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3.2.3 de Haas-van Alphen effect

When we derived Landau orbital diamagnetic susceptibility, we took the small field limit, in that the Landau level

splitting ℏωc is much smaller than EF and applied an asymptotic formula. When the magnetic field goes up to a com-

paratively large region *1, the Landau quantization gives a dramatic effect on the magnetization. That is the oscillation

of magnetization called the de Haas-van Alphen effect. In solids, the orbital diamagnetism strongly depends on the band

structure particularly around the Fermi surface. This is in strong contrast to the spin paramagnetism. Hence the relation

between the Pauli paramagnetism and the Landau diamagnetism shown in the previous subsection generally does not

hold in solids. This sensitivity of diamagnetism to the band structure is applied for exploration of band structures.

We rewrite eq. (3.19) as

F

ne
= µ− ℏωc

E
3/2
F

∫ ∞

0

dE
∑
n=0

[
E −

(
n+

1

2

)
ℏωc

]3/2 (
− ∂f

∂E

)
, (3.26)

where ne = Ne/L
3. Also, the relation 2µBB = ℏωc is used to restore ℏωc in preparation for the change in the effective

mass. The summation over n should be taken for positive arguments in the paretheses (· · · ). On the other hand, the energy

derivative of Fermi function −∂f∂E approaches a delta function for T → 0. We guess, therefore, the magnetization

varies largely for the magnetic field where the Landau levels (n+1/2)ℏωc coincideEF. This oscillation of magnetization

against the magnetic field is called de Haas-van Alphen effect, dHvA effect.

Fig. 3.2 Density of states is plotted against energy
measured by Landau level spacing ℏωc.

The density of states of a one-dimensional system is given

by
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2m
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By counting all these states, we get the total density of states

per spin as

ρ(E) =
1

2πℏ

√
m

2

∑
n=0

1√
(E − (n+ 1/2)ℏωc

. (3.27)

The summation over n should be taken forE > (n+1/2)ℏωc.

The density of states in (3.27) is divergent at E/ℏωc as shown

in Fig. 3.2. With increasing magnetic field, the position of

EF decreases due to the increase in ℏωc. When EF passes a

position of divergence, a rapid rearrangement in electron pop-

ulation occurs and the thermodynamic functions including the magnetization get rapid changes.

To see how one can get the information of the Fermi surface, refer to Appendix 6B. In the lecture, I will introduce an

example of experiment on Thallium-based high-Tc cuprate[1].

*1 In usual metals, ℏωc of “strong magnetic field” at an ordinary level does not go up to the level of Fermi energy. Hence even in this treatment,
we still use the condition ℏωc ≪ EF
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3.3 Orbital diamagnetism in graphene, graphite

What we have seen above is the magnetic response of the free electron system. The Pauli paramagnetism comes from

a small shift of the spin bands on the energy axis. Hence we can guess that the same formula is applicable for band

electrons in metals as long as the band has no anomaly at the Fermi level.

On the other hand, the orbital diamagnetism largely gets the effect of the band structure. Even in the low field limit,

which is the constraint for the Landau diamagnetism, the magnetic response of Bloch electrons is a difficult problem. The

theoretical frameworks from the viewpoint of linear response (Kubo formula)[2] and so forth have long been tried. The

field is still active and there have been reports on theoretical developments aiming at application to graphene from this

department[3, 4, 5]. Here I would like to introduce shortly a characteristic example of graphene and multilayer graphene

(thin graphite). In the beginning of the present chapter, I have introduced the fact that a graphite has a very large negative

orbital susceptibility. This is due to its characteristic band structure.

3.3.1 Orbital diamagnetism in graphene

We are familiar with graphite, e.g., as a material used in cores of pencils. It is said to be the most stable thermodynam-

ically as elementally crystal of carbon. It’s crystal structure is a stack of honeycomb planes as shown in Fig. 3.3. A single

atomic layer of the graphite is called graphene, which can be extracted by exfoliation, grown by CVD, or thermalization

of SiC.

Carbon atoms in a plane of graphene are strongly connected to the neighbors by covalent bonds with no buckling.

Hence graphene conduction electrons in pz orbitals can be treated as a complete two-dimensional orbital system. And

just at EF in pure graphenes, the linear dispersions form crossing points called Dirac points as shown in Appendix 6C.

