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In the last lecture, for magnetic resonance, we introduced the concept of ”observation from rotating coordinates” . The

time evolution of the angular momentum was treated in the Heisenberg picture, and the results were the same as that

obtained in the classical picture as in eq. (2.83). Then in the following, for simplicity, we consider classical equations of

motion for macroscopic magnetic moment M and introduce energy and phase relaxations phenomenologically[1].

dMz

dt
= γ[M ×H]z +

M0 −Mz

T1
, (2.89a)

dMx,y

dt
= γ[M ×H]x,y −

Mx,y

T2
. (2.89b)

T1, T2 are longitudinal and transverse relaxation times respectively, or energy and phase relaxation times. We here use H

instead of B to avoid confusion due to the existence of M though the use of B is not the problem at all. The definition

of gyromagnetic ratio should be changed from eq. (2.14) so as to have consistent dimension. We consider a static field

H0 along z and a rotating field H1/2 in xy-plane with an angular frequency (−)ω. The total field is

H = (
H1

2
cosωt,−H1

2
sinωt,H0). (2.90)

The magnetic moment derived from the angular momentum gets minus sign due to the sign of electric charge (eq. (1.80)).

Hence the rotation is clockwise for positive magnetic moment M . The equations of motion are thus,

dMx

dt
= γ[MyH0 +Mz

H1

2
sinωt]− Mx

T2
, (2.91a)

dMy

dt
= γ[Mz

H1

2
cosωt−MxH0]−

My

T2
, (2.91b)

dMz

dt
= γ[−MxH1 sinωt−My

H1

2
cosωt] +

M0 −Mz

T1
. (2.91c)

Fig. 2.14 The plot of eq. (2.96). The
real part (χ′(ω), blue line) and the imag-
inary part (χ′′(ω), red line) of the com-
plex susceptibility around a magnetic
resonance in the presence of relaxations.
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Fig. 2.15 Typical setup of electron
paramagnetic resonance (electron spin
resonance) experiment.The circle mark
with numbering indicates a circulator of
microwave. A microwave enters via ter-
minal 1 through 2 to the cavity with a
sample and the reflected wave propagates
through 3 to a diode. The detected sig-
nal is sent to a phase sensitive detector
(PSD). From [2].

We introduce the coordinate system (x′, y′, z′) (z′ = z) rotating around z-axis clockwise with angular frequency ω to

obtain

Mx′ =Mx cosωt−My sinωt, (2.92a)
My′ =Mx sinωt+My cosωt. (2.92b)

By using eq. (2.92), we rewrite eq. (2.91) into the kinetic equations of (Mx′ ,My′ ,Mz). Under the conditions:

dMx′

dt
=
dMy′

dt
= 0 (stationary state),

Mz ≃M0 = χ0H0 (oblique angle is small),
(2.93)

we obtain the following solutions.

Mx′ = χ0ω0T2
(ω0 − ω)T2H1/2

1 + (ω0 − ω)2T 2
2 + γ2(H1/2)2T1T2

(2.94a)

My′ = χ0ω0T2
H1/2

1 + (ω0 − ω)2T 2
2 + γ2(H1/2)2T1T2

. (2.94b)

ω0 is Larmor frequency ωL in eq. (2.86) with B = µ0H0.

The solution expresses a state with a comparatively large relaxation, thus the moment gets large friction in rotation

around H1. Hence the stationary state has a small angle to z-axis. From the rest system,

Mx = χ′(ω)H1 cosωt+ χ′′(ω)H1 sinωt, (2.95a)

My = −χ′(ω)H1 sinωt+ χ′′(ω)H1 cosωt. (2.95b)

In case γ2H2
1T1T2 ≪ 1 (large relaxation), the real and imaginary parts of the susceptibility are given by

χ′(ω) =
χ0ω0

2
T2

(ω0 − ω)T2
1 + (ω0 − ω)2T 2

2

, (2.96a)

χ′′(ω) =
χ0ω0

2
T2

1

1 + (ω0 − ω)2T 2
2

, (2.96b)

respectively, that is χ = χ′ − iχ′′. They are plotted against ω0 − ω in Fig. 2.14.

