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6th July (2022) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Last week, we saw that the HF approximation on the Hubbard model leads to the Stoner condition, which brings about

an energy difference between the ↑-band and the ↓-band. This modeling and the approximation enable us to explain some

experimental facts like Slater-Paulings’ curve qualitatively. On the other hand, the approximation still has qualitative

and quantitative problems naturally for such a simple approximation. In such situations, self-consistent renormalization

(SCR) spin-fluctuation theory gave satisfactory results at least for the ground states. This week we would like to reach

the entrance of SCR theory but before that we need a bit heavy preparation, to which most of the lecture time is devoted.

6.4 Dynamic susceptibility

So far we have seen responses of materials to static magnetic fields. Here we turn our attention to responses to vibrating

external fields. In such a case, we need to use the linear response theory.

6.4.1 Linear response

Let Hext(t) be the Hamiltonian of time-dependent external field. The total Hamiltonian is expressed as H0+Hext(t).

From the time dependence of density matrix ρ defined in the previous section in eq. (6.9) is,

iℏ
∂ρ

∂t
= [H0 + Hext(t), ρ(t)], (6.54)

where only time t is shown explicitly as a variable. The initial state, for time t = −∞, is set to the thermal equilibrium

state of H0, that is

ρ(−∞) = ρeq =
1

Z0
exp

(
− H0

kBT

)
, (6.55)

where Z0 = Tr[exp(−H0/kBT )] is the partition function of unperturbed state.

As shown in Appendix 13A, the density matrix satisfies the following integral equation.

ρ(t) = ρeq +
1

iℏ

∫ t

−∞
dt′[U0(t− t′)Hext(t

′)U−1
0 (t− t′), U0(t− t′)ρ(t′)U−1

0 (t− t′)] (6.56)

= ρeq +
1

iℏ

∫ t

−∞
dt′U0(t− t′)[Hext(t

′), ρ(t′)]U−1
0 (t− t′), (6.57)

where also as in (13A.1),

U0(t) ≡ exp

(
H0

iℏ
t

)
. (6.58)

Since the commutation relation in the right hand side of eq. (6.57) is the response to an external field in addition to ρeq,

the lowest order in it is the first order of t. In the same way, Hext is a time-dependent part with no constant. As long

as we consider the liner response, ρ(t′) in the commutation relation in eq. (6.57) can be replaced with time-independent

ρeq. ρeq commutes with Hamiltonian H0, being made from the eigenstates of it. Then we can write

ρ(t) ≃ ρeq +
1

iℏ

∫ t

−∞
dt′[U0(t− t′)Hext(t

′)U−1
0 (t− t′), ρeq]. (6.59)
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Now we assume the Hamiltonian of external field can be written in the form of

Hext(t) = −PF (t), (6.60)

where F (t) is a quantity to represent the strength of the field and P is the operator corresponding to the field. With this

density matrix, an expectation value of a general physical quantity Q can be obtained as Tr{ρ(t)Q}[1, 2] in the following.

⟨Q(t)⟩ = Tr{ρ(t)Q} = ⟨Qeq⟩+
1

iℏ

∫ t

−∞
dt′ ⟨[P,Q(t− t′)]⟩F (t′). (6.61)

Here ⟨Qeq⟩ and Q(t) are defined as

⟨Qeq⟩ = Tr{ρeqQ}, Q(t) = U0(t)
−1QU0(t). (6.62)

From eq. (6.61), we know that the expectation value ⟨[P,Q(t− t′)]⟩ is a pure imaginary.

Now we consider the external field of frequency ω and write

F (t) = F0 cos(ωt) = Re[F0e
−iωt]. (6.63)

We here define the susceptibility χ(ω) as

∆Q(t) = ⟨Q(t)⟩ − ⟨Qeq⟩ = Re[χ(ω)F0e
−iωt]. (6.64)

On the other hand, from eq. (6.61)

∆Q(t) =
1

iℏ

∫ t

−∞
dt′ ⟨[P,Q(t− t′)]⟩Re[F0e

−iωt′ ]. (6.65)

Now we know that the right-hand sides of eq. (6.64) equates eq. (6.65). The right hand side of (6.64) can be written as

Re[χ(ω)F0e
−iωt] =

F0

2
[χ∗(ω)eiωt + χ(ω)e−iωt]. (6.66)

Similarly (6.65) is developed to

F0

2iℏ

{[∫ ∞

0

dτ ⟨[P,Q(τ)]⟩ e−iωτ

]
eiωt +

[∫ ∞

0

dτ ⟨[P,Q(τ)]⟩ eiωτ

]
e−iωt

}
, (6.67)

where τ = t− t′). By remembering ⟨[P,Q(τ)]⟩ is a pure imaginary, we compare the above two to obtain the following.

