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Let us continue the discussion of octahedral ligand filed. We begin with the cartesian coordinate expression of the

potential.

vcb(r) = eD

(
x4 + y4 + z4 − 3

5
r4.

)
(2.68)

In eq. (2.1), the above potential should be HCF, which now has more priority than HSOI for present. First we consider

the single-electron problem in the central force plus octahedral potential. Since our problem is on the 3d electrons in an

open shell, we restrict ourselves to the space generated on the basis of d-orbital wavefunctions. Also it can be known

from the group theory, that will be introduced afterwards, the potential in (2.68) does not split s and p orbitals, as can be

easily guessed by considering the symmetry of px,y,z .

In order to diagonalize this potential within d-orbitals (l = 2) ϕnlm: (n, l,m) = (n, 2,m = 2, 1, 0,−1,−2), in an

orthodox way, we write down the secular equation and then obtain the eigenvalues and the eigenvectors[1]. But here, we

deduce the functional forms of diagonalization basis functions from a simpler thought[2]. The radial part is common for

d-orbitals (rather for principal quantum number n). The parts of spherical harmonic functions are

Y20(θ, φ) =

√
5

16π
(3 cos2 θ − 1), (2.69a)

Y2±1(θ, φ) = ∓
√

15

8π
cos θ sin θe±iφ, (2.69b)

Y2±2(θ, φ) =

√
15

32π
sin2 θe±2iφ. (2.69c)

This directional dependences in cartesian coordinate are quadratic in (x, y, z) as r cos θ = z, r sin θ cosφ = x,

r sin θ sinφ = y. Since the non-spherical part in the potential (2.68) is given as an even function of (x, y, z), off-

diagonal elements of the matrix representation on the (partial) basis of the quadratic functions yz, zx, xy are zero by

integrating out the odd functions. Residual quadratics are x2, y2, z2. For vanishing off-diagonal terms in the matrix

representation for x4 + y4 + z4, we need to take differences between (x2, y2, z2). Possible independent candidates are

x2 − z2, y2 − z2 though they are not orthogonal. Hence with orthogonalization we reach 3z2 − r2, x2 − y2.

These directional dependencies can be obtained in the linear combination of eq. (2.69) as

ϕξ =
i√
2
(ϕn21 + ϕn2−1) =

√
15

4π

yz

r2
Rn2(r), (2.70a)

Fig. 2.9 Eigenstates of d-electron in an octahedral ligand field (eq. (2.70)). The surfaces of (absolute value of
wavefunction)=(constant) are drawn with shading.
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Fig. 2.10 Level splitting of d-orbital by an octahedral lig-
and potential. D, q are defined in eq. (2.67) and eq. (2.71)
respectively. The uniform increase of levels by the constant
term is also drawn.

ϕη = − 1√
2
(ϕn21 − ϕn2−1) =

√
15

4π

zx

r2
Rn2(r), (2.70b)

ϕζ = − i√
2
(ϕn22 − ϕn2−2) =

√
15

4π

xy

r2
Rn2(r). (2.70c)

And

ϕu = ϕ320 =

√
5

16π

3z2 − r2

r2
Rn2(r), (2.70d)

ϕv = − 1√
2
(ϕ322 + ϕ32−2) =

√
5

16π

x2 − y2

r2
Rn2(r). (2.70e)

The “shapes” of these wavefunctions are expressed in Fig. 2.9 as shaded surfaces of (absolute value of direction-dependent

part in the wavefunction)=(a constant).

We restrict ourselves to 3d electrons. Let q be

q =
2e

105
⟨r4⟩ = 2e

105

∫
|R32(r)|2r4(r2dr), (2.71)

and the group of three wavefunctions ϕξ, ϕη , ϕζ and the group of two wavefunctions ϕu, ϕv have the eigen energies

ϵ1 = −4Dq, ϵ2 = 6Dq (2.72)

respectively. The states corresponding to ϵ1 and ϵ2 are called T2g , Eg respectively named after the point groups. The

single-electron orbitals belonging to those are called t2g (or dϵ) orbital and eg (or dγ) orbital. The level splitting of

d-orbital is illustrated in Fig. 2.10. The shift between t2g and eg is roughly explained from the shapes of wavefunctions

drawn in Fig. 2.9 as follows. The three orbitals of t2g have zero amplitude when one of (x, y, z) is zero, avoiding the

positions of ligands, hence decrease the Coulomb energy. On the other hand, eg orbitals elongate to the directions of

ligand, enhancing the Coulomb energy.

