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In the last lecture, we stopped at the molecular field approximation of anti-ferromagnetic Heisenberg model. The

lecture note was at the beginning of ferrimagnetism. I would like to add the treatment of parallel magnetic field to

spontaneous (internal) magnetization of an anti-ferromagnetic state. And would like to change some notations in the

ferrimagnetic part. Hence, here, I would like to rewrite the ferrimagnetic part.

5.5.1 Parallel susceptibility

Next we consider the case that the external magnetic field is parallel or anti-parallel (collinear) to the spontaneous

magnetizations of sublattices. The Heisenberg model is completely isotropic. If we assume that the system always takes

the lowest energy state, then the magnetization should rotate to be perpendicular to the external magnetic field. However

real materials usually have some magnetic anisotropies that lock the directions of moment. We thus consider the case the

external field is collinear to the spontaneous magnetization. The effective fields in A and B sublattices are written as

Beff(A) = B +Bsub(A), (5.37a)

Beff(B) = B +Bsub(B). (5.37b)

Because the vectors are collinear, we do not use vector symbols here. Then as is due course, we write down a set of

self-consistent equations for magnetizations as

〈MA〉 = µSBS

[
µS

kBT

(
B +

2αzJ

µ2
〈MB〉

)]
,

〈MB〉 = µSBS

[
µS

kBT

(
B +

2αzJ

µ2
〈MA〉

)]
,

(5.38)

where BS(x) is the Brillouin function. With solving the above and from the relation *1 ，

χ∥ = lim
B→0

MA +MB

B
, (5.39)

Fig. 5.1 Left panel: Schematic diagram of temperature dependent susceptibility in the molecular field approximation
of the anti-ferromagnetic Heisenberg model. The susceptibilities for magnetic field perpendicular (χ⊥) and parallel
(χ∥) to the spin polarization. Measured susceptibilities of (a) GdNiGe3, (b) MnF2. From [1].

*1 As is the case of spontaneous ferromagnetic magnetization, we need to solve the equation numerically.
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Fig. 5.2 Examples of spin configurations in metal oxides, fluorides. (a) and (b) shows the spin-directions at magnetic
ions. (c) also shows the positions of F-atoms. (a) MnO. From [2]. Red broken lines show the sheets of aligned spins.
(b) NiO. From [3]. (c) MnF2. From [4].

we obtain the parallel magnetization.

From eq. (5.38), in the limit of T → 0, MA = −MB = µS as in the case of ferromagnetism, χ∥ → 0. On the other

hand, χ∥ = χ⊥ at T = TN The susceptibility, thus has a large anisotropy below TN as shown in the left panel of Fig. 5.1.

Though the situation of perpendicular field to the sublattice magnetization cannot be realized in the Heisenberg model, a

small anisotropy may enable it. In many anti-ferromagnets, such properties have been really observed. Figure 5.1(a), (b)

show examples of GdNiGe3, MnF2, which are claimed to be close to the anti-ferromagnetic Heisenberg model.

5.5.2 Antiferromagnetic insulators

So far, we have discussed the magnetic susceptibility of antiferromagnetic materials with a very simple two-

dimensional Heisenberg model. As mentioned in the section on superexchange interactions, oxides and fluorides of

magnetic metals are often antiferromagnetic. Figure 5.2 shows examples of spin configurations in anti-ferromagnetic

insulators. As in the Heisenberg model, neighboring (though with intermediate negative ions) spins at magnetic ions

have opposite directions. As can be seen in the figure, actual “sublattices” can be taken as two-dimensional spin-aligned

sheets. In such a case, the structure is a kind of magnetic superlattice.

In an anti-ferromagnetic ordered state, the spins have a periodic structure with a larger volume than that of lattice (unit

cell). This is sometimes called a spin-superlattice. For this situation, we can apply a concept called magnetic unit cell,
which is the unit of periodicity including the spin configuration. These two kinds of unit cell lengths are indicated in

Fig. 5.2(a).

χu in eq. (5.31a) does not diverge because J < 0. Instead it shows the temperature dependence

χu ∝ 1

T + θ
, (5.40)

which is different from the Curie law. This θ is called Weiss temperature.