Hence the band is massless and gapless. The orbital susceptibility of graphene has long been calculated. In the simplest

model[6], it is given by (in cgs unit)

χ(EF) = −gvgse
2

6π

(e
c

)2

δ(EF), (3.28)

where gv = 2 is the orbital degeneracy represented as K and K’ points in k-space, gs = 2 is the spin degeneracy, c is the

speed of light. Here EF is measured from the Dirac points, and the susceptibility in (3.28) is infinite when EF is at the

Dirac points, and is zero elsewhere.

This can be roughly interpreted as follows. Let an electron be in a cyclotron motion (thus not at Dirac points) under a

magnetic field B. When B changes, an electric field E is created as in eq. (1.28). In sec. 1.3.2, E accelerates the electron

resulting in the diamagnetism. In the present case, E gives an increase in the kinetic energy of the electron though that

does not enhance the velocity due to the linear dispersion. Hence the diamagnetic susceptibility is zero. However, when

Fig. 3.3 Illustration of graphite crystal structure. Hon-
eycomb sheets made of carbon covalent bonds are stacked
with an in-plane half lattice constant shift by layer. That is,
the same 2-dimensional lattice appears alternatively, which
structure is called AB-stacking. The sheet-to-sheet is con-
nected by the van der Waals coupling.
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the increase in the energy goes over a Dirac point, the velocity jumps, e.g., from −ve to +ve. The acceleration is infinite

giving the divergence of the susceptibility at the Dirac point.

In the lecture I would like to introduce an experiment, in which the authors claim they have observed such peculiar

orbital diamagnetic susceptibility of graphene.

3.3.2 Diamagnetic susceptibility of multi-layer graphene

The extraordinary diamagnetism that causes magnetic levitation, and the strong magneto-optical response have long

been known, but clear interpretations have not been given yet. It has been said that we need to consider a more practical

model, in which experimental details like inhomogeneity in the field[7].

In order to treat the space distribution of magnetic field, we consider the Fourier expansion in x: B(r) = B(q) cos qx,

of the field along z-axis onto 2-dimensional system in xy-plane. The current distribution in response to B(r) generally

has the form of jy(r) = jy(q) sin qx[9]. The q-component of magnetization m(r) is obtained from the two-dimensional

current asこの２次元電流から，磁化m(r)の q 成分は

jy = −c∂m
∂x

→ m(r) = m(q) cos qx m(q) = −jy(q)
cq

.

The susceptibility χ(q) is defined as m(q)/B(q). Then the response current of graphene to B(r) = B(q) cos qx is

jy(r) = −gvgse
2v

16ℏc
B(q) sin qx. (3.29)

The diamagnetic inductive current by this responding current is from Amperé’s law

Bind(r) = −αgB(r), αg =
2πgvgse

2v

16ℏc2
≈ 4× 10−5, (3.30)

which does not depend on the space distribution wavenumber q. Therefore any spatial distribution of magnetic field

causes the inductive magnetic field of −αg times the original field and the theorem of superposition leads to the total

inductive field of −αg times the total original field.

As an example, let us place a magnetic charge qm in the region z > 0. The graphene at z = 0 partially screens the field

to create the mirror charge −αqqm seen from z < 0, namely the field caused by the mirror charge is superposed to the

original field. The same for z > 0 and the field created by the mirror charge of αqqm in z < 0 region is overlapped to the

original field. The force, which the original magnetic charge in Fig. 3.4(a) gets from the graphene, is calculated from the

mirror charge in Fig. 3.4(c).

Let us consider the case a permanent magnet approaches a graphene. The magnet is a half-infinite cylinder with a

radius a having the edge magnetic charge density σm. When the edge reaches the graphene, d = 0, the force given to

the magnet per area is 2παgσ
2
m. In the case of Neodymium magnet, σm can be around 1 T. The force is then 0.16 dyne,

which is surprisingly large for a single atomic layer.

Fig. 3.4 Mirror magnetic charge
caused by a graphene. The
graphene is illustrated as the black
line at z = 0. (a) Magnetic field
by a magnetic charge. (b) In-
ducted field in z < 0, (c) and in
z > 0. From [8].
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Fig. 3.5 (a) Band structures and (b) orbital diamagnetic susceptibilities χ(EF) for single to four layer graphenes. Γ
is the width of energy fluctuation caused by impurities. From [8, 10].

In an ordinary 2-dimensional metal with an effective mass m∗, the susceptibility is a constant χ0 = −e2/(24πm∗c2)

in the long wavelength limit. Let us take an example of GaAs 2-dimensional electrons with m∗ = 0.067m0. Then the

ratio of repulsive force fc to that of graphene fg is fg/fc ≈ a/(0.01 nm). The radius is in cm order then the ratio goes

up to 9-digits.