In the experiments, the specimens are placed in coils or cavities of resonators and the variations of resonance charac-

teristics are detected. An increase in energy dissipation in a resonator results in a widening and lowering of the resonance

peak *1. Figure 2.15 illustrates a typical setup of experiments. A microwave enters via terminal 1 through 2 to the cavity

with a sample and the reflected wave propagates through 3 to a three port connection for interference and then to a de-

tector (diode). The signal is then sent to a phase sensitive detector (PSD). Variation of resonant frequency in microwave

cavity is not so easy in most cases, so usually it is fixed. The frequency of input microwave is tuned to the resonance.

*1 This can be understood, e.g, by inserting a resistor into an LC resonator circuit in a model for calculation.
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Instead, the Larmor frequency ωL in eq. (2.86) of the sample is swept by the external magnetic field. In eq. (2.96), this

corresponds to the variation of ω0, and anyway the resonance curve is obtained. ω0 in the coefficients of eq. (2.96) gives

the first order slow variation while the resonance generally has a sharp lineshape and the distortion due to the coefficient

is ignorable. The imaginary part in eq. (2.96), χ′(ω) (eq. (2.96b)) represents the energy dissipation, which shows a peak

structure as the red line in Fig. 2.14.

Coils for the field modulation is drawn in Fig. 2.15. In many experiments, field modulation with frequencies around

100 kHz is applied for improvement of signal to noise ratio by taking PSD signal. Such signals appear as frequency-

derivative of eq. (2.96b).

2.9.2 Hyperfine structures in electron paramagnetic resonance

Owing to the large magnetic moment of electrons, electron spin resonance (ESR)or electron paramagnetic resonance

(EPR)has high sensitivities among various magnetic resonance. Atomic wavefunctions of electron have finite amplitudes

in the neighbors of nucleuses. When a nucleus has a finite spin, the exchange interaction (which will be introduced later)

between the nuclear spin I and the electron total angular momentum J brings about hyperfine interaction, which can

be expressed as
HHF = AI · J . (2.97)

A is a parameter of the strength in the interaction. Since the Hamiltonian in eq. (2.97) has the same form as the spin-orbit

interaction eqs. (2.38), (2.39), we consider the total angular momentum F = I+J , and write the simultaneous eigenstate

of H, F 2, Fz as |F,MF ⟩. Then just as eq. (2.41), the eigenvalue of HHF is given by

HHF|F,MF ⟩ = A
F 2 − I2 − J2

2
|F,MF ⟩ = A

F (F + 1)− I(I + 1)− J(J + 1)

2
|F,MF ⟩. (2.98)

The naming of “hyperfine” interaction comes from the further splitting of absorption levels, that already split by HSOI.

We do not have enough time to go into very important field and I recommend the readers who have strong interest in this

field to refer to the journal “Hyperfine Interactions” *2 .

2.9.3 Electron paramagnetic resonance in paramagnetic salts

EPRs are flourishing in the paramagnetic salts that have 3d transition metals or 4f lanthanoids as sources of magnetic

moments. They have comparatively high moment densities (depending on the impurity concentrations), and importantly

they are insulating that allows high frequency electromagnetic wave to go into the bulk in the absence of the skin effect.

Here we introduce an example of analyzing EPR data. Because EPR not only is sensitive but also has high resolution

bringing rich information on the localized electronic states. For the actual analysis, we thus need a higher order approx-

imation. In the case of 3d transition metals, we have discussed that the effect of orbital angular moment disappears due

to the strong effect of ligand fields. Conversely, in 4f lanthanoid, we have given the priority to the spin-orbit interaction.

However, these are the first order approximation and in the next step, we need to consider the SOI in the former, and the

crystal field splitting in the latter. We skip the hyperfine interaction, which is not important for nucleus without spin, but

consideration of the SOI on crystal field split levels is indispensable. For that we introduce the concept of effective spin

Hamiltonian, which is common in this field. The effective spin Hamiltonian has no orbital operator but gives the same

answer as the original one, if we restrict the problem to the effect of the SOI on the orbital levels that diagonalize the

crystal field Hamiltonian[3].

