j(j + 1)− l(l + 1)− 3

4

]
, (2.33)

Fig. 2.4 Schematic diagram for splitting of l = 2 (i.e. 3d or-
bital) multiplet state with (2l+1)(2s+1) =10 fold degeneracy
by the SOI. η3d is the integrated value of eq. (2.34) for 3d-orbital.
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(a)

(b)

Fig. 2.5 Schematic diagrams of how electrons are
packed according to Hund’s rules into a degener-
ate state with the same angular momentum quantum
number. (a) The number of electrons is less than or
the same as the number of orbitals. (b) The num-
ber of electrons is more than that of orbitals. The
sum of the orbital contributions corresponding to the
spins represented by the arrows in the upper column
is zero.

where ηnl is the integral of the radial wavefunction and ξ(r), namely

ηnl =

∫ ∞

0

ξ(r)Rnl(r)
2r2dt. (2.34)

j can take values |l ± 1/2|, splitting the energy level indicated by (n, l) into two levels. Figure 2.4 shows the case of 3d

orbital.

2.4.2 Spin-orbit interaction in multi-electron states

The SOI Hamiltonian for a multi-electron system, then can be written as

HSOI =
∑
i

ξ(ri)li · si →
∑
i

ξili · si → ξ
∑
i

li · si. (2.35)

In the above we first replace ξ(ri) → ξi because the radial part will be integrated out as in eq. (2.34). Next ξi comes

out from the summation on i because in an LS-multiplet, the orbitals should have the same radial part. The Coulomb

repulsion splits the degenerated levels in the single-electron problem into LS-multiplets. In the previous section, Hund’s

rule has been derived as a way to find the state in which the effect of Coulomb repulsion is minimized. An LS-multiplet

(L, S) still has (2L+ 1)(2S + 1)-fold degeneracy due to the freedom of orbital and spin angular momenta.

In the presence of HSOI, just as in the single-electron problem, neither the total orbital angular momentum L nor the

total spin angular momentum S (defined in (2.15)) commutes with the Hamiltonian, that is, they are not constants of

motion. The total angular momentum defined as
J = L+ S (2.36)

is a constant of motion.

The whole energy level structure is importtant in the discusstion of localized electron systems. For the magnetism,

the ground state is particulary important. As noted, in the LS-coupling approach, we first consider the “ground state”

LS-multiplet, and examine how this is split by HSOI, find the ground state among them. When the number of electons n

is smaller than that of degenerated orbitals 2l + 1 for the orbital angular momentum l, in the ground state every orbital

accomodates 0 or 1 electron. Then according to Hund’s rule, in the ground state all electron spins are in parallel. Namely

a spin dose not depend on orbital index i:

si =
1

n
S =

1

2S
S (n ≤ 2l + 1). (2.37)

Substituting the above into eq. (2.35), we can write

HSOI = ξ
∑
i

li · si = ξ

(∑
i

li

)
· s =

ξ

2S
L · S ≡ λL · S. (2.38)

In the case of n > 2l+1, as shown in Fig. 2.5(b), though the electron spins are still in parallel for 2l+1 electrons, the

corresponding orbitals take all possible values of ml, and the summation over li vanishes in (2.38). Hence the residual
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Electronic Electronic

Elements Configuration Configuration Ground state

(Lanthanoid) atom R ion R3+ L S J multiplet gJ

La 5d6s2 0 0 0 1S0 0

Ce 4f5d6s2 4f1 3 1/2 5/2 2F5/2 6/7

Pr 4f36s2 4f2 5 1 4 3H4 4/5

Nd 4f46s2 4f3 6 3/2 9/2 4I9/2 8/11

Pm 4f56s2 4f4 6 2 4 5I4 1/5

Sm 4f66s2 4f5 5 5/2 5/2 6H5/2 2/7

Eu 4f76s2 4f6 3 3 0 7F0 0

Gd 4f75d6s2 4f7 0 7/2 7/2 8S7/2 2

Tb 4f96s2 4f8 3 3 6 7F6 3/2

Dy 4f106s2 4f9 5 5/2 15/2 6H15/2 4/3

Ho 4f116s2 4f10 6 2 8 5I8 5/4

Er 4f126s2 4f11 6 3/2 15/2 4I15/2 6/5

Tm 4f136s2 4f12 5 1 6 3H6 7/6

Yb 4f146s2 4f13 3 1/2 7/2 2F7/2 8/7

Lu 4f145d6s2 4f14 0 0 0 1S0 0

Tab. 2.3 The electron configuration of the lanthanoid ion and the basis multiplex of the ion. Spectroscopic symbols