The Néel temperatures and the Weiss temperatures of typical anti-ferromagnets are liste in Tab. 5.1. From

eqs. (5.31,32), these two kinds of temperatures should be symmetric to 0 K. Of course, a simple model even without

anisotropy should give results far different from the reality. However, there is some rough correlation between them.
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Material Lattice-type of magnetic ions Néel temperature (K) Weiss temperature (K)

MnO fcc 116 610

MnS fcc 160 528

MnTe hexagonal 307 690

MnF2 bct 67 82

FeF2 bct 79 117

FeCl2 hexagonal 24 48

FeO fcc 198 570

CoCl2 hexagonal 25 38

CoO fcc 291 330

NiCl2 hexagonal 50 62

NiO fcc 525 ∼ 2000

Cr fcc 308

Tab. 5.1 Néel temperatures and Weiss temperatures of typical anti-ferromagnets.

5.5.3 Spin flop transition and metamagnetism

Consider a general material with susceptibility χ. With increasing the external magnetic field, the energy gain due to

the magnetization is

Em = −
∫ B

0

M(B′)

µ0

dB′

µ0
= −χ

∫ B

0

B′

µ0

dB′

µ0
= − χ

2µ2
0

B2. (5.41)

In the region T < TN, χ⊥ > χ∥ as shown in Fig. 5.1, hence the energy is lower for the magnetic field perpendicular to

the sublattice magnetization. As mentioned in the beginning of “parallel susceptibility,” with increasing a parallel field,

the energy difference overcomes the anisotropic energy K at a certain point, at which the sublattice magnetizations rotate

to the direction perpendicular to the magnetic field. This is called spin flop transition. The critical field is obtained from

χ⊥ − χ∥

2µ2
0

B2
c = K, (5.42)

as

Bc = µ0

√
2K

χ⊥ − χ∥
. (5.43)

After the transition, the field also gives an oblique angle to sublattice magnetizations as shown in Fig. 5.3(a). In the

process of increasing field, the total magnetization increases with the field proportionally and saturates at the field of

complete polarization.

In conventional anti-ferromagnets, this critical field is too large to reach in many of laboratories. Recently, however,

there have been many reports on the spin flop transition in nano-ferromagnets or in molecular ferromagnets. Figure 5.3(b)

shows such an example of a crystal composed of a polymer {[Mn2(bpdo)(H2O)4][Nb(CN)8] · 6H2O}n. It has Néel

point at TN=15 K, which is comparatively low. We observe a clear spin flop transition at around 0.6 T at 1.8 K.

So far we have considered the case of nearest-neighbor-only exchange interaction. That is, only inter-sublattice in-

teraction is considered and intra-sublattice interaction is ignored. In reality, the super-exchange interaction often works

between spins in a sublattice (intra-sublattice interaction). In some cases, an anti-ferromagnetism at zero field is realized

by a small difference in inter-sublattice anti-ferromagnetic interaction and intra-sublattice ferromagnetic interaction. In

such a case, increasing the external field lowers the energy of magnetic moments parallel to the field. And at a certain
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Fig. 5.3 (a) Illustration of spin flop transition (red line) and metamagnetism (blue line). (b) Spin flop transition
appeared in a polymer anti-ferromagnet {[Mn2(bpdo)(H2O)4][Nb(CN)8] · 6H2O}n. The inset shows the suscepti-
bility at a low (0.1 T) field. It is an anti-ferromagnet with TN=15 K, with the spin-easy axis along a-axis. From [5].
Lower panel shows the molecular structure with axes b (pointing up), c (pointing left), a (coming up from this paper).
(c) Examples of metamagnetic transition in a Mott insulator Sm0.5Ca0.25Sr0.25MnO3[6].

field, the whole system goes to a ferromagnetic, which phenomenon appears as a sudden or steep increase in magnetiza-

tion up to the saturation. This is called meta-magnetism[6]. An example is shown in Fig. 5.3(c). Meta-magnetism often

has strong temperature dependence. If we fix the magnetic field close to the critical field, the temperature also drives a

meta magnetic transition, which gives a very large (∂M/∂T )B . From eq. (2.114), this is very advantageous for magnetic

refrigeration. And now the application of meta-magnetism to high-efficiency magnetic refrigeration is active([7] is an

example from a helimagnetism).

5.6 Ferrimagnetism

The most typical material of magnetic insulators is ferrite, which I

mentioned in the beginning of this chapter.