*2 https://www.springer.com/journal/10751
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Let {φ0, φ1, · · · , } be an orbital basis that diagonalizes Horb = H0 + HCF, and in ket format |n⟩o. We write

the energy eigenvalues as o⟨n|Horb|n′⟩o = Enδnn′ , the total spin of the basis as S, the spin wavefunction as

{ϕ−2S , ϕ−2S+1, · · · , ϕ2S}, ket-expression |m⟩s.
The perturbation Hamiltonian of the SOI and the Zeeman effect is

H′ = λL · S + µB(L+ geS) ·H, (2.99)

where ge is g-factor of electron. We write a wavefunction in an expanded form as

Ψ =
∑
nm

anmφnϕm =
∑
nm

anm|n⟩o|m⟩s. (2.100)

Then the eigenvalue equation of the total Hamiltonian is

HΨ = (Horb +H′)Ψ = EΨ. (2.101)

Here e.g., the orbital part is integrated out in o⟨l|H′|n⟩o but this still has the spin part as operator(s). Then we define a

spin Hamiltonian as a second-order perturbation formula, in which the orbital part is integrated out. If the unperturbed

ground state has degeneracy, we change the basis according to the perturbation theory, but there should be no confusion

in using the symbols like |n⟩o. We also restrict the transition matrix elements to the ones with the ground state |0⟩o. Thus

we obtain *3

H̃ = o⟨0|H′|0⟩o +
∑
n ̸=0

o⟨0|H′|n⟩o o⟨n|H′|0⟩o
E0 − En

. (2.102)

The introduction of ligand field quenches the orbital angular momentum. Namely the diagonal terms vanish

o|0|L|0⟩o = 0 to give
o⟨0|H′|0⟩o = geµBS ·H. (2.103)

In the same way, from
o⟨0|H′|n⟩o = o|0|L|n⟩o · (λS + µBH), (2.104)

we obtain
H̃ = geµBS ·H − (λS + µBH)Λ(λS + µBH), (2.105)

where Λ is a tensor given by

Λij =
∑
n ̸=0

o ⟨0|Li|n⟩o o ⟨n|Lj |0⟩o
En − E0

(i, j = x, y, z). (2.106)

These elements are not necessarily zero and the effect of spin-orbit interaction appears in the second order perturbation.

The same view is given by considering that the vanishing expectation value of orbital angular momentum comes from the

way of superposition and the cancellation does not work for off-diagonal elements. Equation (2.105) is expanded as

H̃ = µBSge(1− λΛ)H − λ2SΛS − µ2
BHΛH. (2.107)

The first term is written in the Zeeman form as

g̃ = ge(1− λΛ). (2.108)

This is an expansion of g-factor to a tensor form. Taking the principal axes of the tensor to x, y, z, we can write the

second term in the following form.

−λ2SΛS = D

[
S2
z − S(S + 1)

3

]
+ E(S2

x − S2
y), (2.109)

*3 You may not be satisfied with this treatment. In that case refer to a tutorial review [4]. A textbook in Japanese [5] gives rigorous treatment based
on the projection operator method.
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Fig. 2.16 Level splitting of
Cr3+(3d3, S=3/2) in weak crys-
tal field approximation and Zeeman
splitting by external field. E=0 is
assumed. Expected three ESR peak
signals for microwave frequency ν

corresponding to the red arrows are
illustrated.

where Λ determines coefficients D and E in proportion to λ2, called axial and orthorhombic coefficients respectively *4．
The third term does not cause level-splitting being a small effect of orbital magnetic moment induced by external field.