are also listed for the ground state. A spectroscopic symbol 2S+1LJ expresses a multielectron state indexed by
(L, S.J). 2S + 1 and J are given in Arabic numbers, and L is given from the correspondence 0, 1, 2, 3, · · · with
symbols S, P,D, F, · · · .

n− (2l+ 1) spins and orbitals actually contribute the SOI. Those effective spins are in anti-parallel states written as −s,

where s is defined in eq. (2.37). The above discussion is summarized in the following form *1.

HSOI = ξ

[(
2l+1∑
i=1

li

)
· s−

(
n∑

i=2l+2

li

)
· s

]
= − ξ

2S
L · S = −λL · S. (2.39)

In the above we have found that the SOI on the ground state LS-multiplet found from Hund’s rule can be expressed in

the same form as that on a single-electron state by using (L,S,J). Then as in the case of single electron problem, the

split states of the ground LS-multiplet with (2L+1)(2S +1)-fold degeneracy can be indexed by J , the eigenvalue of J .

Possible value of J are from the definition,

J = |L− S|, |L− S|+ 1, · · · , L+ S. (2.40)

The expectation value of L · S is obtained just as in (2.31) and (2.32). The result is

L · S =
1

2
(J2 −L2 − S2) =

1

2
[J(J + 1)− L(L+ 1)− S(S + 1)]. (2.41)

Then from eq. (2.38) and eq. (2.39), the ground state is the state for J = |L−S| in the case of n ≤ 2l+1, and that is the

state for J = |L− S| in the case of n > 2l + 1.

The above is applied to obtain the multiplet ground states thus obtained for lanthanoid are listed in Tab. 2.3. These

atoms often constitute (compound) ionic insulators. In many cases, 5d, 6s electrons on the outer shells and also a 4f

electron are emitted. In such ions, the outmost shell composed of 5s, 5p electrons is closed just as Xe while 4f electrons

on the open shell still exist inside the outmost shell. This situation is advantageous for localized electron system in

*1 Such simplification of operator form can be generalized into the method of “operator equivalent” by Stevens[1]．
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spherical potential because the effect of HCF is comparatively weak[2]. The SOI has strong effect and the LS-coupling

approach is a good approximation in most cases with some exceptions[3].

The eigenstates with quantum numbers J and M , composed of (L, S)-multiplet is formally written as

|J,M⟩ =
∑

MlMs

⟨L,Ml;S,Ms|J,M⟩ |L,Ml;S,Ms⟩, (2.42)

where ⟨L,Ml;S,Ms|J,M⟩ are Clebsch-Gordan or Wigner coefficients.

So far we have assumed the second quantization formalism and estimated the matrix elements on the assumption of

“independent calculation of matrix elements and particle statistics.” We can write, e.g., the second quantization represen-

tation of HSOI on the orbital (n, l), as

HSOI =
∑

mm′σσ′

λnl(mσ,m
′σ′)a†mσam′σ′ , (2.43a)

λnl(mσ,m
′σ′) ≡ Zeffe

2ℏ2 ⟨r3⟩
2m2c2(4πϵ0)

⟨m|l|m′⟩nl ·
(σ
2

)
σσ′

. (2.43b)

Here for the spherical potential, we take the effect of screening by core electrons into account by changing Z into an

effective atomic number Zeff to get V (r) = −Zeffe
2/(4πϵ0r).