Next we go to multi-layer graphenes, which can be seen as thin films of graphite[10]. They have the AB stacking as

in Fig. 3.3 with a weak interlayer coupling with the coupling energy of 0.4 eV. The structure with more layers than two,

can be treated as a repetition of the AB stack and the calculation can be reduced to the case of the bilayer graphene. A

single-layer graphene has gapless linear dispersion both at K and K’. Also in a bilayer graphene, a pair of bands has a

zero-gap with finite effective masses, the other pair has a gap due to the inter-layer coupling. AnN = 2M layer graphene

has M sets of bilayer-type bands. When N = 2M + 1, a set of single-layer bands is added.

Figure 3.5 shows such calculation of the band structures and the orbital diamagnetic susceptibilities for single to

four layer graphenes. The band with a Dirac point appears for an odd number of N giving a large contribution to the

diamagnetic susceptibility. For an even N , that contribution disappears. However the further increase in the number of

layers results in the increase in the diamagnetic susceptibility. This increase is thought to lead to the large diamagnetism

in graphite.
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Chapter 4
Interaction between Spins

Fighting tops

https://www.youtube.com/watch?v=2WaU7NDOHLQ

We have looked for “entities” which work as magnetic dipoles in materials and found in the quantum theory, that

the spins and the orbitals are working as magnetic dipoles namely magnetic moments in various forms. However the

macroscopic moments never appear without applying external magnetic field due to the randomness in the direction of

microscopic moments. In ferromagnetic materials the microscopic moments – let us call them spins – are aligned in the

same direction at zero magnetic field and at finite temperatures. This fact indicates that, as we have seen in the magnetic

refrigeration, the entropy is largely reduced and there should be a large decrease in the internal energy to compensate

that. In other words, there should be some interaction that decreases the total energy. Let us examine such possibilities.

4.1 Exchange interaction

In chapter 1, we introduced the classical interaction between two magnetic dipoles (spins) µ1, µ2, namely the moments

feel their magnetic field each other. Let r12 be the vector connecting the two moments, then the potential is given by *2

U(µ1,µ2, r12) =
µ0

4π

[
µ1 · µ2

r312
− 3

(r1 · r12)(r2 · r12)
r512

]
. (4.1)

It is easy to guess from the analogy of bar magnets that the stable configuration is that the two spins are in-line. However

this has the quantitative problem. Let µ1,2 be 5µB, r12 be 200 pm (typical lattice constant), then U is about 2 K. Hence

this interaction cannot explain real ferromagnets, which keep alignments of spins above room temperature quantitatively.

Based on the quantum theory, Heisenberg showed the possibility of far-stronger mutual interaction between spins, that

comes from a characteristic quantum effect[11]. It is now known through various researches that the direct exchange

interaction, which Heisenberg claimed to be the source of ferromagnetism, cannot explain real ferromagnetism in mate-

rials. However, the concept of exchange interaction is still used in the present understandings. Here let us introduce the

naive direct exchange interaction.

*2 In eq. (1.7), we used E-H formulation. Here we restore it to E-B formulation (i.e., SI unit system).
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4.1.1 Heitler-London approximation

In the ground state of Hydrogen molecule, two electrons with ↑ and ↓ are accommodated in the bonding orbital. Hence

the spin is zero and the orbital diamagnetism appears (molecular orbital approximation, MO). However, here we consider

the case that the inter-atom distance is larger and instead of considering bonding and anti-bonding orbitals, we consider

atomic orbitals φa, φb and the two-body wavefunction is composed with keeping the Fermi statistics (Heitler-London
approximation). In this approximation, the wavefunction of two electrons is written in the form of Slater determinant:

Ψ =
1√
N

∣∣∣∣φa(r1)χa(s1) φb(r1)χb(s1)
φa(r2)χa(s2) φb(r2)χb(s2)

∣∣∣∣ , (4.2)

where N is a normalization constant, (ri, si) are space and spin coordinates of i-th electron. si corresponds to z-

component of spin and can take one of two values ±1/2. We write the state of the spin pointing +z as α(s), in which

χ(s) is
χ(1/2) = 1, χ(−1/2) = 0. (4.3)

On the other hand, the −z pointing state β(s) is given as

χ(1/2) = 0, χ(−1/2) = 1. (4.4)

Pauli’s exclusion principle is fulfilled as

Ψ(r1, s1; r1, s1) = 0, Ψ(r1, s1; r2, s2) = −Ψ(r2, s2; r1, s1). (4.5)

Ψ takes argument of spin functions (χa, χb), and we can classify Ψ by the spin states (α, β) as {Ψαα,Ψαβ ,Ψβα,Ψββ}.