With dropping this term we reach

H̃ = µBSg̃H +D

[
S2
z − S(S + 1)

3

]
+ E(S2

x − S2
y). (2.110)

As a simple example, let g̃ be isotropic, E = 0, and S = 3/2. The spin states active for EPR are four states of

Sz = ±1/2, ±3/2. At H = 0 they degenerate into two with the distance of 2|D| from eq. (2.110). Figure 2.16 illustrates

such situation. The LS multiplet (3d)3 is split as in the figure in weak field approximation given in App. 5A. The ground

Fig. 2.17 EPR spectra of BaTiO3 doped with
1% Cr3+ and Fe3+. Blue and red lines are data
for magnetic field parallel and perpendicular to c-
axis respectively. The data are offset for clarity.
Peaks (look like dissipation because of derivative
taking in experiment) assigned as a, b, and c cor-
respond to a, b, and c in Fig. 2.16. The microwave
is in X-band (9-10 GHz), for which the value is
not given. The annotations in blue letters indicate
absorptions of S =3/2 state in Cr3+, and S=1
state in Cr dimers. Those in black letters indicate
absorptions of S = 5/2 in Fe3+. From [6].

*4 Repeated usage of D or E for different quantities inevitably causes confusion. These jargons are commonly used in many research papers
and sometimes we find such symbols appear in a single diagram or table with different meanings. In this field we are often forced to express
complicated concepts with simple and clear symbols, and at present we find no other better way. The readers are requested to judge from the
context.
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Ion Crystal g |D| (cm−1) |E| (cm−1)

Fe3+ BaTiO3 2.000 0.022 0.0079

another report 2.003 0.0987

Cr3+ BaTiO3 1.975 0.046 0.0055

h-BaTiO3 H1 gz= 1.9797 0.105

H1 gx,y= 1.9857

H2 gz= 1.9736 0.3220

H2 gx,y= 1.9756

Tab. 2.9 Values of g, |D|, |E| for Fe3+

and Cr3+ in BaTiO3 obtained from EPR
lines in Fig. 2.17.

state is A2 (S = 3/2). The external field split the two into four as in the figure. With microwave of frequency ν

corresponding to the red arrows in the figure, absorptions at positions a, b, and c assuming equal populations of levels at

high-enough temperatures.

Cr3+ (d3, 4F ) often takes the states close to the above ideality. Figure 2.17 shows an EPR experiment on Cr3+, in

which they doped 1% Fe3+ and Cr3+ into cubic state of BaTiO3. Three main peaks corresponding to a, b, and c in

Fig. 2.16 are observed[6]. The lineshape did not change with the direction of magnetic field indicating that g̃ is isotropic

though finite E is deduced from the relative peak positions. The data indicate doped Cr3+ is in tetragonal state. The

absorption peaks for S = 1 are from Cr dimers. The parameters are shown in Tab. 2.9.

BaTiO3 also has hexiagonal phase h-BaTiO3. Cr3+ impurities in h-BaTiO3 show very different EPR absorption lines.

Even this spectrum can be explained by the spin Hamiltonian of eq. (2.110) with an anisotropic g̃ and parameters shown

in the table[7].

2.9.4 Magnetic refrigeration

Magnetic refrigeration (MR) is a cooling method that can exert cooling ability in a wide temperature range by selecting

a magnetic moment system (working substance) from room temperature to ultra-low temperature. The MR with para-

magnetic salt was once main player in creating very low temperature till 1960’s, then in the range from 0.01 to 1 K the

position was replaced by the dilution refrigerators[8]. On the other hand, below few mK, once Pomeranchuk cooling

was used, but then the main shifted to nuclear demagnetization.Even in regions other than low temperatures, the MR

are now used for various purposes. Exploration of cooling substances spans not only paramagnetic materials but also

Fig. 2.18 Concept of magnetic refrigeration. Left: Illustration of temperature variation of entropy in a magnetic
system in zero and finite magnetic fields. The green arrow indicates first isothermal application of magnetic field.
The brown arrow shows adiabatic demagnetization. The right figure illustrates evolution of spin distribution in the
sequence of isothermal field application and adiabatic demagnetization in a simple two-level spin system.
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Fig. 2.19 Entropy in eq. (2.113) is expressed as a
function of α for J = 1/2, 3/2, 5/2.

those have phase transitions caused by interactions between spins and magnetic field. In recent years, regardless of its

pros and cons, the possibility of liquefying and transporting hydrogen has been explored, and development research using

magnetic refrigeration for cooling is also being conducted[9].