2.5 j-j coupling

As mentioned in the beginning of the previous section, the j-j coupling approach starts from the single-electron states

in which the SOI is already included as in Fig. 2.2. In the thought similar to the derivation of Hund’s rule in Sec. 2.3.1, the

ground state in which the effect of Coulomb interaction is taken into account, is obtained for the electron configuration

that maximizes the quantum number J .

Let us see the case of Pr3+ ((4f)2) as an example. f -electron has l = 3, then j = 3 ± 1/2 = 5/2, 7/2. The single

electron ground state is thus j = 5/2. The electron configuration with the maximum J is j = 5/2, 3/2 then Jmax = 4.

This value of J agrees with that in the LS-coupling approach (Tab. 2.3). This state in number representation is obtained

as
|J,M⟩ = |4,+4⟩ = a†+5/2a

†
+3/2|0⟩. (2.44)

From eq. (2.42), the creation operator of j = 5/2 and jz = m state, a†jz can be represented by the creation operator a†ms

of states (l = 3,m, s) as

a†jz =
∑
m,s

⟨3,m; 1/2, s|5/2, jz⟩ a†ms =

√
7 + 2jz

14
a†jz+1/2↓ −

√
7− 2jz

14
a†jz−↑. (2.45)

The way of approximation is different for j-j coupling and LS-coupling. Hence they give different ground states.

Although according to the report ref. [4], they have large overlaps to each other. Care should be taken for the following.

As will be seen in the next section, in LS-coupling paramagnetic moment expressed as µ = µB(L+ gS) is not parallel

to J = L+S due to the g-factor. Hence µ precesses around J and the coefficient is given as the average. In j-j coupling

µ is given as the sum of electronic magnetic moments. Therefore the g-factor is the same as that of single electron.

Namely l in the discussion of LS-coupling is replaced with j, thus (2j + 1)/2(j + 1) for n ≤ 2j + 1 and (2j + 1)/2J

for n > 2j + 1.
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2.6 Paramagnetism generated by magnetic ions

As mentioned, HCF is important for magnetic ions with an open-shell structure of 3d electrons, but before proceeding

to the theoretical examination, we will apply the LS-coupling approach to paramagnetism and examine to what extent it

can explain the experiements.

2.6.1 Free local moment and Curie law

The LS-coupling approach is a tool to find the ground state of magnetic ions in crystals. Hence we examine the behavior

of magnetization in a simple model of magnetic moments free to each other.

The Hamiltonian in the first order of mgnetic field is from eq. (1.75b)

H1 = µB(L+ gS) ·B. (2.46)

On the other hand, in the ground multiplet state in the LS-coupling, J is the angular momentum quantum number. The

main term thus should be in the form of
H1 = gjµBJ ·B, (2.47)

where the coefficient gJ includes various effects. Comparison of these two, gJJ = L+ gS, J = L+ S, we reach

Landé g-factor� �
gJ =

1 + g

2
− g − 1

2

L(L+ 1)− S(S + 1)

J(J + 1)
. (2.48)� �

i This gJ is called Landé g-factor. gJ is listed in Tab. 2.3 for lanthanoid. As already noted, this expression is obtained

within the narrow space of ground state in LS-coupling.

The expectation value of magnetic moment −gjµBJ is

M = ⟨−gjµBJz⟩ = −Tr[gjµBJz exp(−gjµBJzB/kBT )]

Tr[exp(−gjµBJzB/kBT )]
= kBT

∂

∂B
log

[
Tr

(
exp

−gjµBJzB

kBT

)]
, (2.49)

with taking the field along z-axis. The partition function is calculated as

Tr

(
exp

−gjµBJzB

kBT

)
=

sinh

[
1

2kBT
gJµB

(
J +

1

2

)
B

]
sinh(gJµBB/2kBT )

. (2.50)

From the above, the magnetization per a single ion M is obtained as

M = gJµBJBJ

(
gJµBJB

kBT

)
, (2.51)

where BJ(x) is called Brillouin function given by

Brillouin function� �
BJ(x) =

2J + 1

2J
coth

2J + 1

2J
x− 1

2J
coth

x

2J
. (2.52)� �

The functional behavior is drawn in Fig. 2.6.