5.6.1 Magnetism in ferrite

In the ferromagnetism of ferrite (AFe2O4, A=Mn, Co, Ni, Cu, Zn,

· · · ), the spin-alignment is a mixture of anti-ferro and ferro types. Be-

cause the sublattices have different magnetic moments, they do not cancel

out. As a result a total finite spontaneous magnetization appears. Such

magnetism is named ferrimagnetism after ferrite.

In the unit cell of spinel-type ferrite, there are 16 Fe3+, 8 M2+, 32

O2−. Spin magnetic moments at Fe ions are mostly cancelled by anti-

ferromagnetic interaction, and spins at M2+ survive, causing the ferri-

magnetism. The expected magnetic moments of ferrite and experimental values along with this statement are listed

below showing a good agreement.
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Materials MnFe2O4 FeFe2O4 CoFe2O4 NiFe2O4 CuFe2O4

Moment (Theory) 5µB 4µB 3µB 2µB 1µB

Moment (Exp.) 5.0 4.2 3.3 2.3 1.3

TN (K) 783 848 793 863 728

A bit detailed discussions on the magnetism of ferrite can be found in ref. [8] (in Japanese), or in refs. [9, 10]. For the

application of ferrite magnetism, refer to refs. [11, 12]. Ferrite is extremely important in industrial application. They show

various magnetism depending on species of M, crystal types and shapes of samples. Even now, research is extremely

active, and many review papers for each individual ferrite can be found even in the last few years.

5.6.2 Molecular field approximation of ferrimagnetism

We here use a Heisenberg model with unbalanced sublattices A and B.

BA = αMA + (−γ)(−MB) = αMA + γMB, (5.44a)
BB = γMA + βMB, (5.44b)

where we consider not only inter-sublattice exchange interaction but also intra-sublattice interaction. The imbalance is

taken into account by the difference between α, β. The inter-sublattice interaction is γ (must be common).

5.6.3 Magnetization below the Néel temperature

The set of self-consistent equations for magnetizations MA and MB in sublattices is from molecular field approximation

(5.44) as

MA = µSABSA

[
µSA

kBT
(αMA + γMB)

]
, (5.45a)

MB = µSBBSB

[
µSB

kBT
(γMA + βMB)

]
, (5.45b)

where the Brillouin function is written as BS(x). Though µ = gµB may be different for sublattices if g-factors are

different, we here assume they are common for simplicity.

To obtain MA, MB, thus the total magnetization M = MA −MB, we need to solve eq. (5.45) numerically.

In such compensated ferrimagnetism, magnetizations show complicated temperature dependences below Néel temper-

ature due to the differences between SA and SB, α and β. As an example, compensated ferrimagnetism is displayed in

(a) (b)

Fig. 5.4 (a) Conceptual scheme of compensated ferrimagnetism. (b) Compensated ferrimagnetism appeared in the
magnetization of amorphous alloy Gd-Co-Mn. From [13].
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Fig. 5.4. In conceptual diagram in Fig. 5.4(a), A-sublattice has a larger lowest temperature magnetization (SA > SB).

On the other hand, B-sublattice has a larger intra-sublattice interaction (β < α), then the growth of magnetization MB

below Néel is faster with lowering the temperature. Hence in a certain temperature region lower than TN, MB > MA

holds and as indicated by the broken line MA − MB is negative though in the measurement, magnetization M parallel

to the field always has lower energy and the green line is observed. With lowering of temperature, MA increases and

the total magnetization disappears at the point of MA = MB. But with further lowering of temperature, MA > MB

and the magnetization reappears. As a whole, it becomes a curious temperature dependence as shown by the green line.

Figure 5.4(b) shows such a temperature dependence of an amorphous alloy Gd-Co-Mo[13]. In “complete compensation

type” ferrimagnetism, there is a difference in intra-interaction but the sublattice magnetic moments are the same and the

total magnetization disappears at lowest temperatures[14].

5.7 Helimagnetism

It is not alway possible to separate a spin system with anti-ferromagnetic interaction into a small numbers of magnetic

sublattices. Also as considered in the previous section, ranges of interactions may span over more than single (magnetic)

lattice constant. Let us consider helimagnetism, that appears in such a complex system in a Heisenberg model. It has a

spiral-like spin configuration, which shows considerable difference from parallel/anti-parallel (collinear) configurations

so far considered. In the treatment of anti-ferromagnetism, firstly the anti-ferromagnetic ground state (Néel ordered state)

is given. Then the molecular field is considered based on the state. This time, we have a look on the process to find out

the ground state[15].