Kubo formula� �
χQP (ω) =

i

ℏ

∫ ∞

0

⟨[Q(τ), P ]⟩ eiωτdτ. (6.68)� �
Here we add a subscript to χ, which shows the relation of response P → Q. Equation (6.68) is one of the formulas

called Kubo formula, which give linear response functions[3]. This can be viewed as a terminus ad quem of the linear

response theory initiated by Nyquist and by others. The Kubo formula has been applied to a vast field of science with

fruitful results. It should be used probably forever in science. On the other hand, there are various different formalisms

in linear response. We need to select one of them according tot the character of the problem[2].

6.4.2 Fluctuation-dissipation theorem

Equation (6.68) is a Fourier transformation from (time) to (frequency). At the same time it is a response of a physical

quantity Q to the external field in eq. (6.60). The correlation function ⟨[Q(τ), P ]⟩ represents transfer on time (τ ) axis to
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the susceptibility *1. Then we define a Green’s function for physical quantity P , Q as

G±
QP (t) = ∓ i

ℏ
θ(±t) ⟨[Q(t), P ]⟩ , (6.69)

in which we restore the symbol for time as τ → t. Here θ(t) is the Heaviside function defined as

θ(t) =

{
1 (t ≥ 0),

0 (t < 0).
(6.70)

We also call G+
QP (t) as a retarded Green’s function, G−

QP (t) an advanced Green’s function. Then eq. (6.68) is a Fourier

transformation of G+
QP (t), and can be written in the form

χQP (ω) = −G+
QP (ω) = −Fω{G+

QP (t)}, (6.71)

where Fω{· · · } expresses the Fourier transform of · · · to ω-space.

A Fourier transform of a correlation function of a perturbation and a response:

SQP (ω) =

∫ ∞

−∞
dt ⟨Q(t), P ⟩ eiωt (6.72)

is called a dynamical form factor. Here we can show the following as in Appendix 13B.

SQP (ω) =
i

1− e−βℏω [G
+
QP (ω)− G−

QP (ω)], (6.73)

where β ≡ (kBT )
−1. The left-hand side of eq. (6.73) is a Fourier transform of a correlation function and the right-

hand side is a susceptibility of linear response. Such formulas that show linear relations between correlation functions

and coefficients of linear responses are called fluctuation dissipation theorem. Of course fluctuations and energy-

dissipations are different physical quantities. The theorems are not saying that they are the same but that fluctuations can

be expressed by coefficients of linear response, which are parameters of energy dissipation.

Let {|n⟩} be a complete set of eigenfunctions of H , then

G+
QP (ω) =

∑
n,m

⟨n|Q|m⟩ ⟨m|P |n⟩ e−βEn − e−βEm

En − Em + ℏω + iη
. (6.74)

6.4.3 Random Phase Approximation (RPA)

We consider an external magnetic field

B(r, t) = B(q, ω)ei(q·r−ωt), (6.75)

applied on a Hubbard model

H =
∑
i,j,s

tijc
†
iscjs + U

N∑
i

n̂i↑n̂i↓. (6.25)

We write the local magnetization density in unit of −gµB as

S(r) =
1

2

∑
i

∑
α,β

δ(r − ri)c
†
iασαβciβ , (6.76)

*1 Green’s function was invented by George Green (1973-1841). As you probably used in the electromagnetism, it is frequently used for finding
solutions of differential equations. A Green’s function generally expresses an effect of some local cause to an away point. It appears in various
formalisms and the name “Green’s function” is now also applied to general correlation (transfer) functions. I should note that according to
ref. [4], the naming “Green’s function” is strange and we should call it “Green function.”
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where σ = (σx, σy, σz) is a vector with Pauli matrices as elements. Accordingly, Hamiltonian(6.60) in the present case

is
Hext(t) = gµB

∫
B(r, t) · S(r)d3r = gµBS−q ·B(q, ω)e−iωt. (6.77)

Here Fourier-q components of magnetization Sq are defined as follows.