We take this as a basis and consider the expression of the interaction Hamiltonian Hint. As an example of the matrix

elements, ⟨αα|Hint|αα⟩ has two terms:

⟨αα|Hint|αα⟩ =
∑
s1,s2

∫
dr1dr2Ψ

∗
ααHintΨαα

=

∫
dr1dr2φ

∗
a(r1)φ

∗
b(r2)Hintφa(r1)φb(r2)−

∫
dr1dr2φ

∗
a(r1)φ

∗
b(r2)Hintφb(r1)φa(r2), (4.6)

where we take N = 2, ⟨φa|φb⟩ = 0. The second term in rhs of (4.6) is a matrix element between the states in which the

electrons are exchanged, and called exchange integral. This is essentially the same as J(m1,m2) in eq. (2.26). In Ch.2,

we derived Hund’s rule from this integral. The direct exchange interaction is essentially the same. We write the first and

the second term in rhs of eq. (4.6) as Kab and Jab. The 4×4 matrix elements are as follows.

αα αβ βα ββ

αα Kab − Jab 0 0 0

αβ 0 Kab −Jab 0

βα 0 −Jab Kab 0

ββ 0 0 0 Kab − Jab

(4.7)

This can be easily diagonalized and the eigenfunctions are

Ψαα

1√
2
(Ψαβ +Ψβα)

Ψββ

 (s1 + s2 = 1),
1√
2
(Ψαβ −Ψβα) (s1 + s2 = 0). (4.8)

The three states for s1 + s2 = 1 are spin triplet and the one for s1 + s2 = 0 is spin singlet. The eigenenergy of the

former is Kab − Jab and that of the latter is Kab − Jab. The spin states thus give the difference in the energy. When
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Jab is positive, the spin parallel state has a lower energy giving ferromagnetic interaction while the interaction is anti-

ferromagnetic when Jab is negative. The situation can be viewed as the exchange integral creates the interaction between

the spins and we call the interaction exchange interaction. Though Jab appears from the integration of orbital states, the

symmetry of the electronic states requires the interaction between spins.

Then we look for an effective Hamiltonian composed of spin operators just like the spin Hamiltonian introduced in

Ch.2 to analyze EPR experiments. First we introduce spin operators sa and sb, which operate on the states a and b

respectively (don’t get confused with s1, s2). Because they commute each other,

2sa · sb = (sa + sb)
2 − s2a − s2b = S2 − s2a − s2b . (4.9)

Here we use

⟨↑↑ |S2| ↑↑⟩ = S(S + 1) = 2, S2 |↑↓⟩ = 0, (4.10)

s2a = s2b =
1

2

(
1

2
+ 1

)
=

3

4
, (4.11)

and calculate the elements of operator (1 + 4sa · sb)/2 to obtain

(↑↑) → 2sa · sb = 2− 2× 3

4
=

1

2
=⇒ 1

2
(1 + 4sa · sb) = +1,

(↑↓) → 2sa · sb = 2− 2× 3

4
= −3

2
=⇒ 1

2
(1 + 4sa · sb) = −1.

Therefore we can adopt

Hint = Kab −
1

2
Jab(1 + 4sa · sb) (4.12)

as an effective Hamiltonian.

Then we expand the above concept to the interaction between general spins Si indexed by i and formally extract the

spin part to obtain Heisenberg Hamiltonian
Heisenberg Hamiltonian� �

H = −2
∑
⟨i,j⟩

JijSi · Sj . (4.13)

� �
This is an important basics for us to treat various phenomena originated from the interaction between spins.