5.7.1 Classical Heisenberg model

Here the exchange interaction potential J depends on the combination of sites (i, j) and a site-dependent magnetic

field Bi is working on each site.
H = −

∑
⟨i,j⟩

JijSi · Sj − µ
∑
i

Bi · Si. (5.46)

However we put Bi = 0 for a while. And in the first place, to see that a helical spin configuration can be stable, we

consider a classical Heisenberg model, in that the spins are treated as classical vectors.

To look for an ordered stated, we assume an ordered state and perform Fourier expansion as

〈Si〉 =
1√
N

∑
q

〈Sq〉 exp(iq · ri). (5.47)

Then
| 〈Si〉 |2 = S2 =

1

N

∑
q,q′

〈Sq〉 · 〈Sq′〉 exp(i(q + q′) · ri) (5.48)

Now the expectation value of Hamiltonian can be written as

〈H 〉 = −
∑
⟨i,j⟩

Jij 〈Si〉 · 〈Sj〉 = −
∑
q

Jq 〈Sq〉 · 〈S−q〉 , (5.49)

where
Jq =

∑
j

Jij exp[−iq · (ri − rj)] (5.50)

is the Fourier transform of the interaction potential. Taking the sum of both sides of eq. (5.48)on subscript i, the right

hand side is
1

N

∑
i

∑
q,q′

〈Sq〉 · 〈Sq′〉 exp(i(q + q′) · ri) =
∑
q,q′

〈Sq〉 · 〈Sq′〉 δq,−q′ .
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Then
NS2 =

∑
q

〈Sq〉 · 〈S−q〉 . (5.51)

This works as a condition fulfilled by the classical solution.

In the Heisenberg model, Jij = Jji and also is real, Jq should be an even function of q. We then assume that Jq takes

the maximum (i.e., has a repeating structure with a finite period), and let ±Q be the wavenubers that give the maxima to

Jq . When Q = K −Q with an inverse lattice vector K, the system is in classical anti-ferromagnetic state, and out of

our scope here. Then though it is a bit bold, under the condition (5.51), we assume

〈SQ〉 6= 0, 〈S−Q〉 6= 0, (others) = 0. (5.52)

Then eq. (5.48) can be written as follows:

NS2 = 〈SQ〉 · 〈SQ〉 exp(2iQ · ri) + 〈S−Q〉 · 〈S−Q〉 exp(−2iQ · ri) + 2 〈SQ〉 · 〈S−Q〉 . (5.53)

Because the sum in the rhs of eq. (5.51) should be taken for q = ±Q, in the

present case 2 〈SQ〉 · 〈S−Q〉, that just corresponds to the third term in eq. (5.53).

From the above we get

〈SQ〉 · 〈SQ〉 = 〈S−Q〉 · 〈S−Q〉 = 0. (5.54)

This condition is, for example, for 〈SQ〉,

Re[〈SQ〉] = a, Im[〈SQ〉] = b 7−→ |a|2 − |b|2 = 0, a · b = 0, (5.55)

that is, the amplitude of the real and the imaginary parts are the same and they

should be orthogonal. Then, we can write

〈SQ〉 =
√
N

2
S(u− iv), (5.56)

where u and v are orthogonal unit vectors. This leads to the expectation value of spins in the ground state:

〈Si〉 = S[u cos(Q · ri) + v sin(Q · ri)]. (5.57)

In this spin configuration, the spin rotates along and around Q-axis in the plane stretched by (uandv). The con-

figuration is called helical spin structure. Though the structure is affected by crystal anisotropy in real materials, the

theoretical Heisenberg model is isotropic and the plane of (u,v) can be taken to any direction.