Sq+ = Sqx + iSqy =
∑
k

a†k↑ak+q↓,

Sq− = Sqx − iSqy =
∑
k

a†k↓ak+q↑,

Sqz = (1/2)
∑
k

(a†k↑ak+q↑ − a†k↓ak+q↓).


(6.78)

In comparison of eq. (6.77) and eq. (6.60), the quantity which corresponds to P is gµBS−q . On the other hand, the

response is also magnetization and in linear response, that is gµBSq . Hence the z-component of dynamic susceptibility

is

χzz(q, ω) = (gµB)
2 i

ℏ

∫ ∞

0

dt ⟨[Sqz(t), S−qz]⟩ eiωt. (6.79)

Similarly, considering non-zero part after taking correlation function, the transverse component is written as

χ+−(q, ω) = (gµB)
2 i

ℏ

∫ ∞

0

dt ⟨[Sq+, S−q−]⟩ eiωt. (6.80)

Let us calculate χ+−(q, ω) in the following way. We take a k term in the expression of Sq+(t) in eq. (6.78). The

corresponding Green’s function is

G+
kq(t) = −iθ(t) ⟨[a†k↑(t)ak+q↓(t), S−q−]⟩ . (6.81)

Henceforth we omit + to specify “retarded.” The time derivative of this Green’s function (equation of motion) is

iℏ
∂Gkq

∂t
= −iθ(t) ⟨[eiH t/ℏ[a†k↑ak+q↓,H ]e−iH t/ℏ, S−q−]⟩+ δ(t)ℏ ⟨[a†k↑(t)ak+q↓(t), S−q−]⟩ . (6.82)

We divide the Hubbard Hamiltonian into the kinetic energy term Hk and the on-site interaction term Hint, and calculate

the commutation relation in the right-hand side as follows.

[a†k↑ak+q↓, S−q−] =
∑
k′

[a†k↑ak+q↓, a
†
k′+q↓ak′↑]

= a†k↑ak↑ − a†k+q↓ak+q↓, (6.83a)

[a†k↑ak+q↓,Hk] = (ϵk+q − ϵk)a
†
k↑ak+q↓, (6.83b)

[a†k↑ak+q↓,Hint] = (U/N)
∑

k1,k2,p

[a†k↑ak+q↓, a
†
k1+p↑a

†
k2−p↓ak2↓ak1↑]

= −(U/N)

∑
k1,p

a†k↑a
†
k1+p↑ak+q+p↓ak1↑ +

∑
k2,p

a†k+p↑a
†
k2−q↓ak2↓ak+q↓

 . (6.83c)

There are terms with four (2+2) operators products term of annihilation-creation operators in eq. (6.83c) representing

the interaction, to which we apply mean field approximation. That is, we replace two of the four operators with the

average of them in [· · · ] as

−
∑
p

a†k+p↑ak+q+p↓ ⟨a†k↑ak↑⟩+
∑
k1

a†k↑ak+q↓ ⟨a†k1↑ak1↑⟩

−
∑
k2

a†k↑ak+q↓ ⟨a†k2↓ak2↓⟩+
∑
p

a†k+p↑ak+q+p↓ ⟨a†k+q↓ak+q↓⟩ . (6.84)
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Mean field approximation to such dynamic quantity is generally called Random Phase Approximation(RPA). The

naming means a quantity with a phase factor (exp(iθ)) of randomized phase (θ) should vanish.

