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Chapter 6
Magnetism of Itinerant Electrons

In insulators, the following picture is expected to describe the magnetism: the spins localized at the lattice point cause

magnetism through various spin-to-spin interactions. Common ferromagnetic metals like iron, cobalt, and nickel are

supposed to have largely different mechanism from the above. Namely, electrons migrating in crystals (itinerant electrons)

have their spins aligned partially due to the correlation effect, which phenomenon may generate the ferromagnetism.

When the correlation effect is not very strong and the system is paramagnetic, such itinerant electron systems can be

treated within the Landau’s Fermi liquid theory[1] as mentioned in Ch. 3. On the other hand, the correlation is so strong

that a ferromagnetism appears, the difficulties in theories increase largely. It was not easy for theoretical models to

explain such types of ferromagnetism to the level in which the theories can be comparable with experiments. Including

such difficulties, we would like to review the present understandings and open questions in the last three weeks.

6.1 Hartree-Fock approximation of electron gas

We would have a brief look at the difficulty to have a realistic ferromagnetism in the model of electron gas. We use the

simplest Hartree-Fock approximation (not very simple actually) of electron correlation.

6.1.1 Hartree-Fock approximation

Though you are already familiar with Hartee-Fock (HF) approximation, we will shortly review it here (we will not

use such details in analysis of electron gas here). We consider an N -particle system, in which the particles occupy

single-particle wavefunctions
φk1

, φk2
, · · · , φkN

. (6.1)
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The many body state of this N -body system can be expressed by the Slater determinant:

Φ =
1√
N !

∣∣∣∣∣∣∣
φk1(x1) · · · φkN

(x1)
...

. . .
...

φk1
(xN ) · · · φkN

(xN )

∣∣∣∣∣∣∣ , (6.2)

which satisfies the ferminon particle exchange statistics. xi is a general coordinate, which contains all of single particle

freedoms. We write the Hamiltonian in the form

H =

N∑
j=1

h(xj) +
∑
⟨i,j⟩

v(xi, xj), (6.3)

where h is a single-particle Hamiltonian, v is a two-body interaction. In the HF approximation, we calculate the expec-

tation value
W = ⟨Φ|H |Φ⟩ , (6.4)

and look for the set {φkj} that minimize W with a variational method.

Here we use the ket representation |kj⟩ for φkj
. We assume the orthonormal basis condition:

⟨ki|kj⟩ = δij . (6.5)

In this representation, W is written as

W =

N∑
j=1

⟨kj |h|kj⟩+
∑
⟨i,j⟩

[⟨kikj |v|kikj⟩ − ⟨kikj |v|kjki⟩]. (6.6)

In the rhs, in the term ⟨kikj |v|kikj⟩, the two particles interact in the same order but in ⟨kikj |v|kjki⟩, the two particles

exchange their positions during the interaction. The former is called the direct integral, the latter is called the exchange

integral (exchange interaction). In the following, we adopt the Lagrange multiplier method to minimize the energy of the

system (6.6) under the constraint of (6.5). That is, we consider the quantity

W −
∑
⟨i,j⟩

λij ⟨ki|kj⟩ , (6.7)

which should be minimized. In order for that, we consider the condition that the variations of the above quantity with

{φ∗
kj
} are zero, which can be expressed as

hφkj
+
∑
i=1

[⟨ki|v|ki⟩φkj
− ⟨ki|v|kj⟩φki

] =

N∑
i=1

λijφki
. (6.8)

Here we define a single-body density matrix as

ρ(x, x′) =

N∑
i=1

φ∗
ki
(x)φki(x

′), (6.9)

with which we further define veff and A as

veff(x) =

∫
dx′v(x, x′)ρ(x′, x′), A(x)φ(x) =

∫
dx′v(x, x′)φ(x′)ρ(x′, x). (6.10)

Then eq. (6.8) is written as

[h(x) + veff(x)−A(x)]φkj
(x) =

N∑
i=1

λijφki
(x). (6.11)