5.7.2 Molecular field approximation

Based on the classical ground state, we apply the molecular field approximation, by introducing the site-dependent

magnetic field
Bi = Bq[u cos(q · ri) + v sin(q · ri)] (5.58)

into eq. (5.46). We write the averaged spin as

〈Si〉 = mq[u cos(q · ri) + v sin(q · ri)]. (5.59)

Then along with molecular field procedure, the effective Hamiltonian at site i is given by

Heff(i) = −(2mqJq + µBq)[u cos(q · ri) + v sin(q · ri)] · Si. (5.60)

Then as is the course, a self-consistent equation is given by

mq = SBS

[
S

kBT
(2mqJq + µBq)

]
. (5.61)
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This has a just same form as that in the ferromagnetism. If we define “helical magnetization” as µmq , we obtain the

helical magnetization in paramagnetic states as

χq = lim
Bq→0

µmq

Bq
= χ0

(
1− 2Jq

µ2
χ0

)−1

. (5.62)

The critical temperature for the appearance of helical order TQ is given by

kBTQ =
2

3
S(S + 1)JQ. (5.63)

5.7.3 Observation of helimagnetism, skyrmion excitations

In the above, a helimagnetism in a Heisenberg model is considered. In real materials, it is said that NiBr2 or β-MnO2

may have situations close to the model. There have been found many materials with helimagnetisms. Holmium (Ho)

has a helimagnetism originated from the RKKY interaction. The Dyaloshinsky-Moriya (DM) interaction often causes

helimagnetism.

Here I would like to introduce an experimental method called “Lorentz microscope” for observing real space image

of magnetic structure, and observation of helimagnetism and related magnetic phenomena. One of the most powerful

methods to observe spin configurations is the neutron diffraction. Actually one of the motivations for finding helimag-

netism was an anomalous neutron spectrum of β-MnO2, etc. Despite the powerfulness of neutron diffraction in detecting

periodic structures, it has difficulties in catching local real space images. Lorentz transmission microscope is one of the

methods to observe local images *2.

Figure 5.5 shows the principle of Lorentz microscope, which utilizes the bending of electron beams by Lorentz force

from the magnetic field in samples. Complete re-focusing of electrons, however, restore the bending resulting in no-

Fig. 5.5 Left panel: Illustration of electron beam lines in a Lorentz microscope. Focused electron beams go though
a sample, and re-focused by electron lenses for forming an image on a screen. Three right panels: When the sample
has inner magnetic field, the Lorentz force gives curving on the electron beams. Left in right: When the screen is just
at the focal level, the bending are restored to have no contrast. Center in right: When the screen is a bit far, the over
focusing results in a contrast. Right in right: When the screen is closer, the under focusing also results in a contrast.
From Li-cong et al. Ch. Phys. B 27, 066802 (‘18).

*2 There are many others like traditional observation of distribution of magnetic powders, micro MOKE with utilizing the Kerr rotation, magnetic
force microscope, which detects magnetic field gradient, scanning SQUID, etc.
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Fig. 5.6 Left: Cubic ϵ-FeSi (B20-type) structure without centrosymmetric point. A: Illustration of helimagnetism.
B: Expected contrast in Lorentz micrograph for an observation in the angle of z-axis. C: False colored real space
imaging of helimagnetism in Fe1−xCoxSi at 20 K by a Lorentz microscope. D: Magnetic moment along z-axis
deduced from the above[16].

contrast. Hence as illustrated in the right two panels in Fig. 5.5, the beams are a bit defocused to have a contrast, of which

the intensity is reversed by the direction of defocusing.

Figure 5.6 shows an example of observing helimagnetism. The sample is Fe1−xCoxSi in a non-centrosymmetric cubic

ϵ-FeSi (B20) structure. Because of the lack of inversion symmetry, a term in similar form as an electric field appears in

electric effective Hamiltonian and causes strong spin-orbit interaction. This leads to a strong DM interaction that creates

the helimagnetism.

When one observes a helimagnetic spin ordered state in a side-view, as in Fig. 5.6A, B, the magnetization is modulated

Fig. 5.7 Left: Experimentally obtained phase diagram of Cu2OSeO3. At low temperatures, low magnetic fields, it
shows a helimagnetism, which is overtaken by a phase with skyrmion excitations with increasing the magnetic field.
With further increase of the field, it changes to a ferrimagnetism. Right: A: Unit cell structure of Cu2OSeO3. B: Cu
spin configuration in the ferrimagnetic phase. C ∼ G: Lorentz microscope images. At low magnetic field, a stripe
due to helimagnetism, and at middle fields images of skyrmion are observed. H: shows schematic view of a skyrmion
spin configuration. From ref. [17].
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wavy in space. This corresponds to a Fresnel configuration of Lorentz microscope and actually in the image, a striping

contrast is observed as in Fig. 5.6C.