In eq. (6.84), a difference between an average on ↑ and that on ↓ is taken in the second and the thrid terms. In the

paramagnetic states, they cancel each other, and the time derivative of Green’s function in RPA (6.81)is

iℏ
∂Gkq

∂t
= (ϵk+q − ϵk)Gkq(t)

− (U/N)(⟨a†k↑ak↑⟩ − ⟨a†k+q↓ak+q↓⟩)
∑
p

G(k+p)q(t)

+ (⟨a†k↑ak↑⟩ − ⟨a†k+q↓ak+q↓⟩)δ(t). (6.85)

Taking Fourier transformation of both side we get

Gkq(ω) =
fk↑ − fk+q↓

ℏω + ϵk − ϵk+q

[
1− U

N

∑
p

Gpq(ω)

]
, (6.86)

where fks = ⟨a†ksaks⟩ is the Fermi distribution function. Summation over k gives

χ+−(q, ω) = N(gµB)
2 2χ(0)(q, ω)

1− 2Uχ(0)(q, ω)
, (6.87)

where
χ(0)(q, ω) =

1

2N

∑
k

fk+q↓ − fk↑
ℏω + ϵk − ϵk+q

(6.88)

is the susceptibility of non-interacting system per site normalized by (gµB)
2.

For the calculation of above χ(0)(q, ω) we calculate the following. Here for clearness of expression, we adopt ℏ → 1,

the unit of wavenumber is taken to kF, the unit of energy is taken to ϵF. With 3D Jacobian, the integral is written as

1

2N

∑
k

fk
ω + ϵk−q − ϵk

=
1

2
ρ(ϵF)

∫ 1

0

k2dk

∫ 1

−1

d(cos θ)

ω + q2 − 2kq cos θ

=
1

2
ρ(ϵF)

∫ 1

0

k2dk
1

2kq
log

ω + q2 + 2kq

ω + q2 − 2kq
. (6.89)

From a mathematical identity∫
x log(ax+ b)dx =

1

2

[
x2 −

(
b

a

)2
]
log(ax+ b)− x2

4
+

b

2a
x,

Fig. 6.4 Boundary lines of Kohn anomaly expressed in
eq. (6.91), and four regions separated by them in the upper half
of q-ω plane.
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Fig. 6.5 Plot of the real part of χ(0)(q, 0) in
eq. (6.93). The derivative diverges at q = 2.

the integration can be performed as

χ(0)(q, ω) =
ρ(ϵF)

2

1

2q

{
1

2

[
1−

(
ω + q2

2q

)2
]
log

ω + q2 + 2q

ω + q2 − 2q
+

ω + q2

2q

−1

2

[
1−

(
−ω + q2

2q

)2
]
log

−ω + q2 − 2q

ω + q2 + 2q
+

−ω + q2

2q

}
. (6.90)

In (6.90), when the arguments of log is negative, the susceptibility has a finite imaginary part that leads to damping.

The boundary (Kohn anomaly boundary) is given by

ω = ±(q2 ± 2q). (6.91)

Figure 6.4 shows these boundaries on q − ω plane. They divide the upper half plane to four regions I∼IV. In regions I

and IV, the imaginary part is zero. In region III, the imaginary part is

Im[χ(0)(q, ω)] =
ρ(ϵF)

2

π

4

ω

q
. (6.92)

The real part is for ω = 0

Re[χ(0)(q, 0)] =
ρ(ϵF)

2

1

2q

{(
1− q2

4

)
log

∣∣∣∣2 + q

2− q

∣∣∣∣+ q

}
. (6.93)

This is plotted as a function of q in Fig. 6.5. At the Kohn anomaly boundary q = 2(kF), the curve shows a divergence of

derivative by q.

From eq. (6.87) the RPA on dynamical susceptibility of Hubbard model predicts appearance of magnetic order for

Uχ(0)(qmax, 0) ≥
1

2
. (6.94)

Here qmax is the wavenumber that gives the maximum value of χ(0). In the case of qmax = 0, as can be seen in Fig. 6.5,

chi(0)(qmax) → ρ(ϵF)/2, then naturally this agrees with the Stoner condition. On the other hand, when qmax ̸= 0, a

magnetic order with finite wavenumber exists. This corresponds to spin density wave (SDW).

