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Last week, we have seen the Holstein-Primakoff transformation. However, we have skipped some elementary expla-

nation on the classical view of the spin wave, and here I added some explanations in Appendix 10A.

Why we need to introduce the method of Holstein-Primakoff transformation? Because the variable in the Hamiltonian

is now spin, which differs from the canonical variables in classical mechanics such as a spatial coordinate of an electron,

and the ordinary general method of quantum field theory cannot be applied. Various problems in the Holtein-Primakoff

way were pointed out, e.g., in [1]. A particularly problematic is the “extension” of functional space for n over 2S in

the form of eq. (5.72). It is proven that the operators of physical quantities have no matrix element between the original

functional space and the extended space[2]. However we need to be careful that the proof is for exact theories and some

approximations may create some elements. We can escape the problem in treating small n cases.

In the quantization of the Heisenberg model by the Holstein-Primakoff method, the quantized bosons have mutual

interaction due to the non-linear term in eq. (5.73). In order to ignore the interaction and to treat it as the sum of harmonic

oscillators, we apply the following approximation. The expansions of eq. (5.73) with n̂:

Ŝj+ =
√
2S

(
1−

a†jaj

4S
+ · · ·

)
aj ,

Ŝj− =
√
2Sa†j

(
1−

a†jaj

4S
+ · · ·

)
,

 (5.74)

are substituted to the Heisenberg model, to get

H = −2
∑
⟨i,j⟩

JijŜi · Ŝj = −2
∑
⟨i,j⟩

Jij{ŜizŜjz + (Ŝi+Ŝj− + Ŝi−Ŝj+)/2}

= −2
∑
⟨i,j⟩

Jij

[
S2 − S(n̂i + n̂j) + S(a†iaj + a†jai) + n̂in̂j −

1

4
a†ia

†
jajaj −

1

4
a†ja

†
jajai + · · ·

]
, (5.75)

where n̂i = a†iai. We take the terms to quadratic of ai, a
†
i to reach

H = −2
∑
⟨i,j⟩

Jij [S
2 − S(n̂i + n̂j) + S(a†iaj + a†jai)]. (5.76)

The result is the same if we take the terms with S in them.

We define the Fourier transform of a†j , aj as

aq =
1√
N

∑
j

aj exp(iq · r),

a†q =
1√
N

∑
j

aj exp(−iq · r).

 (5.77)

With substituting the above, the Hamiltonian is finally given by

H = −2
∑
⟨i,j⟩

JijS
2 + 2

∑
q

[J0 − Jq]Sa
†
qaq

= E0 +
∑
q

ℏωqa
†
qaq, (5.78)

which is in the form of a set of spin waves without mutual interaction. In this way, we can take into account the interaction

systematically with taking the higher order terms one by one. Such quantized spin waves as bosons are called magnons.
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5.8.3 Magnon approximation of low energy excitations

As we saw in the derivation of eq. (5.76), the approximation of harmonic oscillators corresponds to the ignorance of

the interaction between magnons. The approximation is not good for many-magnon excitation at high temperatures. We

thus consider the contributions of magnons to physical quantities at low temperatures. With taking the magnetic field

along z-axis, the magnetization is

M = µ

⟨∑
i

Siz

⟩
= µSN − µ

∑
i

⟨a†iai⟩ = µSN − µ
∑
q

n(ϵq), (5.79)

where

n(ϵ) =

(
exp

ϵ

kBT
− 1

)−1

(5.80)

is the Bose distribution function. From eq. (5.78), ℏϵq = 2S(J0−Jq . We assume the exchange interaction J works only

between nearest neighbors. We here consider a square lattice. Let a be the distance of nearest neighbors and q vector be

along a lattice direction. Then

ℏϵq = 2S(J0 − Jq) = 2SJ{2− [exp(iqa) + exp(−iqa)]} ≃ 2SJ

[
2− 2

(
1− (qa)2

2

)]
= 2SJ(qa)2. (5.81)

From the above, with use of the low temperature asymptotic form of the Bose distribution function, M is given by

M = µN

[
S − ζ

(
3

2

)(
kBT

8πJS

)3/2
]
, (5.82)

where ζ(x) is the Riemann’s ζ-function and ζ(3/2) ≈ 2.61.