Figure 5.7 shows skyrmion excitations observed with a Lorentz microscope. This is observed in Cu2OSeO3, which

does not have inversion symmetry in lattice as shown in Fig. 5.7A, and the DM interaction causes a helimagnetism as in

the phase diagram at low temperatures and at low magnetic fields. The helimagnetic phase is detected as stripe images

by a Lorentz microscope as in C, F. With increasing the magnetic field, a phase with skyrmion excitation appears as in

D, G, E. They are observed to be aligned periodically. Further increase in the field drives the system into a ferrimagnetic

phase, of which spin configuration is shown in B.

5.8 Spin wave

The phase transitions with appearance of spontaneous magnetizations like ferromagnetic transition are an example of

spontaneous symmetry breakings. They are also associated with the appearance of excited states called spin wave. Let

us have a look on them.

5.8.1 Ferromagnetic spin wave

Here we need to consider dynamical properties of spins in ordered states. For that in ferromagnetic Heisenberg model

(5.1), we consider the time evolution of operator Si by applying the Heisenberg equation of motion as

ℏ
dSi

dt
=

1

i
[Si,H ] = −2J

∑
δ

Si+δ × Si − µB × Si, (5.64)

where δ is taken for the nearest neighbor of i. This calculation can be followed, with the use of commutation relation

[Sα, Sβ ] = iSγ , (α, β, γ) = (x, y, z; cyclic), e.g., as

[Sx
i , S

x
i S

x
j + Sy

i S
y
j + Sz

i S
z
j ] = [Sx

i , S
y
i S

y
j ] + [Sx

i , S
z
i S

z
j ] = i(Sz

i S
y
j − Sy

i S
z
j ) = i(Sj × Si)x.

Equation (5.64) is in the form of equation of motion for precession around the effective field (the external field plus the

nearest neighbor interaction). Then we can foresee that the precessions are chained through the exchange interaction and

forms a wave propagates over the spins. To see that we need to consider higher order approximation than the “averaged”

field.

Then we consider the Fourier transform

Sq =
1√
N

∑
i

Si exp(−iq · ri), Jq =
∑
δ

J exp[−iq · (ri − ri+δ)], (5.65)

and with substituting the inverse Fourier transformation into eq. (5.64), we represent (5.64) in the Fourier transformation

as
ℏ
dSq

dt
= − 2√

N

∑
q′

Jq′Sq′ × Sq−q′ − µB × Sq. (5.66)

With the above, we extract a wave from the precessions of spins. By taking z-axis along magnetic field B, 〈S0〉 =
√
NSez has by far the largest expectation value in a ferromagnetic state. Hence in the first term of rhs of (5.66), we

ignore the terms other than 〈S0〉 to obtain

ℏ
dSq

dt
= −[2(J0 − Jq)S + µB]ez × Sq. (5.67)
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In each component 
ℏ
dSqx

dt
= [2(J0 − Jq)S + µB]Sqy,

ℏ
dSqy

dt
= −[2(J0 − Jq)S + µB]Sqx,

ℏ
dSqz

dt
= 0.

(5.68)

For Sqx and Sqy these are harmonic oscillator equations. By comparison of this with

Sqx + iSqy ∝ exp[−iϵqt/ℏ], (5.69)

we obtain the energy ϵq of precession in q space as

ϵq = 2(J0 − Jq)S + µB. (5.70)

Because the precession is in q-space, this represents a propagating wave in real space.

5.8.2 Holstein-Primakoff transformation

As is the case of Larmor precession, the equation of motion derived quantum mechanically has the same form as

classical one. Then next we consider quantization of this wave. For a spin operator S, we write an eigenfunction |m〉 of

Sz with eigenvalue m (m = −S,−S + 1, · · · , S − 1, S). The operation of up-down operators S± = Sx ± Sy gives

S+ |m〉 =
√
S(S + 1)−m(m+ 1) |m+ 1〉 ,

S− |m〉 =
√
S(S + 1)−m(m− 1) |m− 1〉 .

}
(5.71)

Let us express a spin operator with creation and annihilation operators a†, a of bosons. For that we take the state

Sz = S, i.e., |S〉 as the vacuum of boson, and |S − n〉 as n boson state. Namely,

a |S〉 = 0, |S − n〉 = 1√
n!
(a†)n |S〉 . (5.72)

Then with n̂ = a†a, we can formally write
Sz = S − n̂,

S+ =
√
2S − n̂ a,

S− = a†
√
2S − n̂.