The principle of MR is simple as follows. A free spin system has random directions in spin and the maximum entropy

at zero field. With the isothermal magnetization, the spins are aligned along the magnetic field by the Zeeman effect. The

process reduces the entropy. Hence a heat is discharged to the environment. Then during the adiabatic demagnetization,

the entropy is kept constant. In the spin distribution, there is no increase in the population to excited states in spite of

decrease in the distance between the ground and the excited states. This is a low temperature state. With connecting this

coolant to a material to be cooled, a heat is transferred from this material to the coolant. The process is summarized in

Fig. 2.18.

Let S be the entropy of system composed of paramagnetic ions with total angular momentum J . At zero field, S =

kBNA ln(2J + 1) for 1 mol. Let us write the variation in S with isothermal magnetization up to B as ∆S(B, Ti). Then

with the final temperature Tf after the adiabatic demagnetization, ∆S(B, Ti) is given by

∆S(B, Ti) = S(0, Ti)− S(B, Ti) =

∫ Ti

Tf

Cm

T
dT, Cm = T

(
∂S

∂T

)
B=0

. (2.111)

Cm is the specific heat at zero field.

The magnetization M and the entropy S are calculated just as eq. (1.25) as

M = NAgµB

[
2J + 1

2
coth

(
2J + 1

2
α

)
− 1

2
coth

α

2

]
, α ≡ gµBB

kBT
, (2.112)

S

NAkB
=
α

2
coth

α

2
− 2J + 1

2
α coth

[
2J + 1

2
α

]
+ ln

[
sinh[(2J + 1)α/2]

sinhα/2

]
. (2.113)

Figure 2.19 shows the results for J =1/2, 3/2, 5/2. Since α ≈ 1.344B (B in T) for g = 2, T =1 K, the most of entropy

in a free spin system at T=1 K can be removed by cycling of B =2 T.

The spins in paramagnetic salts maintain a relatively large entropy even at low temperatures where other degrees of

freedom are quenched, such as lattice vibration, so they are used to obtain extremely low temperatures based on low

temperatures. However, e.g., if we choose a material with a phase transition induced by magnetic field, a large decrease

in entropy is expected even at high temperatures. This can be understood by a Maxwell relation(
∂S

∂B

)
T

=

(
∂M

∂T

)
B

, (2.114)
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Fig. 2.20 Schematic diagram
of active magnetic refrigera-
tion (AMR). From Akiko Saito,
Toshiba Review Vol.62, 78 (2007)
(in Japanese).

in which magnetic field variation of entropy is proportional to temperature derivative of magnetization.

Gd (Curie temperature 289 K) is frequently used as a cooling material, which can have a cooling power at around

room temperature.Further research and development of working materials and methods are underway with the aim of

putting them into practical use near room temperature. For the use of MR under continuous inflow of heat, a continuous

cooling method is active magnetic refrigeration (AMR) illustrated in Fig. 2.20. Magnetization/demagnetization is done

by rotation of tables, to which permanent magnets are fixed. The turn table scheme realizes successive on/off of magnetic

field and continuous flow of refrigerant realizes continuous cooling.

There are many proposals and exploration of cooling substance, e.g., nano-particles of ferromagnet that have giant

magnetic moments, materials with meta magnetic transitions (first order transition from Pauli paramagnet to intinerant

electron ferromagnet). If time permits we will revisit such transitions. They are already beginning to be used and some

commercial machines are appearing.
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Chapter 3
Magnetism of conduction electrons

Magnetic levitation of graphite

https://sci-toys.com/scitoys/scitoys/magnets/pyrolytic graphite.html

In the previous chapter, the focus has been on the paramagnetism of insulators including magnetic ions. The magnetism

that appears due to the phase transition caused by the interaction between electron spins will be investigated in the

following chapters. Here we have a short look on the magnetism of conduction electrons other than such cooperative

phenomena.

3.1 Pauli paramagnetism

3.1.1 Conduction electrons

Electronic states in crystals are described by energy bands separated by energy gaps on the energy axis due to discrete

spatial translational symmetry. In a system of free electrons, due to the fermionic constraint, there exists the Fermi level

determined by the number of particles and the band structure. The orbital states described by Bloch functions have

up-down spin degeneracy at zero field. In metals, the Fermi levels place inside energy bands (conduction bands), and

we measure the Fermi energy EF from the bottom of conduction band. At room temperatures EF ≫ kBT , and the

distribution is Fermi degenerated.