Next, we consider the specific heat at low temperatures. The internal energy is obtained from the low temperature

asymptotic form of the Bose function and the dispersion relation as

U = E0 +
∑
q

n(ϵq) = E0 + 12πJSNζ

(
5

2

)(
kBT

8πJS

)5/2

, (5.83)

from which the specific heat is obtained as

C =
∂U

∂T
=

15

4
NkBζ

(
5

2

)(
kBT

8πJS

)3/2

. (5.84)

5.8.4 Anti-ferromagnetic spin wave

Next we proceed to the anti-ferromagnet. As in Sec. 5.5, we consider A and B sublattices with antiparallel mag-

netizations. We assume ferromagnetic Holstein-Primakoff transform can be applied to A-sublattice. Then a magnon

propagation in A-sublattice affects spins in B-sublattice and causes propagation of precession around z-axis. However in

B-sublattice the direction of the effective field is inverse and the direction of precession should be inverse. Consequently,

the system can be described as coexistence of two-types of magnons with a mutual interaction. Then we need to consider

another kind of bosons in B-sublattice. The vacuum should be the inverse of that in A-sublattice and |0⟩B = |−S⟩ Then

for site j in B-sublattice j (j ∈ B), we introduce the transform

Sjz = −S + b†jbj ,

Sj+ = b†j

√
2S − b†jbj ,

Sj− =
√

2S − b†jbjbj .

 (5.85)
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As in the case of ferromagnet, (5.73) and (5.85) are substituted into the anti-ferromagnetic Heisenberg model. Then

taking to quadratic of boson operators,

H = −αz|J |NS2 + 2|J |S
∑
⟨i,j⟩

(a†iai + b†jbj + aibj + a†i b
†
j), (5.86)

where i ∈ A, j ∈ B. Let the Fourier transform of ai, bj be written as

ai =

√
2

N

∑
q

aq exp(−iq · ri),

bj =

√
2

N

∑
q

bq exp(−iq · rj),

 (5.87)

then the Hamiltonian is re-written as

H = −αz|J |NS2 + 2αz|J |S
∑
q

[a†qaq + b†qbq + γ(q)(a†qb
†
q + aqbq)], (5.88)

where γ(q) is defined as
γ(q) = α−1

z

∑
ρ

exp(−iq · ρ) (5.89)

with ρ a vector connecting interacting two spins.

For the diagonalization of the Hamiltonian, we introduce the Bogoliubov transformation (aq, bq) → (αq, βq) as

aq = cosh θqαq − sinh θqβ
†
q,

bq = cosh θqβq − sinh θqα
†
q.

}
(5.90)

(αq, βq) satisfy the following boson commutation relations,

[αq, α
†
q] = 1, [βq, β

†
q] = 1, [αq, βq] = [α†

q, β
†
q] = 0. (5.91)

The Hamiltonian reads

H = −αz|J |NS2 + 2αz|J |S
∑
q

[(cosh 2θq − γ(q) sinh θq)(α
†
qαq + β†

qβq + 1)

− 1− (sinh 2θq − γ(q) cosh 2θq)(αqβq + α†
qβ

†
q)]. (5.92)

For the last off-diagonal term to vanish, we should choose the parameter θq as

sinh 2θq/ cosh 2θq = tanh 2θq = γ(q). (5.93)

Hence the diagonalized Hamiltonian is given by

H = −αz|J |NS2 + 2αz|J |S
∑
q

[(
√

1− γ(q)2 − 1) +
√
1− γ(q)2(α†

qαq + β†
qβq)]. (5.94)

In eq. (5.94), the first two terms without operator represent the ground state energy. The first term is the energy of

Néel ordered state. The second term can be interpreted as the zero-point motion energy of magnons. The classical

Néel ordered state is not the quantum mechanical ground state unlike the ferromagnetic case. Namely the original