6.5 Self-consistent renormalization spin fluctuation theory

As we have seen above, the mean field (HF approximation) theory based on the Hubbard model has various problems

both in principle and in comparison with experiments. On the other hand, although parameter tuning may be included, it
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explains some aspects of experiments such as the Slater-Pauling’s curve. It is impossible to discuss trends of researches

from a single point of view. However a way to view the flows of research on magnetism is that there were two ways

to go after the HF approximation. One is to look for different ways from HFA by simplifying models, by considering

extreme cases and the strong correlation is taken into account more seriously. The other is improvement of HFA to solve

the difficulties. The former has produced many interesting results on mathematical physics and conversely experiments

appeared aiming at realizing such mathematical models. A big success of the latter is self-consistent renormalization
(SCR) spin fluctuation theory[5]．

Since it is difficult to see the mathematical scientific direction in the remaining one lecture, I would like to briefly

explain the SCR theory and finish it. Many textbooks on mathematical science directions and strongly correlated systems

have been published during the last quarter century[6, 7, 8, 9]. If you are interested, please refer to them.

(To be continued)

Appendix 13A: Derivation of integral equation

We define the interaction representation of ρ (ρ(I)) as

ρ(t) = eH0t/(iℏ)ρI(t)e
−H0t/(iℏ) = U0(t)ρI(t)U

−1
0 (t), U0(t) ≡ exp

(
H0

iℏ
t

)
. (13A.1)

Here, ρI = U−1
0 ρU0, [H0, U0] = 0. Also

∂U0

∂t
=

H0

iℏ
U0 =

1

iℏ
U0H0,

∂U−1
0

∂t
= −H0

iℏ
U−1
0 = − 1

iℏ
U−1
0 H0, U−1

0 (t) = U0(−t).

Then from eq. (6.55), the equation of motion for ρI(t) is

iℏ
∂ρI
∂t

= iℏ
(
∂U−1

0

∂t
ρU0 + U−1

0

∂ρ

∂t
U0 + U−1

0 ρ
∂U0

∂t

)
= iℏ

(
−H0

iℏ
U−1
0 ρU0 +

1

iℏ
U−1
0 [H0 + Hext, ρ]U0 + U−1

0 ρ
H0

iℏ
U0

)
= U−1

0 (Hextρ− ρHext)U0

= [U−1
0 HextU0, ρI]. (13A.2)

From the condition ρ = ρeq and Hext = 0 for t = −∞, by integrating both sides of eq. (13A.2) with (−∞, t],

ρI(t)− ρI(−∞) = − 1

iℏ

∫ t

−∞
dt′[U−1

0 (t′)HextU0(t
′), ρI(t

′)]. (13A.3)

The we obtain

ρ(t) = ρ(−∞) +
1

iℏ
U0(t)

{∫ t

−∞
dt′[U−1

0 (t′)HextU0(t
′), U−1

0 (t′)ρ(t′)U0(t
′)]

}
U−1
0 (t)

= ρeq +
1

iℏ

∫ t

−∞
dt′U0(t− t′)[Hext(t

′), ρ(t′)]U−1
0 (t− t′), (13A.4)

which is eq. (6.57).
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Appendix 13B: Fluctuation-dissipation theorem

We change the order of Q and P in

SQP (ω) =

∫ ∞

−∞
dt ⟨Q(t), P ⟩ eiωt,

to write ∫ ∞

−∞
dt ⟨PQ(t)⟩ eiωt =

∫ ∞

−∞
dt

1

Z
Tr{e−βH PeiH t/ℏQe−iH t/ℏ}eiωt. (13B.1)

Now we use mathematical identity that for operators A, B, C, Tr{ABC} satisfies

Tr{ABC} = Tr{CAB} = Tr{BCA}. (13B.2)

Then ∫ ∞

−∞
dt ⟨PQ(t)⟩ eiωt =

∫ ∞

−∞
dt

1

Z
Tr{eiH t/ℏQe−iH t/ℏe−βH P}eiωt

=

∫ ∞

−∞
dt

1

Z
Tr{e−βH e(i/ℏ)H (t−iβℏ)Qe−(i/ℏ)H (t−iβℏ)P}eiω(t−iβℏ)e−βℏω

= e−βℏωSQP (ω). (13B.3)

Namely we reach

SQP (ω) =
1

1− e−βℏω

∫ ∞

−∞
dt ⟨[Q(t), P ]⟩ eiωt =

i

1− e−βℏω [G
+
QP (ω)−G−

QP (ω)]. (13B.4)
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