For exchange integral, when the interaction is the Coulomb repulsion,

Jab =
e2

4πϵ0

∫
dr1dr2φ

∗
a(r1)φ

∗
b(r2)

1

r12
φb(r1)φa(r2) (4.14)

is always positive, which can be proven as eq. (2.26). And Jab can go up to 0.1 eV depending on the way of estimation,

hence might explain the room temperature ferromagnetism. In the above we see that the Coulomb repulsion causes a

strong ferromagnetic interaction between spins in Heitler-London approximation. This is called direct exchange in-
teraction. However, here we must notice that if we adopt the molecular orbital method, the interaction in the form of

Heisenberg Hamiltonian can be derived with negative J , that is the anti-ferromagnetic interaction. This can be more

easily understood from the general theory that in a general Schrödinger equation, the ground state has no degeneracy and

the wavefunction has no node[12]. Hence the orbital part of wavefunction is symmetric resulting in the antisymmetric

spin part.
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4.1.2 Exchange interaction in the presence of tunneling

As an improvement of Heitler-London approximation, we consider the electronic state, in which two electrons are

accommodated in a single atom as a possible configuration. In this treatment, a small amplitude of wavefunction

Ψ′ =
1√
N ′

∣∣∣∣φa(r1)χa(s1) φa(r1)χ
′
a(s1)

φa(r2)χa(s2) φa(r2)χ
′
a(s2)

∣∣∣∣ (4.15)

is overlapped to the one in (4.2). The transition of Ψ → Ψ′ means tunneling of an electron φbχb → φaχ
′
a. Hence for

such a superposition to occur, ⟨Ψ|H |Ψ′⟩ ̸= 0. For that, due to Pauli’s exclusion principle, χa and χb should be the spins

opposite to each other. When sa and sb are anti-parallel, this hopping process leads to the energy decrease

Wab = − 1

∆E
| ⟨Ψ′|H |Ψ⟩ |2 (4.16)

in the second order perturbation. For parallel spins, there is no such energy decrease. We thus write this part formally

1

2
(1− 4sa · sb)Wab, (4.17)

which is in the same form as eq. (4.12). In summary we reach

H ′
int =

1

2
(−Jab +Wab)− 2(Jab +Wab)sa · sb. (4.18)

Wab is negative and when Jab +Wab < 0 the total interaction becomes antiferromagnetic. We have confirmed Heitler-

London approximation overestimates the ferromagnetic interaction.

Appendix 6A: Aharonov-Bohm phase and degeneracy of Landau levels

I would like to introduce the way to memorize the degree of Landau level

degeneracy (the number of states per unit area). Of course this is just an

example, and you can find your own way. In the existence of magnetic field,

the momentum ℏk is modified to

ℏk → ℏk + eA = ℏ
(
k +

e

ℏ
A
)
.

This gives the phase evolution θ when a plane wave exp[ik · r] propagates

in space from a point P1 to P2 as

θ12 =

∫ P2

P1

(
k +

e

ℏ
A
)
· dr(I) =

∫ P2

P1

k · dr(I) +
e

ℏ

∫ P2

P1

A · dr(I) = θ
(k)
12(I) + θ

(A)
12(I). (6A.1)

The suffix I means the path signed as I in the figure. The first term in the rhs is the ordinary kinetic phase and the second

term expresses the effect of magnetic field. The latter is called Aharonov-Bohm (AB) phase.

In path II, the kinetic phase differs from that in path I by the difference in the length. The AB phase in path II is also

different from that in I. This can be understood by considering the route going back from P2 to P1 on path II. That is

∆θAB =
e

ℏ

[∫ P2

P1

A · dr(I) +
∫ P2

P1

A · dr(II)

]
=
e

ℏ

∮
A · dr =

e

ℏ

∫
S

rotAdσ = 2π
Φ

ϕ0
, ϕ0 =

h

e
. (6A.2)

Here ϕ0 is called flux quantum, which has the form of the ratio of h to e. This is an easy-to-memorize form. A physical

meaning is that 2π of AB phase is given to an electron going around this amount of flux, and this is the condition of

quantization in the electron loop.
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The number of states in the magnetic field of magnetic flux density B in two-dimensional system is given by the flux

per unit area (i.e. B) divided by the flux quantum. That is,

N(B) =
B

h/e
=
eB

h
=
eBm

hm
=
m

h2
(hωc) =

m

2πℏ2
(ℏωc). (6A.3)

Hence we can see the number of states per Landau level eB/h and the two-dimensional density of states m/2πℏ2 in a

very clear way.

Appendix 6B: Contribution of k-slab to the dHvA effect

There are various equivalent way to explain the principle of the dHvA effect. In the explanation from the density of

states as in the text, it is rather difficult to see the effect contains the information of k-space. Hence here we explain

the effect in the way given in Ref. [13]. Here we consider free electrons with an isotropic effective mass for simplicity.