Sjz = S, S − 1, · · · ,−S states are hybridized though the anti-ferromagnetic interaction and the perturbation decreases

the ground state energy. Accordingly, the expectation value of spin size diminishes from the full-size of S. The amount

of the decrease is

⟨Sjz⟩ = S − 2

N

∑
q

sinh θq = S − 1

N

∑
q

(
1√

1− γ(q)2
− 1

)
. (5.95)

The table below shows the decreases in spin size (∆ = S − ⟨Sjz⟩), and the variation in energy (ϵ is defined as E0 =

N |J |αzS(S + ϵ)), calculated for some simple lattice structures[3].
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Lattice Square Simple Cubic Body Centered Cubic

∆ 0.917 0.078 0.0593

ϵ 0.158+0.0062S−1 0.097+0.0024S−1 0.073+0.0013S−1

The anti-ferromagnetic magnons expressed by the last two terms, degenerate reflecting the equivalency of A- and

B-sublattices. The dispersion relation is obtained from

ϵq = 2αz|J |S
√

1− γ(q)2. (5.96)

γ(q) defined in eq. (5.89) can be calculated, e. g., for simple cubic lattice with a unit cell size a, the dispersion in the

long wavelength limit is given by
ϵq = 2

√
2αz|J |Saq, (5.97)

which is linear in q.

Specific heat is a quantity to be compared with experiments. As in the case of ferromagnet, we consider the internal

energy which is given in the case of simple cubic lattice by

U = E0 +
π2

15
N

(
kBT

2
√
2αz|J |S

)3

kBT, (5.98)

whereE0 is the ground state energy given by the first two terms in eq. (5.94). The calculated specific heats are summarized

in the following table including the cases of 1D, 2D, etc.[3]．

Lattice 1D Chain 2D Square Lattice 3D Simple Cubic

− E0

αz|J |NS2
1+0.363S−1 1+0.158S−1 1+0.097S−1

C

NkB

2π

3

(
kBT

2αz|J |S

)
14.42

π

(
kBT

2αz|J |S

)2

4
√
3
π2

5

(
kBT

2αz|J |S

)3

∆S Diverge 0.197 0.078

The original purpose of considering magnons is to treat thermal fluctuation at low temperatures correctly. Particularly

for anti-ferromagnets, there are real materials close to the theoretical models. Hence it is important whether the simple

models can explain such experiments. Figure 5.8 shows the crystal structure and the measured specific heat of an organic

Fig. 5.8 Crystal structure and specific heat of κ-(BETS)2FeX4. Left: (a) Molecular structure of BETS. (b) Crystal
structure viewed from b-axis. BETS molecules are in line with alternative oblique angles. (c) Crystal structure viewed
from c-axis. Right: Low temperature specific heat of a sample with X=Br. The contribution from phonons with T 3

dependence is indicated by a black line. The inset shows CpT
−1 as a function of T 2[4].
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anti-ferromagnet κ-(BETS)2FeBr4 (BETS = bis(ethylenedithio)tetraselenafulvalene)[4]. This material is not an insulator

having metallic conductivity. At low temperatures, it undergoes an anti-ferromagnetic transition at TN =2.47 K, and

further, a superconducting transition at 1.1 K. The crystal shown in the left panel is composed of stacking of comparatively

small molecules. Electrons in π-bonds spread over ab plane, which is stacked along c-axis. The anti-ferromagnetism

originates from 3d-electrons in Fe with S =5/2. There are Jdd, which is direct interaction between d’s, and Jπd, which

is mediated by π.

The right panel in Fig. 5.8 displays the measured specific heat, which shows very sharp increase at TN. This corresponds

to the jump at TC in the figure in Sec. 5.3. The inset shows Cp/T as a function of T 2. An ordinary metal has a specific

heat Cm = AT + BT 3 from an electron contribution (∝ T ) and a lattice contribution (∝ T 3). This is written as

Cm/T = A+ BT 2 and expressed as a line in this plot. The contribution of electrons is negligibly small as known from

the fitting at high temperatures. The heat capacity shows T 2-like variation in the region lower than TN, as it shows a line.