In eq. (6.11), the Hermite operator given in [· · · ] in the left hand side does not depend on the specific selection of kj
in the operand. Also the eigenfunctions are orthogonal to each other. Hence by taking φkj

as the eigenfunctions, we can

write
[h(x) + veff(x)−A(x)]φkj

(x) = ϵkj
φkj

(x). (6.12)
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Then we take N solutions in the ascending order from the lowest {ϵkj}. The Slater determinant of these N solutions

is the ground state in the HF approximation. However, the operator in the [· · · ] part also depends on {ϵkj
} (though not

depends on specific selection of the operand), (6.12) should be solved self-consistently. Equation (6.12) is called Hartree-
Fock equation. This is essentially the same as the self-consistent equation in the molecular field approximation of the

Heisenberg model. To see how to proceed the calculation in more specific physical problems, or how to go beyond the

HF approximation (e.g., taking the effect of higher order term into account), refer to textbooks on many-body problems

(e.g., [2, 3, 4]).

6.1.2 Jellium model and ferromagnetism

Here we adopt jellium model, in which the lattice potential is approximated by a uniform background with a plus

charge. And we consider a free electron system in the background. The ground state in the absence of electron mutual

interaction is the state in which the Fermi sphere is filled up as

|Ψ⟩ =
∏

E(k,σ)≤EF

c†kσ |0⟩ . (6.13)

Next we write down the Hamiltonian in the presence of electron-electron interaction as

H =
∑
k,σ

ϵkc
†
kσckσ +

1

2V

∑
k,k′,σ,σ′,q ̸=0

vqc
†
k+q,σc

†
k′−q,σ′ck′σckσ, (6.14)

where V is the system volume, ϵk = ℏ2k2/2m and vq = 4πe2/q2. The Fermi wavenumber kF is determined from the

Fermi energy EF, and the only parameter that characterizes the system is the averaged electron distance measured by

Bohr radius aB:

rs ≡
1

aB

[
3

4π(k3F/3π
2)

]1/3
, (6.15)

in the jellium model.

Because the system has spatially translational symmetry in the jellium model, plane waves are already the solutions of

self-consistent HF equation (6.12), and then the residual procedure of the HF approximation is to minimize the energy of

many-body state. The kinetic energy per single electron is

ϵke =
1

N

∑
ks

ϵknks =
2V

N

∫
d3k

(2π)3
ℏ2k2

2m
nk =

3

10

ℏ2k2F
m

=
2.21

r2s
Ry, (6.16)

where Ry=ℏ2/2ma2B=13.6 eV is the unit named “Rydberg,” and is the binding energy of hydrogen atom. The Hartree

term that corresponds to the direct integral is vanished by the charge neutral condition of jellium model. The exchange

term, that is the expectation value of interaction between the states of exchanged particles. It is then

ϵex = − 1

2NV

∑
k,q ̸=0,s

vq ⟨ψ|ck+q,sck+q,sc
†
kscks|ψ⟩ =

1

2NV

∑
ks

vqnk+qnk, (6.17)

per an electron. The summation can be carried out as an integral over q to be

ϵex = −3e2

4

kF
π

= −0.92

rs
Ry. (6.18)

Then the total Hartree-Fock energy is

ϵhf =

(
2.21

r2s
− 0.92

rs

)
Ry. (6.19)

From eq. (6.16), the total kinetic energy of electrons per unit volume is

Eke =
3

10

ℏ2k2F
m

4π

3

(
kF
2π

)3

=
ℏ2k5F
20π2m

. (6.20)
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Let (kF↑, n↑), (kF↓, n↓) be the Fermi wavenumber and the electron number of up and down spin states respectively. Then

Eke(p) =
ℏ2

20π2m
(k5F↑ + k5F↓) =

3(6π2)2/3ℏ2

10m
(n

5/3
↑ + n

5/3
↓ ) =

3(6π2)2/3ℏ2

10m
[p5/3 − (1− p)5/3]n

5/3
0 , (6.21)

Eex(p) = −3e2

4

(
6

π

)1/3

(n
4/3
↑ + n

4/3
↓ ) = −3e2

4

(
6

π

)1/3

[p4/3 − (1− p)4/3]n
4/3
0 . (6.22)

Here because polarization 0.5 ≤ p ≤ 1 is defined as n↑ = pn0, n↓ = (1−p)n0, p = 1 corresponds to perfect polarization,

p = 0.5 corresponds to no polarization. Then let ∆E be

∆E = [Eke(1) + Eex(1)]− [Eke(0.5) + Eex(0.5)], (6.23)

then if ∆E < 0, the ground state is a spin-polarized ferromagnetic state. This condition can be calculated from the above

and expressed with the average distance parameter defined in eq. (6.15), as

rs > 5.4531. (6.24)

However, we found several ordinary metals with rs ∼ 5. Hence the above criterion does not fit the reality.