Electrons are free in z-direction (field direction) and Landau-quantized in xy plane as in eq. (3.14). Hence we define

quasi-Fermi energy as the kinetic energy in xy-plane for a fixed kz , that is

E′
F ≡ EF − ℏ2k2z

2m
. (6B.1)

And we treat the system as a set of two-dimensional electrons with the Fermi energy of E′
F under Landau quantization.

In k-space, each kz is assigned to such a virtual two-dimensional system.

Then we consider a slab with thickness δkz in k-space corresponding to a kz . We call the region k-slab. The density

of states in a k-slab “per magnetic flux density” ξ is given by

ξ =
1

L

L

2π
δkz

eB

h

1

B
=

e

4π2ℏ
δkz

(
=
δkz
2π

1

ϕ0

)
, (6B.2)

where we also use things mentioned in App. 6A. I have put a comment on this quantity as a formula in the last parentheses.

ϕ0 ≡ h/e is flux quantum introduced in App. 6A. At absolute zero, the Landau levels corresponding to the integer q

which satisfies (q + 1/2)ℏωc ≤ E′
F are occupied. Let us write the maximum integer in q as qmax and the number of

occupied Landau levels is qmax + 1. Then the number of electrons belong to this k-slab is

ne(kz) = (qmax + 1)ξB (6B.3)

per unit area in the real space.

With increasing B, ne increases linearly in accordance with (6B.3), and when B exceeds the value determined by the

condition

qmax +
1

2
=

E′
F

ℏωc
=
mE′

F

ℏe
1

B
, (6B.4)

qmax decreases by one and ne discretely decreases. Namely, ne(kz) oscillates periodically against 1/B and the amplitude

(the amount of dropping at the condition (6B.4)) increases withB as ξB though the center of the oscillation is the electron

concentration of virtual 2-dimensional electrons (let us write it ne0) in the k-slab before the application of magnetic field.

The behavior is drawn in Fig. 6B.1. As shown in the figure, the electronic states of number eB/h at zero field are assigned

to a Landau level (App. 6A). In the oscillation, at the magnetic field ne(B) = ne0, where the electron concentration hits

the center, (qmax + 1)(eB/h) should be equal to ne0. We write qmax + 1 at such points as ν, the value of magnetic field

as Bν . Then they are in the relation

Bν =
1

ξ

ne0
ν

=
2π

δkz
ϕ0
ne0
ν

(ν = 1, 2, · · · ). (6B.5)
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Fig. 6B.1 Illustration of relations between the Landau level distance ℏωc, the two dimensional electron concentration
ne, and jumping at which qmax changes. The lower shows corresponding energy diagrams (occupied energy levels in
zero field is in orange color.

And the boundaries between different values of qmax are

Bν± =
mE′

F

ℏe
1

ν ± 1/2
. (6B.6)

The energy Uν0 of electrons in the k-slab corresponding to this Bν is expressed as

Uν0 = ξBνℏωc

ν−1∑
q=0

(
q +

1

2

)
+ ne

ℏ2k2z
2m

=
ξBνℏωcν

2
ν2 + ne

ℏ2k2z
2m

=
ℏωcν

2ξBν
n2e0 +

ℏ2k2z
2m

ne0 =
h2

2mδkz
n2e0 +

ℏ2k2z
2m

ne0. (6B.7)

This does not depend on the magnetic field and is the same as the sum of energies in k-slabs below EF. In the region in

the magnetic field [Bν+, Bν−], this expression holds with replacing ne0 with ne. We thus consider the quantity

U =
h2

2mδkz
n2e + ne

ℏ2k2z
2m

+ (ne0 − ne)E
′
F. (6B.8)

In the rhs, the first two terms are the extension of (6B.7) and the energy of electrons in k-slab. In the third term, the

energies coming in/out the k-slab at E′
F. This term keeps U continuous even at the magnetic field of eq. (6B.6), where

ne gets a gap. Now we write E′
F as

E′
F = ℏωcνν = ℏ

eBν

m

2π

δkz

h

e

ne0
Bν

=
h2

m

ne0
δkz

. (6B.9)

Then the variation in U is

δU = U − Uν0 =
h2

2mδkz
(n2e − n2e0) + E′

F(ne0 − ne) =
h2

2mδkz
(ne − ne0)

2, (6B.10)

which is more than or equal to zero.

The contribution of electrons in this k-slab to the magnetization is

δM = −∂U
∂B

= − h2

mδkz
(ne − ne0)

dne

dB
. (6B.11)

dne/dB is from eq. (6B.3)
dne

dB
= νξ ≃ E′

F

ℏωc
ξ. (6B.12)
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Then the contribution is obtained as

δM ≃ −E
′
F

B
(ne − ne0). (6B.13)

While B in the denominator increases linearly, ne − ne0 strongly oscillates resulting in the oscillation of magnetic

susceptibility.