This seems to be in accordance with the result of 2D specific heat in the above table. In the paper, however, the authors

claim that the results are in accordance with a theory on 1D anti-ferromagnetic chain.

5.8.5 Nambu-Goldstone theorem and spin wave

In the section of ferromagnetic transition in Heisenberg model, we have visited the concept of spontaneous symmetry

breaking (SSB). In typical continuous phase transitions, a symmetry should be spontaneously broken and at the same

time an order appears.

Nambu-Goldston theorem is summarized as follows:
Nambu-Goldstone theorem� �
When a symmetry of a physical system is spontaneously broken, there is an excitation with zero energy (gap) in the

long wavelength limit.� �
Sometimes it is described as “excitation with zero-mass.” From the still energy E = mc2, the two descriptions are

equivalent.

This can be intuitively understood in the case of ferromagnetic transition. In the phenomenology in Sec. 5.2, as (a)→(b)

in Fig. 5.2, the SSB caused by appearance of two minima in the free energy F (M). For example, two-dimensional

Heisenberg model is isotropic and in the SSB state, the free energy of the state (M0 cos θ,M0 sin θ) does not depend

on θ, in other words, the state can freely go around on the yellow line in the figure. The motion on the yellow line is

Nambu-Goldstone mode (NG mode) in the present case. This corresponds to the rotation of macroscopic magnetization

Fig. 5.9 Left: Free energy F of a system with rotational symmetry. The lowest F is obtained at M (magne-
tization)=0 on (Mx,My) plane. Right: A spontaneous symmetry breaking yields an order parameter (magnetiza-
tion). The states with minimum F exist continuously, between which the system can transit without energy (Nambu-
Goldstone mode).
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and can be seen as the limit of long wavelength. Classically the magnon wavelength is determined by the phase shift of

precessions between neighboring sites. In the long wavelength limit, the phase shift is zero, and the spins are rotating

coherently. Hence we can say the magnon is the NG mode in the present case.

The dispersion relation of ferromagnetic magnon is quadratic in q as eq. (5.81). On the other hand in the anti-

ferromagnetic magnons, the dispersion is linear as in eq. (5.96). Sometimes the latter is called type-A and the former is

called type-B NG mode. On the other hand Nielsen-Chadha[5] called ℏω ∝ k2n+1 as type-I, ℏω ∝ k2n as type-II.

As is well known, it originated from Yoichiro Nambu’s idea for the acquisition of particle mass on the superconducting

BCS theory as a model, and from there, the standard theory of elementary particles makes great progress. And also in the

condensed matter theory, it is one of the central concepts as introduced by Anderson in the book “basic notions”[6]. Even

though there are many open questions even in the basics of the NG mode. Surprisingly there are many important findings

and progresses recently. Here I introduce an example. In the na’́ive NG theorem, the number of broken symmetries NBS

and that of NG modes NNG should be the same(NBS = NNG). However that does not hold in many simple examples. In

the case of 3D ferromagnetic transition, the rotation symmetries of two axes are broken, hence NBS = 2 though simple

ferromagnetic magnon NG mode number is one, i.e., NNG = 1.

For this problem, based on the pioneering works by Nielsen-Chadha[5] and by others, Watanabe-Murayama[7], and

Hidaka[8] reached the satisfactory answer in 2012 independently. This can be viewed as a generalization of the NG

theorem. To say it very short, let NI and NII be the number of type-I and type-II NG modes respectively, then

NI + 2NII = NBS.

For the detail see the review paper[9].

5.9 Experiments on magnons

As we saw in the above, magnons are elementary excitations from the ground state, considered to calculate macro-

scopic quantities of magnetic materials at finite temperatures. However recently, the concept of magnon goes beyond the

framework. The researches are prosperous on the wave and the particle like manners, soliton physics or Bose-Einstein

condensation in the high-density non-linear region where the original spin wave approximation does not hold. The birth

is given to the word “magnonics” and application to quantum information processing is seriously considered[10]. You

can find many reviews[11] and textbools[12].

Here I would like to introduce rather old results, which are now the basis of present studies, however.