6.1.3 Electron correlation

The above discrepancy should come from either overestimation of lowering in the Coulomb energy with avoiding each

other between parallel spins, or that of the Coulomb repulsion energy between antiparallel spins. The latter seems to be

more plausible because the itinerant electrons with antiparallel spins also should avoid each other to lower the Coulomb

repulsion energy. That means, in the jellium model, the solution of antiparallel spins in HF (mean field) approximation

is not good enough for discussion of ground state. We need to go for higher order approximation or to consider some

different approximation. We here define correlation energy as the energy difference between the energy of true ground

state and that of mean field approximation.

There exist various methods in the estimation of correlation energy. Figure 6.1 shows a phase diagram of charged

fermion gas in the jellium model calculated by diffusion Monte-Carlo method[5]. The red line indicates spin-polarized gas

and the ferromagnetism appears in the region that the red line lies below the blue broken line which indicates unpolarized

gas. However as can be seen, rs for the appearance of the ferromagnetism is around 70, which is too sparse for real

metals. Around rs ∼ 90 the Wigner crystal state in which the electrons form a crystal and localize. This means if the

correlation energy is correctly estimated, the ferromagnetism in common metallic ferromagnet like iron or nickel cannot

be explained at all.

Fig. 6.1 Phase diagram of electron gas calculated
by diffusion Monte-Carlo method. The energy ori-
gin (0) is taken to that of a bosonic system. The re-
gion where the red line lies lowest position should
be ferromagnetic. From [5].
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6.2 HF approximation in Hubbard model

The jellium model, not only in the mean field approximation, even with correct estimation of correlation energy, is

far from the realistic explanation of ferromagnetism in metals. In the case of ferromagnets caused by double-exchange

interaction, which we have seen in the previous chapter, the electrons hopping between local sites mediate ferromagnetic

interaction between localized spins. Though the situation is different in the case of 3d transition metals, it can be a hint

that the coexistence of localization and hopping can cause ferromagnetism in realistic conditions. Then we try to consider

the Hubbard model introduced in Sec. 4.1.3.

6.2.1 Hubbard model for multiple site

We introduced two-site Hubbard model (sometimes referred to as Kanamori-Hubbard model) in Sec. 4.1.3. It is ex-

pected to describe from insulators, metals, ferromagnets and superconductors in spite of its compactness, and has been

long used in theories. As we saw there, the long range part of the Coulomb interaction is ignored and the Coulomb re-

pulsion only works between electrons in the same site (on-site interaction). On the other hand, the electrons hop between

site i and site j with probability tij . The Hamiltonian for a general number of sites is

Hubbard Hamiltonian (1)� �
H =

∑
i,j,s

tijc
†
iscjs + U

N∑
i

n̂i↑n̂i↓, (6.25)

� �
where s is the spin freedom. cis satisfies the fermion commutation relation

{c†is, cis′} = δijδss′ . (6.26)

In the first hopping term, the annihilation operator cis and hopping transition matrix element tij are Fourier-expanded

as
cis =

1√
N

∑
k

eiRi·kaks, tij =
1

N

∑
k

ϵke
ik·(Ri−Rj). (6.27)

Ri is the spatial coordinate of site i. With substituting these into the first term in the right hand side of (6.25), because∑
⟨i,j⟩,s

tijc
†
iscjs =

∑
i,j,s

2

N2

∑
k1,k2,k3

ϵk1
eik1·(Ri−Rj)e−ik2·Ria†k2s

eik3·Rjak3s =
∑
k,s

ϵka
†
ksaks, (6.28)

we can view the hopping (1st) term as kinetic energy term of wide-spreading electrons. From this, (6.25) can be expressed

as follows.