In order to see the behavior of the total magnetization, the contribution in eq. (6B.13) should be summed up over kz .

For that, first δM is expanded in a Fourier series against the axis of B−1 as follows.

δM = δkz

∞∑
p=1

Ap sin px, x = 2π
E′

F

ℏωc
. (6B.14)

We apply a mathematical identity for −π < x < π

x = e

∞∑
n=1

(−1)n−1

n
sinnx, (6B.15)

and rewrite
δM = − 1

2π
ξE′

Fx =
1

π
E′

F

∑
p

(−1)p
sin px

p
. (6B.16)

Therefore the expansion coefficients are obtained as

Ap =
1

pπ
E′

F(−1)p
ξ

δkz
= (−1)p

eE′
F

4pπ3
. (6B.17)

From the above, the summation over kz can be written in the form of integration:

M =
e

4π3

∑
p

(−1)p

p

∫ kF

−kF

dkz · E′
F sin

[
pπ

ℏωc

(
EF − ℏ2k2z

2m

)]
. (6B.18)

Here, though the magnetic field is comparatively strong, we assume the condition ℏωc ≪ EF still holds. Then in the

integrand in eq. (6B.18), E′
F varies in the section [−kF, kF] as a parabola with the maximum at kz = 0. On the other

hand, the sine function rapidly oscillates against kz . As a result the integration cancels out other than the region around

kz = 0, where dE′
F/dkz ∼ 0. HenceE′

F outside the sine function can be replaced withEF. Further, applying the identity∫ ∞

0

cos
π

2
x2dx =

∫ ∞

0

sin
π

2
x2dx =

1

2
, (6B.19)

the integration in (6B.18) is calculated to be

EF

(
ℏωcm

2p

)1/2

sin

(
2πpEF

ℏωc
− π

4

)
. (6B.20)

Then we can write down the magnetization as

M =
EFe

3/2(ℏB)1/2

4π3

∑
p

(−1)p

p3/2
sin

(
p
2πEF

ℏωc
− π

4

)
. (6B.21)

The above discussion is for an ideal metal with a spherical Fermi surface. But this can be extended to general Fermi

surfaces. Even in the general case, the dHvA oscillation is dominated by the region where dE′
F/kz ≈ 0. Hence the

magnetic field angle dependence of the dHvA oscillation (amplitude, period, etc.) gives detailed information on the

Fermi surface.
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Appendix 6C: Band structure of graphene

One of the ways to form a two dimensional electron system is to utilize two-dimensional crystals (two-dimensional ma-

terials). Graphene is the representative two-dimensional material. Graphene provides a good expample for the application

of tight-binding calculation and we would like to see how the things go in a practical (though simplest) example.

The crystal structure of single-layer graphene is show in Fig. 6C.1(a), which is a simple honeycomb structure of carbon

atoms. The diamond drawn in the figure is the unit cell and the primitive lattice vectors and the primitive reciprocal lattice

vectors are written as

a1 =

(√
3a/2
a/2

)
, a2 =

(
0
a

)
, b1 =

(
4π/

√
3a

0

)
, b2 =

(
−2π/

√
3a

2π/a

)
. (6C.1)

Henceforce we calculate the electronic states of graphene under simplest approximation. Because the approximation

is rough, quantitative comparison with experiments is difficult. However, the results help understanding properties of

graphene, e.g. the Dirac points appear at the Fermi level in pure graphene. Carbon belongs to group-IV and the outmost

electrons exist in the orbitals 2s, 2px, 2py , 2pz . It is easy to see that these orbitals form sp2-hybrids and the electronic

states separate to σ-electrons (sp2) and π-electrons (pz). σ-electrons form the honeycome through covalent bonding and

the energy bands lie at low energy region. Then the electronic states placed around the Fermi level are π-electrons. Hence

we consider Schrödinger equation on π-electrons on the honeycomb lattice.