In the case of x ≪ 1 (weak field, high temperature), the Brillouin function can be approximated as BJ(x) ∼ (J +

1)x/3J , then we reach the Curie law:

χ =
dM

dB
= (gJµB)

2 J(J + 1)

3kBT
, (2.53)

which is also obtained in the classical theory.
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Fig. 2.6 Brillouin function(2.52) for
J = 1/2, 3/2,∞.

2.6.2 Comparison with experiments: magnetization curve

Figure 2.7 shows well-known experimental results, in which the magnetizations of alums (sulfate) with various mag-

netic ions are successfully fit to the Brillouin function. A systematic response to expected values of J is observed.

Fig. 2.7 Fittings of the Brillouin function to the magnetic field and temperature dependencies of magnetization of
various paramagnetic salt (sulfates (alum) with various magnetic ions). Left: Cr (J = 3/2). Annotation of ”Langevin”
means the Langevin function corresponding to J = ∞ in the Brillouin function. Right: The same experiments for Cr
(J = 3/2), Fe (J = 5/2), Gd (J = 7/2). From [5].
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Configuration ion p (exp.) gJ [J(J + 1)]1/2 2[S(S + 1)]1/2

3d1 2D3/2 V4+ 1.8 1.55 1.73

3d2 3F2 V3+ 2.8 1.63 2.83

3d3 4F3/2 V2+ 3.8 0.77 3.87

Cr3+ 3.7 0.77 3.87

Mn4+ 4.0 0.77 3.87

3d4 5D0 Cr2+ 4.8 0 4.90

Mn3+ 5.0 0 4.90

3d5 6S5/2 Mn2+ 5.9 5.92 5.92

Fe3+ 5.9 5.92 5.92

3d6 5D4 Fe2+ 5.4 6.7 4.90

3d7 4F9/2 Co2+ 4.8 6.63 3.87

3d8 3F4 Ni2+ 3.2 5.59 2.83

3d9 2D5/2 Cu2+ 1.9 3.55 1.73

Tab. 2.4 Comparison of effective Bohr
magneton number p (eq. (2.55)) obtained
in experiments, that given by the LS-
coupling approach (2.54), and that by
“spin-only” model for 3d transition metal
ions. The data are taken from [6], [7].

Configuration ion p (exp.) gJ [J(J + 1)]1/2 2[S(S + 1)]1/2

4f1 2F5/2 Ce3+ 2.5 2.54 2.56

4f2 3H4 Pr3+ 3.6 3.58 3.62

4f3 4I9/2 Nd3+ 3.8 3.62 3.68

4f5 6H5/2 Sm3+ 1.5 0.84 1.53

4f6 7F0 Eu3+ 3.6 0.00 3.40

4f7 8S7/2 Gd3+ 7.9 7.94 7.94

4f8 7F0 Tb3+ 9.7 9.72 9.7

4f9 6H15/2 Dy3+ 10.5 10.65 10.6

4f10 5I8 Ho3+ 10.5 10.61 10.6

4f11 4I15/2 Er3+ 9.4 9.58 9.6

4f12 3H6 Tm3+ 7.2 7.56 7.6

4f13 2F7/2 Yb3+ 4.5 4.54 4.5

Tab. 2.5 Comparison of effective
Bohr magneton number p (eq. (2.55)) ob-
tained in experiments, that given by the
LS-coupling approach (2.54), and that
by “spin-only” model for 4f lanthanoid.
The data are taken from [6], [7].

2.6.3 Effective Bohr magneton number

Another check of the theory is the effective Bohr magneton number p defined from the inverse proportionality constant

C to temperature from the Curie law. In eq. (2.53) we write

p = gj
√
J(J + 1), (2.54)

then p in the theory is
p =

√
3kBC/µB. (2.55)

In Tab. 2.4 and in Tab. 2.5, we compare effective Bohr magneton number p (eq. (2.55)) obtained in experiments, that

given by the LS-coupling approach (2.54), and that by “spin-only” model for 3d transition metal ions and 4f lanthanoid

respectively.