H =
∑
k,s

ϵka
†
ksaks + U

N∑
i

n̂i↑n̂i↓. (6.29)

The Hubbard model is widely used in the study of many-body problem. Particularly it is practical to be applied to

the ferromagnetism of 3d transition metals. In such systems, 4s and 3d electrons coexist in single band. 3d electrons

are the origin of ferromagnetism and though the wavefunctions spread over the whole crystal (itinerant) they have high

probabilities of existence at atomic positions, i.e. tendency to localize. On the other hand, 4s electrons tend to delocalize

and screen the Coulomb interaction between 3d electrons. This property justifies the approximation of on-site short range

Coulomb interaction.
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6.2.2 HF approximation

We apply HF (mean field, molecular field) approximation to the Hubbard model. There is the same problem of overes-

timation as that in electron gas, but we will see what is different in the case of Hubbard model.

To estimate the ferromagnetic transition, we consider magnetization and electron number per site:

m = ⟨n↑⟩ − ⟨n↓⟩ , n = ⟨n↑⟩+ ⟨n↓⟩ , (6.30)

and compare the expectation values of energy for the states of m = 0 and m ̸= 0. The magnetization is expressed in the

unit of µB and g-factor is set to 2.

In the HF approximation of Hubbard model (6.25), the second term (interaction term) is simplified as

U
∑
i

n̂i↑n̂i↓ = U
∑
i

[⟨n̂↑⟩ n̂i↓ + ⟨n̂↓⟩ n̂i↑ − ⟨n̂↑⟩ ⟨n̂↓⟩+ (n̂i↑ − ⟨n↑⟩)(n̂i↓ − ⟨n↓⟩)]

≃ U
∑
i

(⟨n̂↑⟩ n̂i↓ + ⟨n̂↓⟩ n̂i↑)−NU ⟨n↑⟩ ⟨n↓⟩ (6.31)

Take average → =
NU

4
(n2 −m2). (6.32)

Namely, the second order term of fluctuation (n̂i↑ − ⟨n↑⟩)(n̂i↓ − ⟨n↓⟩) is ignored. In this approximation, ↓-electrons

work as an average on an ↑-electron, conversely, ↑-electrons work as an average on a ↓-electron. The last equation shows

the expectation value for eigenstates.

We can rewrite eq. (6.31) with the Fourier expansions in (6.27), (6.28) to a Hamiltonian with the operators n̂ks as

HHF =
∑
k,s

(ϵk + U ⟨n−s⟩)nks −NU ⟨n↑⟩ ⟨n↓⟩ . (6.33)

Here we assign s = ±1 to spin ↑, ↓, and use the relation

⟨ns⟩ =
1

2
(n+ sm), (6.34)

to obtain

HHF =
∑
k,s

(
ϵk − sUm

2

)
n̂ks +

NU

4
(n2 +m2)

≡
∑
k,s

ϵ̃ksn̂ks +
NU

4
(n2 +m2), (6.35)

where we take averages as
∑

k,s n̂ks → N(⟨n↑⟩+ ⟨n↓⟩). That is, the appearance of the magnetizationm shifts the single

electron energy by ∆µ = (−s)Um/2. The directions of the shifts are opposite depending on spins. With packing the

electrons into this band up to a common chemical potential µ, the total energy is given by

E =
∑

ϵ̃ks≤µ

(
ϵk − sUm

2

)
+
NU

4
(n2 +m2)

=
∑

ϵ̃ks≤µ

ϵk +
NU

4
(n2 −m2). (6.36)

On the other hand, the spin-dependence of ∆µ brings about the difference in the electron numbers in ↑ and ↓ states.

And the difference should be equal to m. This is the self-consistent condition, which commonly appears in mean-field

approximation. For simplicity, we assume that the density of states D(EF) around EF is constant for energy. Then from

m = 2D(EF)∆µ = D(EF)Um, (6.37)
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the condition m ̸= 0 gives the criterion of appearance of nonzero m as

UD(EF) = 1. (6.38)

We estimate the enhancement of kinetic energy by magnetization as we did in the electron gas. From the above

condition we obtain

D(EF)(∆µ)
2 =

m2

4D(EF)
. (6.39)

As in eq. (6.36), the decrease in the Coulomb repulsion energy by appearance of m is −NUm2/4. Summing up of these

gives

∆E =
N

4

[
m2

D(EF)
− Um2

]
. (6.40)

The condition ∆E < 0 is
UD(EF) ≥ 1, (6.41)

which agrees with the criterion (6.38). This is called Stoner condition.