In many actual metals, the electronic structures are complicated due to, e.g., multiple bands in k-space, etc. However,

here, to explore the essential properties, we assume a single band with single band in the center of k-space with a

single effective mass. Further we ignore the mutual electron interactions, which must exist in real systems. Such a non-

interacting model well describes behavior of electrons in actual metals in most cases. This gets theoretical support from

Landau’s Fermi liquid theory[10, 11].

3.1.2 Magnetic response by electron spins

To see the response of electron spins, we write the Hamiltonian in second-quantized form as

H =
∑
kσ

Ekc
†
kσckσ +

1

2
gµBB

∑
kσ

σc†kσckσ. (3.1)
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kx

kx

kz

kz

ky

ky

E

E+dE

2 /p L

(a) (b)

Fig. 3.1 (a) Red points represent eq. (3.2)
in k-space. (b) To calculate the density of
states, we count the numbe of possible points
in the shell between E and E + dE.

c†kσ is a creation operator of an electron with wavenumber k, spin σ (σ = ±1 for ↑↓). The first term is the kinetic energy,

the second is the Zeeman energy.

We take periodic boundary condition in a cube with a side of L. kL = 2nπ (n: integer) along a side gives

k =
2π

L
(nx, ny, nz) (nx, ny, nz : integers). (3.2)

The discrete points in k-space are displayed in Fig. 3.1(a). The point density is (L/2π)3. Let ρ(E) the energy density

of states per volume and per spin. ρ depends on the spin direction in ferromagnets but is common in paramagnets with

time-reversal symmetry. In three dimensional free electron systems, Ek = ℏ2k2/2m with the effective mass m. The

wavenumbers which give a constant E for Ek are, in k-space, the points expressed in (3.2) and on the sphere with radius

kE =
√
2mE/ℏ. To obtain ρ(E), we count such points within the shell between E and E + dE and divide by dE as in

Fig. 3.1(b). Thus we obtain

ρ(E) =
1

L3

(
L

2π

)3

4πk2E
dkE
dE

=
1

π2ℏ3

√
mE

2
. (3.3)

The expectation value of the magnetic moment is given by

−gµB

2

∑
kσ

σ ⟨c†kσckσ⟩ =
gµB

2

∑
k

[
f

(
Ek − gµBB

2

)
− f

(
Ek +

gµBB

2

)]
, (3.4)

where
f(E) =

1

exp[(E − µ)/kBT ] + 1
(3.5)

is the Fermi distribution function with µ as the chemical potential. Then the magnetization M is given by

M =
gµB

2

∫ ∞

0

dEρ(E)

[
f

(
Ek − gµBB

2

)
− f

(
Ek +

gµBB

2

)]
. (3.6)

To determine µ, we write the electron concentration as Ne and use

Ne =

∫ ∞

0

dEρ(E)

[
f

(
Ek − gµBB

2

)
+ f

(
Ek +

gµBB

2

)]
. (3.7)

Thus determined µ is the Fermi energy EF described in Sec. 3.1.1.

We then obtain the spin magnetic susceptibility of conduction electrons at T = 0 as

Pauli paramagnetic susceptibility� �
χPauli =

(gµB

2

)2

[2ρ(EF)]. (3.8)� �
The spin susceptibility of Fermi-degenerated free electrons is constant and proportional to the density of states at the

Fermi level. This is called Pauli paramagnetism. This result holds for general complicated band structures as long as

the system can be treated as a Fermi liquid.
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3.2 Landau diamagnetism

As we have seen as the Bohr-van Leeuwen theorem, that a classical system of charged particles cannot have magnetism.

In real systems of charged particles, even without orbital quantization by local potentials or spins, the quantization causes

magnetism. Let us have a look on that.