In the case of lanthanoid in Tab. 2.5, the experimental values of p is well explained by gJ
√
J(J + 1) obtained from

the LS-coupling other than Eu3+, Sm3+. On the other hand, in the case of 3d transition metals, the experiments differ so

much from gJ
√
J(J + 1), rather they are close to “spin-only” 2

√
S(S + 1). That looks as if L = 0 and the phenomenon
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Fig. 2.8 (a) Crystal structure of K2NiF4, in which Ni ion has an octahedron coordination. (b) Crystal structure
of Cs2CuCl4, in which Cu ion has a tetrahedron coordination. (c) Schematic view of octahedron coordination. (d)
Schematic view of tetrahedron coordination.

is called “quenching of orbital angular moment.” In 3d electron systems, the difference from the LS-coupling is so large

that it is also difficult to explain with j-j coupling.

As mentioned above, the 4f electron system is relatively inside the atomic structure even though the shell is open, the

influence of the surroundings is small, and the approximation of the lone electron system is relatively small. Accordingly,

it is indicated that the breakdown of LS-coupling approach in 3d electron systems is considered to be due to the effect of

HCF. Therefore, next, let us consider incorporating the influence of the crystal field from the beginning.

2.7 Magnetic ions in crystal fields

Magnetic atoms (atoms of open electron shells) exist as positive ions in many insulators with strong paramagnetism.

Such ions are surrounded by negative ions. An example in Fig. 2.8(a) is K2NiF4, in which structure Ni ion is surrounded

by F ions in octahedron coordination. Figure 2.8(c) shows a schematic view. As annotated, the surrounding ions or

molecules are called ligand. Another example in (b) is Cs2CuCl4, in which structure Cu ion is surrounded in tetrahedron

coordination. These two are the representative coordination.

2.7.1 Level splitting by octahedron coordination

Let us consider the octahedron coordination in Fig. 2.8(c) in a simplest way. We take the coordinate origin at the ion,

and ligand ions are at (±R, 0, 0), (0,±R, 0), (0, 0,±R). The vectors pointing them are written as Ri = (R, θi, φi) and

the potential generated by the ligands is written as

vc(r) =
∑
i

Zie
2

|r −Ri|
=
∑
i

Ze2√
r2 +R2 − 2Rr cosωi

. (2.56)
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Here we take CGSesu for the simpler form of Coulomb potential. In the polar coordinate, (θi, φi) are

(π/2, 0), (π/2, π/2), (0, 0), (π/2, π), (π/2, 3π/2), (π, 0) (2.57)

for i = 1 ∼ 6.

We assume that the averaged distance of 3d electrons from the nucleus is sufficiently shorter than R. Then vc can be

expanded with r/R as

vc(r) =
∑
i

Ze2

R

∞∑
k=0

( r
R

)k
Pk(cosωi), (2.58)

where Pk(cosωi) are Legendre functions defined as

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)]. (2.59)

Apparently these are the expansion coefficients of

1√
1− 2xt+ t2

=

∞∑
n=0

Pn(x)t
n. (2.60)

From an identity of spherical harmonic function Ykm(θ, φ),

Pk(cosωi) =
4π

2k + 1

k∑
m=−k

Ykm(θ, φ)Y ∗
km(θi, φi). (2.61)

Note ωi is a function of r. This results in dropping of i from the argument in the first Ykm. Here we define two functions:

Tkm ≡
√

4π

2k + 1

Ze2

Rk+1

∑
i

Ykm(θi, φi), Ckm ≡
√

4π

2k + 1
Ykm(θ, φ), (2.62)

with which vc(r) is written as

vc(r)

∞∑
k=0

k∑
m=−k

rkTkmCkm(θ, φ). (2.63)

From the symmetry of positions (2.57), Tkm = 0 for odd m. Others are

Tk0 =

√
2

2k + 1

Ze2

Rk+1

[
Θk0(0) + 4Θk0

(π
2

)
+Θk0(π)

]
, (2.64a)

Tkm =

√
8

2k + 1

Ze2

Rk+1
Θkm

(π
2

)(
1 + cos

mπ

2

)
(m: even), (2.64b)

where Θ(θ)km are defined as
Ykm(θ, φ) = Θkm(θ)eimφ. (2.65)

From the form of Θ(θ)km, Tkm’s are also zero for odd k.