Roughly speaking, let Ew be the bandwidth and from D(EF) ∼ E−1
w , we can say that the Stoner condition means

the ferromagnetism appears when the Coulomb interaction width U exceeds the bandwidth Ew. Because it is still a HF

approximation, as in the case of electron gas, we have the problem of overestimation the stability of ferromagnetic state.

6.2.3 Susceptibility

Before going into the problem, we see the magnetic susceptibility given in the HF approximation. The magnetization

M is expressed as
M =

gµB

2

∑
i

[⟨ni↑⟩ − ⟨ni↓⟩]
gµB

2

∑
i

ni−. (6.42)

The susceptibility χ per an atom is

χ =
M

NB
=
gµB

2

n−
B
. (6.43)

Since the interaction energy of magnetic field and magnetic moment (Zeeman energy) is −MB, the energy of electrons

in magnetic field is written as
EB = E(0) + E2n

2
− −N

gµB

2
Bn−, (6.44)

where n− is small. And E2 is

E2 =
1

2

d2(∆E)

dn2
−

, (6.45)

where ∆E corresponds to ∆E in eq. (6.40).

In paramagnetic state, the coefficient of the term with the second order in M is positive in the GL theory. Then E2 is

also positive and n− that minimizes EB , gives the susceptibility. Namely,

χ =
(gµB)

2N

4E2
. (6.46)

If we calculate E2 from the HF approximation in eq. (6.40), we obtain

χ =
(gµB

2

)2 D(EF)

1− UD(EF)
=

χPauli(a)

1− UD(EF)
, (6.47)

where χPauli(a) is the Pauli paramagnetic susceptibility in eq. (3.8) per an atom.

In the HF approximation, when the system does not fulfill the Stoner condition, it keeps paramagnetism though as in

eq. (6.47), the susceptibility is enhanced from the Pauli paramagnetic susceptibility by the factor [1− UD(EF)]
−1. This

is called Stoner factor.
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Here from the identity of temperature expansion of the chemical potential when the system is strongly Fermi degener-

ated:

µ = µ0

[
1− π2

6

d logD(µ0)

d log µ0

(
kBT

µ0

)2

+ · · ·

]
, (6.48)

the temperature variation of chemical potential δµ is written as

δµ = −π
2D′

F

6DF
(kBT )

2. (6.49)

For simpler expression, dD(E)/dE|E=EF
is simply written as D′

F. To add this to ∆µ in eq. (6.37) as correction, taking

the second derivative by the energy is required. Hence we write

A =
π2

6

(
(D′

F)
2

DF
−D′′

F

)
, (6.50)

and the temperature dependence of susceptibility is written as

χ =
(gµB

2

)2 D(EF)

1− UD(EF) + UA(kBT )2
. (6.51)

The temperature that gives zero for the denominator is TC, and by using this, we can write

χ =
C

T 2 − T 2
C

. (6.52)

This does not agree with the Curie-Weiss law, which is also observed in 3d transition metals with ferromagnetism. This

indicates that the HF approximation has problems other than the quantitative problem we will see in the second next

section.

6.3 Ferromagnetism in 3d transition metals

Before going into more realistic theories, we would like to have a look on experimental facts on the ferromagnetism in

3d metals. Those should be also the target of more realistic theory. We also see “tuning” of the exchange parameter gives

a qualitative understanding of the experiments even within the HF approximation.

In the table below, the bulk parameters of the three elemental ferromagnetic metals are listed[6]．

structure

/density

(kgm−3)

lattice

parameters

(pm)

TC

(K)

MS

(MAm−1)

K1

(kJm−3)

λS

(10−6)

α P

(%)

Fe bcc

7874

287 1044 1.71 48 −7 1.6 45

Co hcp

8836

251

407 (fcc)

1388 1.45 530 −62 8.0 42

Ni fcc

8902

352 628 0.49 −5 −34 44

Tab. 6.1 Bulk properties related to the ferromagnetism in Fe, Co, Ni. K1 is density of anisotropic energy; λS spin
diffusion length; α damping factor of spin resonance; P spin polarization. P is measured by the Andreev reflection
at 4.2 K. The others are measured at room temperature. From [6].
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Fig. 6.2 Averaged spontaneous magnetic
moment (in unit µB) is plotted as a function
of averaged valence electron number (hori-
zontal axis) for various 3d transition metals
(elemental metals, and alloys). From [7].
Valence electron number 6 corresponds to
Cr, 11 corresponds to Cu.