We write the equation as
ψ = H ψ, (6C.2)

and as Fig. 6C.1(a), we separate the lattice sites to A-sites and B-sites on different sub-lattices. We consider a kind of

A

B x

y

kx

ky

a1

a2

b1

b2

(a) (b)

G

K

K

M

Fig. 6C.1 (a) Two dimensional cryatal structure of graphene. Carbon atoms form a honeycomb lattice. It can be also
viewed as an overlap of two face-centered square lattices placed at A and B positions. (b) Reciprocal lattice of (a).
b1, b2 are the primitive reciprocal lattice vector corresponding to a1, a2. The centtral point of the first Brillouin zone
is Γ-point and as other points with high symmetries, K-point and M-point are indicated in the figure.
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Fig. 6C.2 Vectors indicating three directional couplings between near-
est neighbor carbon atoms.

tight-binding approximation between the two-sites. That is

ψ = ζAψA + ζBψB, (6C.3)

ψA =
∑
j∈A

exp(ikrj)ϕ(r − rj), (6C.4a)

ψB =
∑
j∈B

exp(ikrj)ϕ(r − rj), (6C.4b)

where ϕ(r) is atomic wavefunction of π-electrons, rj are the lattice points. Here we write the matrix elements of the

Hamiltonian between the each sub-lattice wavefunctions as

HAA = ⟨ψA|H |ψA⟩, HBB = ⟨ψB|H |ψB⟩, HAB = H∗
BA = ⟨ψA|H |ψB⟩. (6C.5)

And the number of atoms in the system is 2N , that is

⟨ψA|ψA⟩ = ⟨ψB|ψB⟩ = N. (6C.6)

Let ⟨ψA|ψB⟩ be zero. We substitute (6C.3) to (6C.2). The condition of have non-trivial (ζA, ζB) givies the cecular

equation ∣∣∣∣HAA −NE HAB

HBA HBB −NE

∣∣∣∣ = 0. (6C.7)

Lastly
E = (2N)−1

(
HAA +HBB ±

√
(HAA −HBB)2 + 4|HAB|2

)
≡ hAA ± |hAB|, (6C.8)

where we have used HAA = HBB, which comes from the symmetry, and we use lower cases for the quantities per atom

with being devided by (2N)−1.

HAB =
∑

l∈A,j∈B

exp [ik(rj − rl)] ⟨ϕ(r − rl)|H |ϕ(r − rj)⟩r. (6C.9)

We further approximate that the off-diagonal matrix elements of H just exist between the nearest neighbor sites. For the

calculation we take the atom indicated as A in Fig. 6C.1(a) as the center atom. The vectors from A to the nearest neighbor

atoms 1, 2, 3 are di(i = 1, 2, 3) respectively. As is apparent from the figure,

k · d1 =
kxa√
3
, k · d2 =

(
− kx

2
√
3
+
ky
2

)
a, k · d3 =

(
− kx

2
√
3
− ky

2

)
a, (6C.10)

where a = |a1| = |a2|. The terms ⟨ϕ(r− rl)|H |ϕ(r− rj)⟩r should be equal due to the symmetry and we write it as ξ.

Consequently the residual resonant integral from the crystal structure is the repetition of the above and

hAB =

 3∑
j=1

exp(ik · dj)

 ξ. (6C.11)
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E

kx

ky

Fig. 6C.3 Left: surface plot of eq.(6C.12). The figure shows the
appearance of Dirac points, where the vertices of energy corns crash
at the K-point. Upper: Schematical drawing of a Dirac point.

Substituting eqs.(6C.10), (6C.11) into eq.(6C.8), we get the following expressio for the energy.

E = hAA ± ξ

√
1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
. (6C.12)

The second term is the perturbation from the nearest neighbor resonant integral, which vanishes at K-point in the recip-

rocal space

(kx, ky) =

(
0,±4π

3a

)
,

(
2π√
3a
,±2π

3a

)
,

(
− 2π√

3a
,±2π

3a

)
. (6C.13)

We write ky = 4π/3a and around kx = 0(one of the K-points), eq. (6C.12) can be approximated as

E

(
kx,

4π

3a

)
≈ hAA +

√
3ξa

2
|kx|. (6C.14)

Namely, at the K-point the upper band has a lower pointed shape. Because the same for the lower band and as a result,

at the K-point, as shown in Fig. 6C.3, the band structure called Dirac point, which has no energy gap, no effective mass,

appears.

Equation (6C.12) is for a very simplified model. Just like a cosine band appeared in the tight-binding model in one-

dimension, the model itself does not have realistic meaning. However the model tells that the reason why we have the

Dirac points at K-points is that the exsittence of three equivalent resonant integrals in eq. (6C.11). The inference holds for

the band calculation with any level precision since it is based on the symmetry. That meas the K-points in real graphene

are really Dirac points.
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