From above, we reach the expression to the fourth order of k:

vc(r) =
6Ze2

R
+

2

5
Der4

[
C40(θ, φ) +

√
5

14
(C44(θ, φ) + C4−4(θ, φ))

]
, (2.66)

where
D =

35Ze

4R5
. (2.67)

Let vcb(r) be the potential without the energy shift term (the first term in eq. (2.66)). We also restore vcb(r) into the

expression in cartesian coordinate, then obtain

vcb(r) = eD

(
x4 + y4 + z4 − 3

5
r4
)
. (2.68)
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Appendix 3A: Isolated electron systems and point group

3A.1 Definition of group

When the operation ∗ is defined between any elements of a set A and the following conditions are satisfied, we call A

a “group” with respect to ∗.

1. ∀a1, a2 ∈ A {a1 ∗ a2 ∈ A} (closed for the operation *)

2. ∀a1. a2, a3 ∈ A {(a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3)} (associative law).

3. ∃E ∈ A {∀a1 ∈ A {a1E = Ea1 = a1}} (existence of unit element).

4. ∃a−1
1 ∈ A {∀a1 ∈ A {a1a−1

1 = a−1
1 a1 = E}} (existence of the inverse element)．

When elements ai, aj of a group A are written as ai = aaja
−1, where a is also an element of A, we say ai and aj are

conjugate to each other. Generally a group is classified into classes, which are sets of conjugate elements.

An element of a group ai has a corresponding square matrix D(ai) and the operation a ∗ b = c is projected to

D(a)D(b) = D(c). We call D(ai) as a representation of group A. There are infinite number of representations. When

a square matrix S transfers as D′(ai) = S−1D(ai)S, we call D′(ai) an equivalent representation to D(ai). The direct

sum of D(1) and D(2) is defined as

∀ai : D(ai) =

(
D(1)(ai) 0

0 D(2)(ai)

)
,

which is expressed as D = D(1) ⊕ D(2). The above is summarized as “D is reduced to D(1) and D(2) by equivalent

conversion with S.” Expressions that cannot be further reduced are called irreducible expressions. Expression of an

element a can be written as Dij(a) = ⟨χi|a|χj⟩ by using a basis |χi⟩ of expression. Equivalent conversion matrix S is a

basis transformation matrix. When a is an operator, the matrix representation with basis |χi⟩ is χ-expression of a.

3A.2 Symmetry operations of point group

A set of symmetry operations around a point in space is called a point group.
E : Identical operation

Cn : Rotation of 2π/n

C ′
2 : π rotation around two-fold axis perpendicular to the principal axis. Written as C ′

2 or U2 and called

Umklappung.
I : Space inversion (r → −r)

σ : Mirroring

ICn : Circumference. Space inversion after rotation of 2π/n.

Sn : Improper rotation. Mirroring after rotation of 2π/n.

(Continue to next time)

Appendix 3B: Clebsch-Gordan coefficient

Students must have learned about coupling of angular momentum in elementary quantum mechanics. But here we

have a short review. Even in classical mechanics, additive quantities should be summed up in the coupled system. In the

case of angular momentum, they should be summed up as vectors. In quantum mechanics, the operator of total angular
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momentum is written as the sum of angular momentum operators. However in quantum mechanics, due to the directional

quantization, eigenfunctions and eigenvalues are not the sums of each eigenfunction and eigenvalue.

3B.1 General treatment

Let ĵ1, ĵ2 be independent angular momentums, and consider simultaneous eigenstates |j2i ,mi of operators ĵ21 , ĵiz
(i = 1, 2). We write a wavefunction of the coupled system as

ψ = |j21 ,m1⟩|j22 ,m2⟩. (3B.1)

The total angular momentum Ĵ of the coupled system is

Ĵ = ĵ1 + ĵ2. (3B.2)

However, ψ in eq. (3B.1) is not an eigenstate of, e.g., Ĵ2 apparently. From the independence of ĵ1, ĵ2 (thus they

commute each other), and from the general properties of angular momentum, [Ĵ2, Ĵz], [ĵ21 , ĵ
2
2 ] are apparently zero, and

the following commutation relation can be proven.