The angular moments of these orbitals are zero. For example, ⟨ϕζ |lz|ϕζ⟩ gets +2 from ϕ322, −2 from ϕ32−2, and

the total is zero. Similarly ⟨l2⟩ = 0. This is the result of linear combination, in which the sum of the orbital angular

momentum vanishes. In other words, the eigenstates are the standing waves for the octahedral potential, naturally have

zero angular momentum. Very important conclusion of this analysis is that the result explains the experimental results in

Tab. 2.4, in which the effective number of Bohr magneton appears to be as if the orbital angular moment vanishes.

2.7.2 Ground states of multiple electrons

Next we should consider the electron configuration in these t2g , eg orbitals along with the Hund’s rule. Here we need to

compare the crystal (ligand) field splitting 10Dq and the energy gain of the exchange integral (eq. (2.20c)) by following
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Fig. 2.11 Two possible electron accommodations of t2g and eg orbitals. There are high-spin states and low-spin
states for electron numbers more than n = 4.

the Hund’s rule. When the former surpasses the latter, the configuration of more accommodation in t2g orbital with lower

total spin is favored. Such a multiple-electron state is called low-spin state.

Figure 2.11 shows possible spin configurations (high- and low-spin states) for n = 4 ∼ 7. For n = 8, 9, t2g orbitals

are fully occupied, and there is a single possible configuration. In the example of an iron ion Fe2+ in a hemoglobin,

the existence of two possible (high, low) spin states brings about a dramatic effect. Four nitrogen atoms of porphyrin

and imidazole nitrogen at the end of the globin protein polypeptide chain are coordinated to this iron ion, which is not a

regular octahedron coordination. However we still take t2g , eg orbitals as the basis since the splitting due to the further

lowering in the symmetry is not very large. When the complex structure does not have an oxygen atom, namely a five

coordination state, the electrons are in a high-spin state (t42ge
2
g) while under the coordination of an oxygen atom (one of

two in a molecule), the splitting 10Dq between t2g-eg becomes larger and the state transits to the low-spin state t62g . The

transition can be detected by, e.g., the electron spin resonance.

The ground state of t2g or eg still has 3-fold or 2-fold degen-

eracy. When the octahedral structure gets a distortion along

z-axis, the degeneracy is lifted and generally the energy of

ground state lowered. Hence when the energy lowering of the

ground state surpasses the energy increase due to the lattice

distortion, the lattice-distorted state is favored and the sym-

metry lowered. This phenomenon is called the Jahn-Teller
effect and observed, e.g., in CuSiF66H2O salt. Or in some

cases, the crystal field effect is coupled to the lattice vibra-

tion yielding the effect called dynamic or vibronic Jahn-Teller

effect.

2.7.3 Van Vleck paramagnetism

In the above, on the paramagnetism of 3d transition metals and 4f lanthanoid, we have seen that, the former can be

understood by considering the effect of ligand field while the latter can be fairly understood by considering the SOI via

LS coupling (or j-j coupling) approach. However we still have a problem in the latter. As we see in Tab. 2.5, there are

big discrepancies between the theory and the experiment for Eu3+, Sm3+. The problem was theoretically solved by Van

Vleck, and the phenomenon is called Van Vleck paramagnetism. The above figure is from the Nobel lecture[3] given by
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Van Vleck, which demonstrates that his theory quantitatively explains the discrepancies in the simple theory.

Let us see how the theory works in the case of Eu3+. The electron configuration is 4f6, the electron number is less

than 2l+ 1 = 7, then we see the coefficient of L ·S is positive from eq. (2.38). Namely L and S couple as anti-parallel.

The ground state is 7F0, which means J = 0. In the excited states, possible total angular momenta are J = 1, 2, · · · , 6.

From eqs. (2.38),(2.41),

HSOI = λL · S =
λ

2
[J(J + 1)− S(S + 1)− L(L+ 1)]. (2.73)

The splitting width of LS-multiplet (L, S are fixed, J is the index of split states) is

∆ELS = ELS(J)− ELS(J − 1) = λJ. (2.74)

The energy difference between the ground state with J = 0 and the first excited state with J −1 is λ, which is as small as

200∼300 K. Hence even at low temperatures, when there is a finite external magnetic field, the term HSOI causes mixing

of the state J = 1 with the J = 0 ground state, which gives rise to a finite magnetic moment.