5.9.1 Measurement of magnon dispersion relation by neutron scattering

Neutron scattering has long been used as a means of measuring microscopic magnetic structures. It can be said that it is

still the most powerful reliable experimental method with atomic resolution. Inelastic scattering was used, in particular,

for magnon dispersion measurements.

We write the interaction between the magnetic moment µe of electrons in an atom and that of a neutron as

Hint = −µe ·Bn, (5.99)

where
Bn = rot

(
µn × r

r3

)
(5.100)

is the magnetic field of neutron magnetic moment µn, r is the vector connecting the atom and the neutron. When a

neutron is scattered by such an interaction as
ℏk −→ ℏ(k − q), (5.101)
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Fig. 5.10 (a), (b) Magnon dispersion relations calculated for MnF2, FeF2 incorporating anisotropic field[12]. Right
panel: Magnon dispersion relation measured in MnF2 by time of flight method of neutron scattering[13].

the variation in the energy is

∆E =
ℏ2

2M
(−2k · q + q2). (5.102)

In very short, pulses of neutron with appropriate energy is applied to the sample, and the measurements of the energy

(momentum) change and the scattering angle give certain information. This is (in the case of ∆E ̸= 0) the inelastic
scattering of neutron. On the other hand in the case of elastic scattering (∆E = 0), the wave nature of neutrons the

diffraction is important.

To obtain the dispersion relation of magnons, the inelastic scattering of neutron is mostly used. Figure 5.10 shows the

magnon dispersion relation of MnF2 obtained by neutron inelastic scattering. For the above information of (5.101) and

(5.102), time-of-flight (TOF) method was utilized[13]. The result shows a good agreement with the result of molecular

field approximation with the effect of anisotropy.

5.9.2 Bose-Einstein condensation of magnons

In the process of introducing magnons with creation/annihilation operators, we defined the vacuum |0⟩F as |S⟩, i.e., the

state of Sz = S, and |n⟩F as |S − n⟩. As mentioned, while we do not have negative n state from the definition, repetitive

operation of creation operator creates infinite number of n states. However in reality, Sz can take only down to −S. This

physical space of function does not have any matrix element with the extended space as long as the theory is exact (no

approximation). This means that the magnons, though their creation/annihilation operators satisfy bosonic commutation

relations, the condition that “a single state can accommodate an infinite number of particles” is not fulfilled. In this sense,

the statistics of magnon is not complete Bose statistics but a para-statistics[14].

A typical phenomenon appeared in the system of bosons is the Bose-Einstein Condensation (BEC). The BEC is

very shortly introduced in Appendix 10B. Superfluidity of helium, BEC in laser-cooled neutral atomic gases are the

representatives. Even for these phenomena, the interaction between the particles exists and they are not jus the same as

the simple BEC described in the Appendix. Also, the superconductivity, in which weakly bound fermion pairs condensate

is a similar phenomenon. Even in the case of magnons, though they obey para-statistics, they can be viewed as “bosons

with hard cores” and there is a possibility that a similar phenomenon occurs. It is still difficult, though, for magnons to

fulfill the basic condition of BEC that (averaged de Broglie wavelength)=(averaged particle distance) because the particle

density decreases with lowering the temperature, as is guessed from the calculation of the magnetization in eq. (5.79).

Then an experiment was carried out, in which a large number of magnons are excited by microwave and a non-equilibrium

BEC took place[15]. They studied the Brillouin scattering of light by magnons and observed anomalous narrowing of the

linewidth of the resonance.
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(a) (b)

Fig. 5.11 (a) Temperature dependent magnetization of TlCuCl3 in magnetic fields[16], (b) Temperature variation of
the intensity of Bragg reflection (1,0,−3) in neutron diffraction[17]. As indicated in the right axis, this is proportional
to the square of vertical magnetic moment per site.