[Ĵ2, ĵ2α] = [Ĵz, ĵ
2
α] = 0. (3B.3)

Simultaneous eigenstates of Ĵ2, Ĵz , ĵ21 , ĵ22 can be obtained from basis transformation from eq. (3B.1) as

|J2,M, j21 , j
2
2⟩ =

j1∑
m1=−j1

j2∑
m2=−j2

CJM
j1m1j2m2

|j21 ,m1⟩|j22 ,m2⟩, (3B.4)

where CJM
j1m1j2m2

are called Clebsch–Gordan coefficients.

3B.2 Coupling of two spins

For general way to find CJM
j1m1j2m2

, refer to textbooks. Instead we obtain them for the simplest case of j1 = j2 = 1/2,

namely two spins. We take ŝi (i = 1, 2) for the two spin operators and write the total spin operator as

Ŝ = ŝ1 + ŝ2. (3B.5)

Because ŝ1 commutes with ŝ2,
Ŝ2 = ŝ21 + 2ŝ1 · ŝ2 + ŝ22, Ŝz = ŝ1z + ŝ2z. (3B.6)

First, for Ŝz we see

Ŝz

(
| ↑1⟩| ↑2⟩ | ↑1⟩| ↓2⟩
| ↓2⟩| ↑2⟩ | ↓1⟩ ↓2⟩

)
=

(
| ↑1⟩| ↑2⟩ 0

0 −| ↓1⟩| ↓2⟩

)
. (3B.7)

Therefore the eigenvalues of Ŝz are ±1, 0 with two-fold degeneracy. The “size” of S, S is then 0 or 1. Next, generally

for the operator ŝ of spin 1/2

ŝ2 = ŝ2x + ŝ2y + ŝ20 =
3

4

(
1 0
0 1

)
(3B.8)

holds. In Ŝ2 ŝ21 + ŝ22 are 3/2

ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2ŝ1 · ŝ2, Residual ŝ1 · ŝ2 are calculated as follows. For simplicity we use expression

| ↑1⟩| ↓2⟩ = | ↑↓⟩.

ŝ1 · ŝ2
(
| ↑↑⟩ | ↑↓⟩
| ↓↑⟩ | ↓↓⟩

)
=

1

4

(
.| ↑↑⟩ −| ↑↓⟩+ 2| ↓↑⟩

2| ↑↓⟩ − | ↓↑⟩ | ↓↓⟩

)
.
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Because neither| ↑↓⟩ nor | ↓⟩| ↑⟩ is not eigenstates, this part should be diagonalized by transformation. The results are

simply

χ± ≡ | ↑↓⟩ ± | ↓↑⟩. (3B.9)

This is easily confirmed as

ŝ1 · ŝ2χ+ = (1/4)χ+, ŝ1 · ŝ2χ− = (3/4)χ−. (3B.10)

From the above, the eigenvalues of Ŝ2 are 0, 2, the eigenfunctions are

|1,−1⟩ = | ↓↓⟩, |1, 0⟩ = 1√
2
(| ↑↓⟩+ | ↓↑⟩), |1, 1⟩ = | ↑↑⟩,

|0, 0⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩)

. (3B.11)

Here we use S as index, not S(S + 1). The state of S = 1 is called spin triplet state, S = 0 is called spin singlet state.

Then we obtain follows as Clebsch-Gordan coefficient in eq. (3B.4),

C11
1/2,1/2,1/2,1/2 = C1−1

1/2,−1/2,1/2,−1/2 = 1,

C10
1/2,1/2,1/2,−1/2 = C10

1/2,−1/2,1/2,1/2 = C00
1/2,1/2,1/2,−1/2 = 1/

√
2,

C00
1/2,−1/2,1/2,1/2 = −1/

√
2.
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