 (5.73)

The above is called Holstein-Primakoff transformation.

Appendix 9A: Various “magnetism”

There are many ways to classify magnetisms and the classification itself is not very important. For example, as a

macroscopic phenomena, there is “ferromagnetism”. However this contains a wide variety of magnetisms including

“all-aligned” simple magnetism, ferrimagnetism, canted anti-ferromagnetism, etc. If we count for metastable configura-

tion, the number of classes is huge, and the classification brings little knowledge. Here I would like to introduce some

magnetisms to have smooth talks with experts on magnetism.
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9A.1 Paramagnetism

So far we have seen the paramagnetism by local moments and that by itinerant electrons (Pauli paramagnetism). The

Pauli paramagnetism usually have smaller contribution to the susceptibility and for the detection, a combination with

other methods is usually required.

There are the cases that a finite number of spins form an ordered state, which does not spread over the system. Such a

system generally shows paramagnetism with a huge magnetic moment, which is called superparamagnetism. The be-

havior of susceptibility resembles those of anti-ferromagnetism or spin-glass. Distinction of these is sometimes difficult.

9A.2 Diamagnetism

As we saw in the Landau diamagnetism in metals, usually diamagnetism originates from orbital motion of electrons. It

sometimes becomes very large reflecting peculiar band structures as we saw in the section of graphite. Since water also

has a large diamagnetism, various things including water cause magnetic levitation in a very large magnetic field. As a

bit special example, the superconductors have perfect diamagnetism (the Meissner effect).

9A.3 Ferromagnetism

As mentioned at the beginning of this section, there can be various definitions of ”ferromagnetism.” It often refers to the

case where itinerant electrons exist like metal and their spins become imbalanced to generate spontaneous magnetization.

Also ferrimagnetism is often called ”ferromagnetism.”

9A.4 Anti-ferromagnetism

すでに見たように，磁気副格子内でスピンの向きが揃っているが，副格子のモーメントが互いに反転しているため
に全体としては自発磁化を持たないように見える (帯磁率が発散しない)ものを反強磁性と呼ぶ．

9A.5 Ferrimagnetism

As in anti-ferromagnets, neighboring moments have antiparallel alignment. However because there are unbalances in

the size of moments or the numbers of magnetic sublattices, total spontaneous magnetization appears in ferrimagnetism.

Oxide ferromagnets like ferrites, garnets are this type.

9A.6 Canted anti-ferromagnetism

This type also has anti-ferromagnetic interactions though the moments in magnetic sublattices are not completely

inverted, but canted. Some of ferrite. Total spontaneous magnetization is generally small (weak ferromagnetism).

9A.7 Helimagnetism

The magnetic moments are arranged helically in space, and total spontaneous magnetization vanishes. On the other

hand, ”chirality” occurs depending on the winding direction of the spiral, which causes various phenomena. In some

cases, a topological excitation called “skyrmion” appears, and they form a lattice. This kinds of materials have been

attracting attentions in these decades.
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9A.8 Spin density wave

The state in which the spin density and direction are spatially distributed in a wavy manner is called the spin density

wave (SDW). There are also anti-ferromagnetic SDW without total magnetization, and ferrimagnetic SDW with a total

magnetization.

9A.9 Spin glass

When the localized magnetic moments exist randomly in space and the interaction between the moments is also ran-

dom, the angles of the moments are randomly frozen, as in a glass state (amorphous state) in which atoms are randomly

aggregated. This is called spin glass. It is found in dilute magnetic alloys containing magnetic atoms as impurities. In

ferromagnetism and anti-ferromagnetism, there are only a few stable states of free energy, but in spin glass, there are

a large number of metastable points. The Nishimori quantum annealing theory is built on the mathematical similarity

between the relaxation from such metastable points to the true ground state by quantum tunneling (annealing) and a kind

of optimization problem. This is the basics of modern quantum annealing computation[18]．The behavior of the mag-

netism is similar to that of anti-ferromagnetic materials. When cooling in a magnetic field, the temperature dependence

becomes weaker on the lower temperature side than the spin glass transition point, and in zero magnetic field cooling,

the magnetism disappears near zero degrees. As the temperature rises, the magnetization also rises and joins the cooling

value in the magnetic field at the transition point.
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