6.3.1 Slater-Pauling’s curve

As shown above, among 3d transition metals, elemental metals that show ferromagnetism are Fe, Co, and Ni. The

averaged valence electron numbers are 8, 9, 10 respectively. However, with making alloys with other 3d metals or

Heusler alloys, which contains group III, or IV elements, we can synthesis metallic ferromagnets with the valence electron

number from around 6 to about 10.5. Then we plot the spontaneous magnetization per an atom obtained from the saturated

magnetization as a function of number of valence electrons. The data points align regularly as in Fig. 6.2. They are on

the lines forming a triangle with Fe around the peak. And the edges of the triangle have gradients of ±1. This curve is

called Slater-Pauling’ curve.

In Fig. 6.2 the alloys plotted in the left region than Fe are mainly Heusler alloys. For Heusler alloys, the following

relation is reported to hold[8]:

mmatnetization per atom in unit of µB = Z − 24. (6.53)

Relation like eq. (6.53) is called Slater-Pauling law.

6.3.2 Spin-band structure in Ni

This relation should come from the number of 3d electron spins in the open shell. Here, however, the “open shells”

form an energy band and the electrons in it are itinerant. Then numerically calculated band structures are often used for

the explanation of Slater-Pauling’s curve. The band structure must have spin-dependence, that means the electron mutual

interaction should be taken into account in some way. Many of them are the HF approximation, which is known to

overestimate the exchange energy gain. But still, qualitative explanation of Slater-Pauling’s curve is possible as follows.

Nickel (Ni) has fcc structure and TC is comparatively low among the three elemental ferromagnets. Figure 6.3(a)

shows the spin-dependent density of states calculated by the APW method (Appendix 12A)[9]. The 4s electron band

has a widely spread density of states with low amplitudes. Conversely, the 3d electron band has a comparatively narrow

distribution and has several high sharp peaks. A single spin subband of 4s electrons can accommodate a single electron

per atom while that of 3d electrons can accommodate 5 electrons per atom. The bottom of 4s band is lower than that of

3d band. The position of EF shown in Fig. 6.3(a) indicates that the 4s band as 0.6 electron, the 3d ↑ band (the upper

side in the figure. the major spin subband) has 5 electrons, the 3d ↓ band has 5.4 electrons. 10 valence electrons are
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(a) (b)

Fig. 6.3 Spin-dependent density of states in (a) Ni, (b) Fe, calculated by the APW method. (a) is from [9]. (b) is from [10].

in an atom in total. In total, the total spin for 0.6 electron remains, which fact explains the appearance of spontaneous

magnetic moment with 0.6µB. As above, the non-integer spontaneous magnetic moment is explained by the coexistence

of 4s band and 3d band and partial occupation of them by valence electrons.

In Ni-Cu alloys, the spontaneous magnetizations vanishes around 60% of Cu content. A Cu atom has 11 valence

electrons, which is one more than Ni. Hence with increasing the Cu content, the extra one electron fills the vacant space

of 0.6 electron in 3d ↓ band. Just at 60%, the space is filled up and the spontaneous magnetization vanishes. Also, it is

now clear that the gradient is −1 in Slater-Pauling’s curve from Ni to Cu.

6.3.3 Spin band structure in Fe

Figure 6.3(b) shows the spin dependent density of states in bee Fe calculated by the APW method. Though the shape

of density of states resembles to that of Ni, there is a large difference in the position of EF. The total electron number is

8 and the 4s band has 0.8 electron. Of the remaining 7.2 electrons, 4.7 electrons are in the major spin subband (the lower

in the figure), 2.5 electrons are in the minor spin subband. The configuration brings about the spontaneous magnetization

of 2.2µB.