Let us see an experimental observation of BEC in thermal equilibrium[16, 17]. Due to the above restriction, the

situation is rather special. The material is a compound of TlCuCl3 in chemical formula. Two magnetic ions form pairs

(dimer) with an antiferromagnetic coupling. There are singlet |0, 0⟩ and triplet (|1,−1⟩ , |1, 0⟩ , |1, 1⟩) as the states of the

pair, in which the single is the ground state due to the antiferromagnetic coupling. There is an energy gap (spin gap)

between the ground state and the first excited state. With applying magnetic field, the energy of |1, 1⟩ is lowered and

the field driven phase transition takes place for the ferromagnetism to appear. In this system, the magnon appears when

the energies of |0, 0⟩ and |1, 1⟩ are close as the propagation of |1, 1⟩ states to the neighboring sites. As known from this

example, the propagation of magnons is the equivalent to that of spin angular momentum and that brings a spin current.
For the behavior of magnetization in such a system without magnon BEC, a theory has been presented [18] and the high

temperature behavior is well explained. It predicts for the the magnetization transverse to the spontaneous magnetization

that it should be constant for temperature. However in the experiment, as in Fig. 5.11(a) the magnetization once decreases

with decrease of temperature but the dependence is inverted around the transition point and increases. The magnon-BEC

theory explains the experiment that an order grows in the mixture of |0, 0⟩ and |1, 1⟩ and the transverse magnetization

appears as an average (does not cancel out)[16]. Furthermore as in Fig. 5.11(b) in neutron diffraction, it was confirmed

that such an order actually grows[17]. From the above, the observation of magnon BEC is claimed.

Appendix 10A: Collective motion of spins

Because a macroscopic number of spins are bound to in a ferromagnetic state, the motion can be described as a

collective motion. On the other hand, as lattice vibrations in lattice formation, a kind of collective motion from the

magnetic ground state can exist and quantization as phonons is possible.
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10A.1 Collective motion of magnetization

For a ferromagnetic total magnetization
S =

∑
i

Si, (10A.1)

we apply Heisenberg equation of motion as

iℏ
∂S

∂t
= [S,H ], (10A.2)

which is formally the same as eq. (2.11) and represents the Larmor precession. A resonance experiment as EPR for a

total magnetization is possible and called as ferromagnetic resonance (FMR). From FMR we get various information

on the ferromagnetism and the spin wave.

Next we consider the case that the phase of the precession has a constant shift between neighboring spins. The above

motion of the total magnetization can be considered as the long wavelength limit of this motion. The magnetization and

the external field direction is taken to z. This situation is expressed as

Six = A cos(ω0t+ θi), Siy = A sin(ω0t+ θi), (10A.3)

with a shift of θi with i. Let us use complex numbers for spins. And the Fourier transform and the inverse transform

Sqx =
1√
N

∑
j

Sjz exp(−iq · rj), Sjx =
1√
N

∑
q

Sqx exp(iq · rj) (10A.4)

are introduced.

We apply (10A.2) to Heisenberg Hamiltonian H = −2J
∑

⟨i,j⟩ Ŝi · Ŝj to obtain the following.

iℏ
∂Sqx

∂t
=

4i√
N
J
∑
⟨i,j⟩

SiySjz exp(−iq · ri){1− exp[iq · (ri − rj)]} (10A.5a)

iℏ
∂Sqy

∂t
= − 4i√

N
J
∑
⟨i,j⟩

SixSjz exp(−iq · ri){1− exp[iq · (ri − rj)]}. (10A.5b)

Fourier transform of J is written as
Jq =

∑
j

J exp[iq · (ri − rj)]. (10A.6)

In the above, the sum over j and i can be taken anywhere because the interaction only depends on ri − rj . Further,

the sum only over the nearest neighbor because the interaction is assumed to work only for nearest neighbors. Here we

approximate Sjz by S, which corresponds to small angle approximation. Then

ℏ
∂Sqx

∂t
= 2[J0 − Jq]SSqy, (10A.7a)

ℏ
∂Sqy

∂t
= −2[J0 − Jq]SSqx. (10A.7b)

This is the same as eq. (5.68) but with B = 0.

Fig. 10A.1 Schematic diagram showing a constant
phase shift between neighboring spins.
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Appendix 10B: Bose-Einstein condensation

The Bose-Einstein Condensation (BEC) *1 is called a phase transitoin that is not due to the interaction between freedoms

(quantum statistical phase transition). Though phase transitions caused by interaction beween some freedoms can be

intuitively understood, there are different types of phase transitions, in which the transitions are caused as the results of

competition between various factors. A representative is BEC.