2.8 Symmetry and degeneracy of quantum states

In the above we have solved a specific problem of d-electrons in an octahedral potential. In more general treatment,

we should apply regular perturbation theory. However, the thoughts from the symmetry of the system is very helpful

in the calculation since we can largely decrease the amount of calculation[4]. The symmetry of a system is defined by

symmetry operations. A symmetry operation is a transformation in a space of some degrees of freedom. Examples

are rotations, parallel transformations, mirror reflections, etc. in the coordinate space. When a system is invariant under

a symmetry operation, the system has the symmetry for the operation. The total symmetry of a system is defined as a

set of symmetries possessed by the system. In the following we will have a short look at a general method to know the

degeneracy of quantum states from the symmetry of the system.

2.8.1 Symmetry operations in point groups

We use group theory for such discussions. In Appendix 3A, we have seen that symmetry operations constitute a group,

an element of which has a corresponding matrix of representation. Thus the symmetry of a system can be specified by

the corresponding group. The symmetry groups that have correspondence to spatially localized systems are called point
groups. Particularly in crystals, the constraint of discrete translational symmetry restricts the number of possible point

groups called “crystal point groups” to 32 listed in Tab. 2.6.

We won’t go deep into mathematics though the group theoretical knowledges of symmetry operation are indispensable

for the researchers of crystallography, symmetry-sensitive properties like multi-ferroics. Embarrassing in symmetry

group theories is that similar symbols are

The problem with handling a group of symmetric operations is that they are all confusing with similar symbols to

various concepts, and the symbols are different and more confusing depending on the style of the mathematicians. In

physics, Schönflies and Mulliken symbols have been used, and we also follow that here but recently “international

standard” symbols are also frequently used. At present I cannot find the way to describe the expressions in a beautifully

organized manner.

When a set of functions Aφ = {φ1, φ2, · · · } is transformed back to itself by a symmetry operation R, that is, A
R−→

A ′
φ = {φ′

1, φ
′
2, · · · } = A , A can be a representation basis of R and the corresponding matrix is given as

Dij(R) = ⟨φi|R|φj⟩ . (2.75)
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system Schönflies Hermann-Mauguin symbol examples

symbol full abbreviated

triclinic C1 1 1

Ci, (S2) 1̄ 1̄ Al2SiO5

monoclinic C1h, (S1) m m KNO2

C2 2 2

C2h 2/m 2/m

orthorhombic C2v 2mm mm

D2, (V ) 222 222

D2h, (Vh) 2/m2/m2/m mmm I, Ga

tetragonal C4 4 4

S4 4 4

C4h 4/m 4/m CaWO4

D2d, (Vd) 4̄2m 4̄2m

C4v 4mm 4mm

D4 422 42

D4h 4/m2/m2/m 4/mmm TiO2, In, β-Sn

rhombohedral C3 3 3 AsI3

C3, (S6) 3 3 FeTiO3

C3v 3m 3m

D3 32 32 Se

D3d 32/m 3m Bi, As, Sb, Al2O3

hexagonal C3h, (S3) 6 6

C6 6 6

C6h 6/m 6/m

D3h 62m 62m

C6v 6mm 6mm ZnO, NiAs

D6 622 62 CeF3

D6h 6/m2/m2/m 6/mmm Mg, Zn, graphite

cubic T 23 23 NaClO3

Th 2/m3 m3 FeS2

Td 43m 43m ZnS

O 432 43 β-Mn

Oh 4/m32/m m3m NaCl, diamond, Cu

icosahedral C5 5 5

C5i, (S10) 10 10

C5v 5m 5m

C5h, S5 5 5

D5 52 52

D5d 52/m 5/m C80

D5h 10̄2/m 10̄2/m C70

I 532 532

Ih C60

Tab. 2.6 Crystal sys-
tems, Schönflies symbols,
Hermann-Mauguin symbols
and examples of materials
of 32 crystal point groups.
From Ref. [4].
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Symmetry operation Rotation axis Number of operation

E Identical transformation 1

C4 π/2 rotation around 4-fold axis x, y, z 3

C2 = C2
4 π rotation around 4-fold axis x, y, z 3

C3
4 3π/2 rotation around 4-fold axis x, y, z 3

C2 π rotation around 2-fold axis (0,1,1), (1,0,1), (1,1,0) 6

(0,1,−1), (−1,0,1), (1,−1,0)

C3 2π/3 rotation around 3-fold axis (1,1,1), (1,1,−1), (1,−1,1), (−1,1,1) 4

C2
3 4π/3 rotation around 3-fold axis (1,1,1), (1,1,−1), (1,−1,1), (−1,1,1) 4

Tab. 2.7 Symmetry operations octahedral group (O group).

Here, if D(R) can get further block diagonalization by unitary matrix S (i.e., replacement of basis) as

SD(R)S−1 =

D1(R) 0
D2(R)

0
. . .