The reason why the major spin subband does not have full 5 electrons can be explained in Fig. 6.3(b). In the case of Ni,

EF places above the 3d major spin subband while in the case of Fe, EF hits a valley of the minor spin subband. In such

a situation, a variation of electron number in the minor spin subband causes a large shift in the relative EF position. The

position of EF in fixed energy space does not move largely. That means actually the whole band should move largely.

Summing up the discussion, once EF hits a valley of density of states, change of electron number is mostly absorbed by

other subbands and EF is locked to the valley. This makes it hard to increase the space (hole) in the minor spin subband.

And the major spin subband still has some hole in it.

Alloying with Co increases the number of electrons, with which we can test the above hypothesis. When the Co

concentration is low, the increasing electrons fill the major spin band, and the spontaneous magnetic moment increases

with the Co concentration. At 30% where the major spin band is completely filled (5−4.7 = 0.3), the increasing electrons

work in the direction of filling the holes in the minor spin band, and the number starts to decrease. For the same reason,
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the moment decreases due to alloying with Cr, which reduces the number of electrons.

Appendix 12A: An example of band calculation (APW)

Numerical calculations that exceed the HF approximation are still not vey common, and many theories used to explain

the Slater-Pauling law are by (a bit-modified) HF approximation. Band calculation is often the basis for considering

the electron correlation effect, so let us take a brief look at a type of calculation method here. Here we introduce APW

(augmented plane wave) method, which is one of the techniques to find solutions of Kohn-Sham equation *1, for the

details, refer to [11, 12] and the references therein.

Let us consider the Schrödinger equation of the state ϕ(r) in potential V (r):

H ϕ(r) =

[
− ℏ2

2m
∇2 + V (r)

]
ϕ(r) = Eϕ(r). (12A.1)

As the potential, we consider one called Muffin-tin potential. Let rc be the radius of Muffin-tins, which must be shorter

than the half of the distance between neighboring atoms. Then the potential is described as(Fig. 12A.1)

V (r) =

{
Va(r) (spherical) (r < rc)

Vo (= Va(rc): const.) (r ≥ rc).
(12A.2)

As V (r), Hartree potential, which corresponds to the direct integral in eq. (6.6), is adopted. That is

Vd(r) =
∑
i

⟨ϕi(r′)|
e2

|r − r′|
|ϕi(r′)⟩ . (12A.3)

And exchange potential which corresponds to the exchange integral is

Vex↑ = −3e2
(

3

4π

)1/3

ρ↑(r)
1/3. (12A.4)

The above is from spin density function approximation. The above Hartree and exchange potentials are obtained from

the eigen functions, which are the solutions of eq. (12A.1). Hence the equation constitutes the self-consistent equation.

Actual calculation is on the variational method. As the variation functions, we adopt

Φvr(r) =

{∑
l,mAlmRl(r)Y

m
l (θ, φ) r < rc,∑N

n=0Bn exp[i(k +Kn) · r] r > rc.
(12A.5)

That is, inside the muffin-cup, wavefunctions have the same form for an isolated atom potential, and outside, the super-

positions of plane waves. Kn are inverse-lattice vectors.

Fig. 12A.1 Schematic diagram of Muffin-
tin potential. From [13].

*1 Though APW method was invented long before the Kohn-Sham equation, now it can be placed at such a position in the present understandings.
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The wavenumber k is fixed and the variation is taken under the boundary condition of wavefunction Φ connection at

r = rc. Actually, the coefficients {Bn} is determined for ⟨Φ|H |Φ⟩ to take the extremals. N cannot be taken to infinity

and the calculation is done within a finite number. Thus obtained Φ is used to calculate the potential and the procedure

is continued to reach conversion. Then k is varied and the same procedure is repeated to obtain the band structure as we

have seen in Sec. 6.3.

Appendix 12B: MateriApps

MateriApps (https://ma.issp.u-tokyo.ac.jp/) is a portal site for material science simulations operated in cooperation

with the Institute for Solid State Physics CMS and others, and has information and download links for many related

applications.

Among them, Quantum Espresso (https://www.quantum-espresso.org/) is an application that performs a wide range of

calculations such as ground state calculation, DFT calculation, and quantum transport, and is characterized by being able

to run on a PC.
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