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Let us go into self-consistent renormalization (SCR) spin fluctuation (SF) theory, the entrance of which we finally

reached last week. As mentioned in the last lecture, SCR-SF theory approaches the problem with improving the approx-

imation not taking completely different ways. The theory then gained great successes[1]. We have used two weeks to

reach the entrance. It is impossible to introduce the details of the first paper[1] in a single lecture. Here I would like

to introduce only the framework of the theory along with resumes like [2, 3].e Those who wish to know the details are

requested to refer to monographs of this topic[4, 5, 6], and to original papers *1.

6.5.1 Weak metallic ferromagnetism, paramagnonr

Kawabata, one of the founders of SCR-SP theory, says a strong motivation of the theory is the finding of weak metallic

ferromagnetism like ZrZn2, Sc3In, Ni3Al[2], Also in the textbook[4] by Moriya, who is synonymous with SCR-SF

theory, paramagnon theory by Izuyama and Kubo[7] is introduced as a preliminary form of SCR-SF theory. Let us

then consider paramagnons, which are spin waves in non-magnetically-ordered metals with strong effective interactions

between spins. Such metals are considered to be marginal to ferromagnetism (anti-ferromagnetism). Palladium (Pd) tends

to form ferromagnetic alloys with non-magnetic elements and is considered to be close to ferromagnetism[8]. Helium-3,

which is not a metal but has a nuclear spin, can also be mentioned. It is long since the magnon (paramagnon) system

of superfluid helium-3 was found to cause BEC[9, 10]. In high-TC cuprates close to anti-ferromagnetic order[11], also

in iron-based high-TC superconductors[12], existences of paramagnons have been confirmed and the dispersion relations

etc. have been determined.

We saw in the last lecture that in RPA, which is the mean field approximation on dynamic susceptibility, magnon states

may be magnetically ordered ground states. This suggests that spin-fluctuations may be considered as excited states in the

magnon-system picture even when the ground state is paramagnetic. It also suggests that the existence of such collective

excitations may greatly lower the energy of excited states compared with those in static HF approximations. In spite of

such signs of improvement, the simple RPA does not solve the problems of mean field theory in temperature dependence

of susceptibility etc. This is probably due to ignoring spin fluctuation in finite temperature thermal equilibrium state.

Then in the paramagnon theory we consider the spin fluctuation in paramagnetic state.

Hellmann-Feynman theorem

First we prove the following general theorem. We consider a Hamiltonian with parameter p

H (p) = H0 + H1(p) (6.95)

with normalized eigenstate |p, n⟩ and the eigen energy En(p). A change in an eigenstate due to an infinitesimally small

change δp of p H (p+ δp) is expressed as a linear sum of the original eigenstates as

|p+ δp, n⟩ = |p, n⟩+
∑
m

Cm |p,m⟩ . (6.96)

*1 As far as I checked, most of textbooks written in English, do not even refer to the SCR-SF theory, whose logic is even difficult to be followed.
They usually introduce the simple HF approximation, then shift to DFT or GGA, in which the approximation is improved. These ab initio
calculation may doing similar improvement for the HF as SCR-SF though the details cannot be known.
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If we assume linear approximation Cm = cmδp, from

⟨p+ δp, n|p+ δp, n⟩ = |1 + cnδp|2 ⟨p, n|p, n⟩+
∑
m ̸=n

|cm|2|δp|2 ⟨p,m|p,m⟩ ,

the condition of normalization leads to cn = 0, that is, within linear approximation in δp, Cn = 0. Namely, within linear

approximation of δp,
⟨p+ δp|H (p)|p+ δp⟩ = ⟨p|H (p)|p⟩ = En(p). (6.97)

Then we can write the shift in the eigenenergy as

En(p+ δp) = ⟨p+ δp, n|H (p+ δp)|p+ δp, n⟩

=

〈
p+ δp, n

∣∣∣∣H (p) + δp
∂H (p)

∂p

∣∣∣∣ p+ δp, n

〉
= En(p) + δp

〈
p, n

∣∣∣∣∂H (p)

∂p

∣∣∣∣ p, n〉 . (6.98)

We can thus conclude
dEn(p)

dp
=

〈
p, n

∣∣∣∣∂H1(p)

∂p

∣∣∣∣ p, n〉 . (6.99)

This is called Hellmann-Feynman theorem.