 , (2.76)

D(R) is reducible and can be expressed as a direct summation of D1(R), D2(R), · · · as

D(R) = D1(R)⊕D2(R)⊕ · · · . (2.77)

On the other hand, if such block diagonalization is impossible, the representation is irreducible. Expression of a reducible

representation as a direct summation of irreducible representations, is called reduction.

Irreducible or reducible namely the possibility of block diagonalization cannot be judged from the simple diagonaliz-

ability of matrix. Often adopted is the use of character table. Character of representation is the trace of representation

matrix, which is invariant for the changing of basis. Hence a character for reducible representation is the sum of charac-

ters for irreducible representations in the direct summation. From this the reduced form in the direct summation can be

deduced.

Table 2.7 lists the symmetry operations that keep an octahedral system invariant. Those operations constitute a group

called octahedral group, of which the symbol is O. As in Tab. 2.6, it belongs to the cubic symmetry. The octahedral

complex systems with magnetic ions also have the space-inversion symmetry in addition to O. Hence to be strict, we

need to consider Oh group. Although here for simplicity we consider O group and it is known that the level-splitting

behavior is the same for Oh. Group O has 24 symmetry operations as the elements as listed in this table.

O E 8C3 3C2 = 3C2
4 6C ′

2 6C4

Γl=0 A1 1 1 1 1 1

Γl=1 T1 3 0 −1 −1 1

Γl=2 E + T2 5 −1 1 1 −1

Γl=3 A2 + T1 + T2 7 1 −1 −1 −1

Γl=4 A1 + E + T1 + T2 9 0 1 1 1

Γl=5 E + 2T1 + T2 11 −1 −1 −1 1

Γ1 A1 1 1 1 1 1

Γ2 A2 1 1 1 −1 −1

Γ12 E 2 −1 2 0 0

Γ ′
15 T1 3 0 −1 −1 1

Γ ′
25 T2 3 0 −1 1 −1

Tab. 2.8 Symmetry operations in
group O (topmost low), and characters.
The representations in the upper low are
on bases of eigenfunctions of orbital an-
gular momentum. Those in the lower low
display irreducible representations.
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Next we consider the representations of these symmetry operations. A simple choice of representation basis is the

eigenfunctions in a system of a spherical potential. They can have the orbital angular momentum as the quantum number,

namely s, p, d, f, · · · . The representations based on them are listed in the upper band in Tab. 2.8. The symbols Γl=0 ∼
Γl=5 are the representations on the orbital angular momentum l. However they are not generally irreducible. The symbols

of irreducible representations are named in the following way. A, E, T are for 1, 2, and 3-dimensional representations.

The suffices do not have strict rule, being numbered starting from O group. In the table, the irreducible representations

A1, A2, E, T1, T2 of group O and the characters are listed in the lower band. From the comparison of these characters,

we know that Γl=0, Γl=1 are irreducible. This fact indicates that s and p orbitals do not split in an octahedral potential.

For l ≥ 2, Γl are reduced as indicated in the table. When we consider the split of d-orbital, we added suffix g as T2g and

Eg . Actually we need to consider group Oh including the space-inversion operation i. The symmetry operations are the

direct product with i and the number of i operations brings the difference between even number (gerade, g in Germany)

and odd number (ungerade, u). The irreducible representation also needs the suffix of g (even).

2.8.2 Symmetry operation and degeneracy

Let R be one of such symmetry operation and a function φ transform as

φ′ = Rφ. (2.78)

Assume an operator O is transformed by R to O ′, then the operation of O ′ on the transformed function Rφ should be the

result of operation R on the O-operated original φ. Therefore

O ′Rφ = ROφ = ROR−1Rφ.

That is, O is transformed to ROR−1. Now assume H is invariant for the symmetry operation R.

RH R−1 = H , ∴ [R,H ] = 0. (2.79)

Let ϕ an eigenfunction of H with an eigenvalue of E, that is H ϕ = Eϕ. Then

H Rϕ = RH R−1Rϕ = REϕ = ERϕ, (2.80)

which indicates that ϕ′ = Rϕ is an eigenstate of H with the same eigenvalue E. If ϕ and ϕ′ are independent to each

other, they are degenerate eigenfunctions. This degeneracy is based on the symmetry of the system. Other kinds of

degeneracy is called “accidental” and usually lifted by some factors in real systems.