3.2.1 Landau quantization

Landau quantization is universally observed in the systems of free charged particles under magnetic field. Particularly

in two-dimensional systems, it results in an extraordinary phenomenon called quantum Hall effect. Here we study its

effect on orbital magnetism. We directly treat the orbital motions and write the Hamiltonian as

H =
1

2m

∑
i

(pi + eA)2. (3.9)

We take Landau gauge A = (0, Bx, 0) to express the magnetic field B along z-axis. m is the electron rest mass.

Schrödinger equation for a single electron is

− ℏ2

2m

[
∂2

∂x2
+

∂2

∂z2
+

(
∂

∂y
− i

eB

ℏ
x

)2
]
ψ = Eψ. (3.10)

The coordinate operator in the lhs of (3.10) is only x. Thus we assume plane wave along y and z, namely ψ =

exp[i(kyy + kzz)]u(x). By substituting this to (3.10), we obtaine

− ℏ2

2m

[
d2u

dx2
+

(
ky −

eB

ℏ
x

)2

u

]
=

(
E − ℏ2k2z

2m

)
u. (3.11)

This is in the form of one-dimensional harmonic oscillator with the center coordinate

xc = ℏky/eB. (3.12)

The frequency of oscillator ωc is
mω2

c

2
=

(eB)2

2m
∴ ωc =

eB

m
. (3.13)

This is called cyclotron frequency. The energy eigenvalues are

E(n, kz) =
ℏ2k2z
2m

+

(
n+

1

2

)
ℏωc =

ℏ2k2z
2m

+ (2n+ 1)µBB (n = 0, 1, 2, · · · ). (3.14)

The motion along z-axis is free-electron like but in xy-plane the kinetic energy is discretely quantized. This is called

Landau quantization. The energy levels of harmonic oscillator indexed by n in (3.14) are called Landau levels.

It seems a bit strange that the solutions are strongly anisotropic although the system is uniform in xy-plane. This is

the result of selection of Landau gauge to solve the equation. The symmetrically localized solutions can be obtained, e.g.

by taking the symmetric gauge. These are degenerated for the same n, and with superpositions we can have eigenstates

with various distributions in xy-plane. In semi-classical approach, the Landau quantization can be viewed as the quanti-

zation of cyclotron motion through the spatial localization. However there still exists the freedom in taking the center of

cyclotron motion, that gives large degree of degeneracy and results in the eigenstates with various outlook.
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3.2.2 Orbital diamagnetism

We consider the normalization of eigenstates in the form of exp[i(kyy + kzz)]u(x) in the cube with side length L.

z-direction is the same as free electrons. From kz = (2π/L)nz (nz = 0,±1, · · · ), Ez = ℏ2k2z/2m, possible number of

kz for kinetic energy along z-direction less than Ez is 2L
√
2mEz/h. Also for y, because the form is plane wave, from

the periodic boundary condition

ky =
2π

L
ny (ny = 0,±1,±2, · · · ). (3.15)

On the other hand, ky relates with the center xc of harmonic oscillator along x-direction as (3.12), then when xc is in the

region [−L/2, L/2],

−L
2
≤ ℏ
eB

ky =
ℏ
eB

2π

L
ny ≤ L

2
∴ |ny| ≤

eBL2

4πℏ
.

This means the degree of degeneracy of a single Landau level in xy-plane is eBL2/h.

From the above, Ω(E), the number of states below the total energy E is

Ω(E) =
L3

h2

√
8meB

nmax∑
n=0

√
E − (2n+ 1)µBB, (3.16)

where

nmax = int

(
E − µBB

2

)
. (3.17)

Because the density of states is given by dΩ/dE, the Free energy of the system is

F = Nµ− 2kBT

∫
dΩ

dE
ln{1 + exp[−(E − µ)/kBT ]}dE, (3.18)

where we consider the spin degree of freedom 2. The integral part is partially integrated as follows.∫
dΩ

dE
ln{1 + exp[−(E − µ)/kBT ]}dE = −

∫
Ω(E)

(
− 1

kBT

)
exp[−(E − µ)/kBT ]

1 + exp[−(E − µ)/kBT ]
dE

=
1

kBT

∫ [∫
Ω(E)dE

]
d

dE

1

1 + exp[(E − µ)/kBT ]
dE

=
1

kBT

2
√
8m

3

eBL3

h2

∫ nmax∑
n=0

[E − (2n+ 1)µBB]3/2
d

dE

1

1 + exp[(E − µ)/kBT ]
dE.