In the case of bosonic systems, in spite of the absence of “force” betwen the particles, there exists the tendency for

them to occupy the same quantum state originating from their statistical property. Let us see that for the case of two

particles. We write a solution of the wave equation for two particles as ψ(x1,x2). For the composition of wavefunctions

of the system Ψ(x1,x2) that reflects the statistical property of bosons, the symmetrization of ψ results in

Ψ(x1,x2) =
1√
2
[ψ(x1,x2) + ψ(x2,x1)] . (10B.1)

Hence the probability of finding the system at (x1,x2) is

|Ψ(x1,x2)|2 =
1

2

[
|ψ(x1,x2)|2 + |ψ(x2,x1)|2 + ψ(x1,x2)

∗ψ(x2,x1) + ψ(x1,x2)ψ(x2,x1)
∗] . (10B.2)

This reveals that the last two interference terms intensify the probability of finding the system under the condition of

x1 = x2. Let us write the de Broglie wavelength as λ and the averaged distance between the particles as l. Then at low

temperatures λ ∼ l, this tendency of bosons makes many of them to occupy the state of k = 0, which behavior leads to

BEC. The above discusstion is expressed as

Ek =
p2

2M
= kBT,

∆p ∼
√
MkBT

∴ λ =
h

∆p
∼ h√

MkBT
. (10B.3)

λ elongates as 1/
√
T with lowering the temperature. And with growing of the overlapp between the single particle

wavefunctions makes them undistinguishable and the symmetrization of the wavefunction cause the condensation to the

ground state in the phase space (r,p). The phase transition to the condensate at a certain temperature is BEC.

10B.1 Bose-Einstein condensation of ideal gas

Let us consider spin 0 ideal Bose gas. For the Bose distribution

f(ϵ) =
1

e(ϵ−µ)β − 1
(β ≡ (kBT )

−1) (10B.4)

we define the point of µ = 0 as follows. At T = 0, from (10B.4) all the particles fall into the ground state, there we

define
µ(T = 0) = 0. (10B.5)

At finite temperatures, let N be the number of particles in the system:

N =
∑
i

f(ϵi).

*1 The acronym of BEC is applied to both Bose-Einstein Condensation and Bose-Einstein Condensate. In actual use, the confution is not serious.
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In the usual case we can write
N →

∫
f(ϵ)D(ϵ)dϵ. (?)

Here the number of particle at the ground state N0 should be

N0 =
1

e−µβ − 1
∼ 1

−µβ
= −kBT

µ
→ µ ∼ −kBT

N0
. (10B.6)

If we calculate the particle distribution on this line, for three dimensional ideal gas

ϵ(k) =
ℏ2k2

2m
then D(ϵ) =

m3/2V√
2π2ℏ3

√
ϵ. (10B.7)

Therefore

N =
V m3/2

√
2π2ℏ3

∫ ∞

0

√
ϵ

e(ϵ−µ)β − 1
dϵ =

(mkBT )
3/2

√
2π2ℏ3

V

∫ ∞

0

√
x

ex−α − 1
dx, (10B.8)

where x ≡ ϵβ and α ≡ µβ. We write the definite integral term as I(α), then I is

I(0) =

∫ ∞

0

√
x

ex − 1
dx =

√
π

2
ζ

(
3

2

)
∼ 2.6, (10B.9)

which decreases with increasing of the absolute value of α < 0. Then, in this logic, with T → 0 the maximum number

of N determined from (10B.8) goes to zeo. It is apparent that we have dropped something from the counting. That is, of

course, the macroscopic number of particles fall into the ground state.

From Eq. (10B.8),

I(α) =

√
2π2ℏ3

(mkBT )3/2
N

V
.

When this excessds (10B.9) at low temperatures the anomaly (increase in the particle number at the ground state.) occurs.