Fig. 2.12 Level splitting of 5-fold l = 2 states in various symmetries expressed by crystal point groups. The numbers
attached to the levels indicate the degree of degeneracy. From Ref. [4].
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Let {ϕi} be eigenfunctions with degree of degeneracy d with eigenvalue E of H . The representation matrix of R in

this space is given by
Dij(R) = ⟨ϕi|R|ϕj⟩ . (2.81)

That is,

Rϕν =

d∑
µ=1

Dµν(R)ϕµ. (2.82)

Here D(R) must be irreducible. Otherwise, e.g., assume D(R) is block diagonalized as

D(R) = D1(R)⊕D2(R) =

(
D1(R) 0

0 D2(R)

)
.

Then the basis is transformed by the transformation matrix for the reduction as {ϕi} → {χi}. We can thus divide the

basis {ϕi} into {ϕ(1)
i } and {ϕ(2)

i } which belong to D1(R) and D2(R) respectively. They are not transformed to each

other by symmetry operation, hence the degeneracy is accidental.

From the above discussion and by the character tables of irreducible representation, we can deduce how the degenerate

states under consideration split when the symmetry of the system changes. Further we can know the shape of wavefunc-

tion from the basis of representation, hence infer the order of energy levels. Thus obtained level splitting of d-orbitals in

various ligand field potentials is illustrated in Fig. 2.12.

2.9 Experiments and applications of localized spins

We have studied magnetic atoms or ions, which have large localized magnetic moments based on the measurement of

magnetic susceptibility and the crystal structures. Here we have a look at fundamentals of magnetic resonance – a very

important experimental method for magnetism. As an application of paramagnetic salt, we have short visit to magnetic

refrigeration.

2.9.1 Magnetic resonance

In Sec. 2.1.2, we have mentioned that the magnetic moment tilted in a static magnetic field causes Larmor precession.

In the method of magnetic resonance (MR), by applying an oscillating magnetic field at the Larmor frequency and

by observing the resonance, we obtain not only the information of the magnetic moment itself, but also that of the

environment surrounding the moment. It is needless to say the academic and social importance.

Let J be the total angular momentum of an isolated electron system. The Zeeman term in a static magnetic field B0

along z axis is given by
H1 = gJµBJ ·B0, (2.47)

which is just the same as eq. (2.47). Heisenberg equation of motion is written as

dJ

dt
=

i

ℏ
[gJµBJ ·B0,J ], (2.83)

to which the commutation relation

JyJz − JzJy = iJx, JzJx − JxJz = iJy, JxJy − JyJx = iJz (2.84)

is applied to obtain
dJ

dt
=

gJµB

ℏ
B0 × J . (2.85)
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Fig. 2.13 Left: Precession of angular momentum J around the in-plane magnetic field B1/2 on the rotating coor-
dinate. Right: Illustration of the total motion tracing the end-point of J from the static coordinate. Under realistic
conditions, the rotation around z-axis is much faster.

This expresses the precession with Larmor frequency

ωL = gJ
eB0

2m
. (2.86)

Now if we observe this precession from the coordinate rotating around z-axis with frequency ωL, the precession is

canceled out and the momentum looks as if it sits still. Namely in this coordinate, the effect of static field along z axis

vanishes and virtually zero-field state is realized.

An oscillation magnetic field B(t) = B1 cos(ωt) (on the non-rotating coordinate) perpendicular to the static field B0

can be written as the sum of rotating field as

B(t) =
B1

2
[exp(iωt) + exp(−iωt)]. (2.87)

When ω ≈ ωL, from the rotating coordinate the ω-component almost sits still while the −ω-component is rotating with

2ω. We take rotating wave approximation, in which the latter is ignored. Now on the rotating coordinate, a static field

of B1/2 is applied in xy-plane and the angular momentum starts precession around this field with frequency

ω1 = gJ
eB1

4m
. (2.88)

This is the basic process of magnetic resonance.

Figure 2.13 illustrates the motion of angular momentum under a magnetic resonance, in which the end-point draws a

spiral. Note that under realistic conditions, the rotation around z-axis is much faster.
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[2] Joachim Stöhr and Hans Christoph Siegmann. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer

Series in Solid-State Sciences, 152). Springer, 9 2006.

[3] J. H. Van Vleck. Quantum mechanics: The key to understanding magnetism. Science, Vol. 201, No. 4351, pp.

113–120, July 1978.

[4] Mildred S. S. Dresselhaus. Group Theory: Application to the Physics of Condensed Matter. Springer, 10 2010.

E04-9


	Ground states of multiple electrons
	Van Vleck paramagnetism
	Symmetry and degeneracy of quantum states
	Symmetry operations in point groups
	Symmetry operation and degeneracy

	Experiments and applications of localized spins
	Magnetic resonance