From µB = eℏ/2m we can rewrite F as

F = Neµ−A

∫
ϕ(E)

d

dE

1

1 + exp[(E − µ)/kBT ]
dE, (3.19a)

where

A =
16L3

3π2ℏ3
m3/2(µBB)5/2, (3.19b)

ϕ(E) =

nmax∑
n=0

[
E

2µBB
−
(
n+

1

2

)]3/2
. (3.19c)

Taking the limit B → 0, it becomes
F = NeEF −Aϕ(EF). (3.20)

Here we use the asymptotic form for x≫ 1

nmax∑
n=0

[
x−

(
n+

1

2

)]3/2
≈ 2

5
x5/2 − 1

16
x1/2 + · · · . (3.21)
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This is obtained by applying the Euler–Maclaurin formula to F (y) = (x− y)3/2 as follows.

n0∑
n=0

F (n+ 1/2) ≈
∫ n0+1

0

dyF (y)− 1

24
[F ′(n0 + 1)− F ′(0)]

≈ 2

5
x5/2 − 1

16
x1/2.

Hence we obtain the asymptotic expansion

ϕ(E) =
2

5

(
E

2µBB

)5/2

+
1

16

(
E

2µBB

)1/2

+ · · · , (3.22)

which gives the free energy as

F = const. − L3

3
ρ(EF)(µBB)2 + · · · . (3.23)

Then we obtain the orbital diamagnetic susceptibility of free electrons as

Landau diamagnetic susceptibility� �
χLandau = −2

3
ρ(EF)µ

2
B. (3.24)� �

This is called Landau diamagnetism.

Taking the effective mass to the free electron rest mas, χLandau has the opposite sign to χPauli and the magnitude is

1/3. The total susceptibility is then

χ = χPauli + χLandau =
4

3
ρ(EF)µ

2
B. (3.25)

Appendix 5A: Weak crystal field approximation

In the lecture on 3d transition metal ions, we consider the approximation of a strong crystal field (ligand field), that

is, the one-electron states of 3d electron in the crystal field are considered first, and fill them with electrons to consider

multi-electron states. On the other hand, there is also a method that first assumes the LS multiplex term as we did in the

case of 4f lanthanoid ion, and then considers how this multi-electronic state splits in the crystal field using point group

theory. This is called weak crystal field approximation. In Fig. 5A.1, we show how the state dn splits in an octahedral

potential.

Fig. 5A.1 Split of dn state in an octahedral crystal potential in weak crystal field approximation.
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[7] R Böttcher, E Erdem, H T Langhammer, T Müller, and H-P Abicht. Incorporation of chromium into hexagonal

barium titanate: an electron paramagnetic resonance study. Journal of Physics: Condensed Matter, Vol. 17, No. 17,

pp. 2763–2774, April 2005.

[8] O. V. Lounasmaa. Experimental Principles and Methods Below 1K. Academic Pr, 6 1974.

[9] Koji Kamiya, Koichi Matsumoto, Takenori Numazawa, Shinji Masuyama, Hiroyuki Takeya, Akiko T. Saito, Naoya

Kumazawa, Kazumi Futatsuka, Keigo Matsunaga, Tsuyoshi Shirai, Suguru Takada, and Teruhito Iida. Active

magnetic regenerative refrigeration using superconducting solenoid for hydrogen liquefaction. Applied Physics

Express, Vol. 15, No. 5, p. 053001, January 2022.

[10] L. D. Landau. The theory of a fermi liquid. Sov. Phys. JETP, Vol. 3, pp. 920–925, 1957.

[11] Piers Coleman. Introduction to Many-Body Physics. Cambridge University Press, 11 2015.

E05-14


	Hyperfine structures in electron paramagnetic resonance
	Electron paramagnetic resonance in paramagnetic salts
	Magnetic refrigeration
	Pauli paramagnetism
	Conduction electrons
	Magnetic response by electron spins

	Landau diamagnetism
	Landau quantization
	Orbital diamagnetism