This critical temperature Tc is

T < Tc ≡
2πℏ2

mkB

[
N

ζ(3/2)V

]2/3
. (10B.10)

Here l ≡ (V/N)1/3 is the average distance between the particles and Eq. (10B.10) is interpreted as

l =
h

ζ(3/2)
√
2πmkBTc

∼ λ(T = Tc). (10B.11)

This confirms the statement that the BEC takes place when the average de Broglie wavelength is comparable with the

average particel distance.

Below Tc, we add the number of ground state particles N0 to Eq. (10B.8):

N =
V m3/2

√
2π2ℏ3

∫ ∞

0

√
ϵ

e(ϵ−µ)β − 1
dϵ+N0. (10B.12)

From Eq. (10B.6), N0 becomes a macroscopic number fro T < Tc, then µ = 0. Therefore

N0 = N − V m3/2

√
2π2ℏ3

∫ ∞

0

√
ϵ

eϵβ − 1
dϵ = N

[
1− V

N

(mkBT )
3/2

√
2π2ℏ3

I(0)

]
= N

[
1−

(
T

Tc

)3/2
]
. (10B.13)

This is just like a spontaneous magnetization rapidly grows to finite values below the critical temperature in the ferro-

magnetic transition.

The total energy of the system for T < Tc is calculated as

E =
V m3/2

√
2π2ℏ3

∫ ∞

0

ϵ3/2

eβϵ − 1
dϵ (10B.14)

ここで T < Tcでは
∫ ∞

0

x3/2

ex − 1
dx =

3
√
π

4
ζ

(
5

2

)
より

E =
3

2
ζ

(
5

2

)( m

2πℏ2
)3/2

V (kBT )
5/2. (10B.15)
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Fig. 10B.1 Specific heat at constant volume of three di-
mensional ideal Bose gas as a function of temperature. Tc

is the critical temperature of the BEC.

Then the heat capacity at constant volume is calculated as

Cv =
15

4
ζ

(
5

2

)( m

2πℏ2
)3/2

V k
5/2
B T 3/2. (10B.16)

Cv shows a cusp at Tc indicating that this is the phase transition.

10B.2 Bosonic stimulation

Here we have a look at bosonic stimulation for N particles, which is, though, essentially the same as what has been

mentioned on the case of two particles in Sed. ??. As we have seen, the bosonic stimulation works as if it is a driving

force in BEC or laser oscillation. Let us consider a identical boson system the case a particle in state φini gets perturbation

and transitions to other single particel state φfin. Now the problem is the difference in the transition probabilities to the

state occupied with N particles and to the empty state. We write the initial state as

ψ
(i)
+ (r1, · · · , rN+1) =

1√
(N + 1)N !

∏
l nl!

N∏
m=1

R̂m,N+1det
(+){φi(rj)}φini(rN+1). (10B.17)

The symbol det(+) represents permanent, which is obtained by making the signs of all the terms into +. The final

state ψ(f)
+ is obtaned by exchanging φini with φfin. Let the matrix elements of perturbation Hamiltonian be a, i.e.

⟨φfin|Ĥ1|φini⟩ = a.

Assuming that φi (i ≤ N) is orthogonal to φfin, among ⟨ψ(f)
+ |Ĥ1|ψ(i)

+ ⟩, number of terms that give non-zero a is

(N+1)N !
∏

l nl!. This is equal to the sqare of the denominator in normalization constant. Then finally ⟨ψ(f)
+ |Ĥ1|ψ(i)

+ ⟩ =
a.

On the other hand, assuming all of φi (i ≤ N) are φfin, we can write

ψ
(i)
+ =

1√
(N + 1)

N∏
m=1

R̂m,N+1φfin(r1) · · ·φfin(rN )φini(rN+1). (10B.18)

All of the N ! terms in det(+) are φfin(r1) · · ·φfin(rN ) and devided by N ! in the denominator of normalization constant

to 1. However the final state is
ψ
(f)
+ = φfin(r1) · · ·φfin(rN )φfin(rN+1). (10B.19)

Then we get ⟨φfin|Ĥ1|φini⟩ = a
√
N + 1, and from the Fermi’s golden rule, the transition probability should be N + 1

times larger.
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