From this theorem, e.g., the free energy F (p) of the system of Hamiltonian H (p) can be written as

∂F (p)

∂p
=

1

Z

∑
n

exp

[
−En(p)

kBT

]
∂En(p)

∂p
. (6.100)

In eq. (6.95), H1(p) can be an interaction Hamiltonian HI of interaction constant I . From Hellmann-Feynman the-

orem, we can introduce the interaction with varying the interaction constant as I : 0 → I . The correction term for free

energy is given as a function of I by

F (I) = F (0) +

∫ I

0

〈
∂HI′

∂I ′

〉
dI ′. (6.101)

From the above, we consider the contribution of spin fluctuation to the specific heat. Here Hubbard model in eq. (6.29)

can be written as

H =
∑
k,s

ϵka
†
ksaks + U

N∑
i

n̂i↑n̂i↓ = H0 + HI . (6.102)

As in the transform of first term, an operator at lattice point Ri is Fourier-expanded as

cis =
1√
N

∑
k

eiRi·kaks. (6.103)

And as in eq. (6.83c), we write HI as

HI =
U

N

∑
k,k′,q

a†k+q↑ak↑a
†
k′−q↓ak′↓, (6.104)

where the interaction parameter is I = U/N . We also change the notation in eq. (6.78) a bit to

S+(q) =
∑
k

a†k↑ak+q↓,

S−(q) =
∑
k

a†k↓ak+q↑.

 (6.78)
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From fermionic commutation relation, with exchanging the last two operators in the sum in right-hand side, eq. (6.104)

is developed to

HI = I
∑

k,k′,q

a†k+q↑ak↑(δk′,k′−q − ak′↓a
†
k′−q↓)

= I

∑
k,k′

a†k↑ak↑ −
∑

k,k′,q

a†k+q↑ak′↓a
†
k−q↓ak↑

 . (6.105)

Wavenumber q, over which the sum is taken, transform q → −q+ k′ − k results in k+ q → k− q+ k′ − k = k′ − q,

and similarly k′ − q → k + q. Then from eq. (6.78), we can write

HI = I

∑
k,k′

a†k↑ak↑ −
∑

k,k′,q

a†k′−q↑ak′↓a
†
k+q↓ak↑


= I

∑
k,k′

a†k↑ak↑ −
∑
q

S+(−q)S−(q)

 = I

∑
k,k′

a†k↑ak↑ −
∑
q

S+(q)S−(−q)

 . (6.106)

Next, in paramagnetic states, HI does not change with spin inversion, thus, we add the expression of ↑↔↓ and divide by

two to obtain
HI =

NeU

2
− I

2

∑
q

{S+(q), S−(−q)}+, (6.107)

where Ne is the number of electrons, {A,B}+ = AB + BA represents anti-commutation relation. In eq. (6.106), sums

over k, k′ produce Ne and N respectively. The latter is because the sum comes from that over Ri. Accordingly, the

variation in the free energy due to introduction of interaction is given by

∆F =
NeU

2
− 1

2

∑
q

∫ I

0

dI ′ ⟨{S+(q), S−(−q)}+⟩ . (6.108)

For usage of fluctuation-dissipation theorem, remember eq. (6.74):

G+
QP (ω) =

∑
n,m

⟨n|Q|m⟩ ⟨m|P |n⟩ e−βEn − e−βEm

En − Em + ℏω + iη
. (6.74)

If we use the lower half of complex plane by replacing η → −η, we obtain a parallel representation for G−
QP (ω). From

these two, we can write
G+
QP (ω)− G−

QP (ω) = −2iIm[χQP (ω)],

to further obtain
SQP (ω) =

2

1− e−βℏω Im[χQP (ω)]. (6.109)

We also rewrite eq. (6.80) as

χ+−(q, ω) = −(gµB)
2 i

ℏ

∫ ∞

0

dt ⟨[S−(−q), S+(q, t)]⟩ eiωt. (6.110)

Let |n⟩ and En be a many-body eigenstate and its eigenenergy of Hamiltonian in eq. (6.102), then the imaginary part

of χ+−(q, ω) is given by

Im[χ+−(q, ω)] =
π(gµB)

2

ℏ
∑
m,n

(ρm − ρn)δ(ω −∆Emn/ℏ) ⟨n|S−(−q)|m⟩ ⟨m|S+(q)|n⟩ , (6.111)

where

Boltzmann factor: ρn =
1

Z
exp

[
− En

kBT

]
, ∆Emn = Em − En.
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Multiply both sides of eq. (6.111) by coth(βωℏ/2), and integrate over ω to obtain∫ ∞

−∞
dωImχ+−(q, ω) coth

(
ℏω

2kBT

)
=

π(gµB)
2

ℏ
∑
m,n

(ρm − ρn) coth

(
∆Enm

kBT

)
⟨n|S−(−q)|m⟩ ⟨m|S+(q)|n⟩

=
π(gµB)

2

ℏ
⟨{S−(−q), S+(q)}+⟩ . (6.112)

Then we can write the variation of free energy in eq. (6.108) as

∆F =
NeU

2
−
∑
q

∫ I

0

dI ′
1

2π

∫ ∞

−∞
dω coth

(
ℏω

2kBT

)
Im[χ+−(q, ω)]. (6.113)

By applying the RPA formula in eq. (6.87), the above is approximated as

∆F =
NeU

2
+
∑
q

1

π

∫ ∞

0

dω coth

(
ℏω
kBT

)
Im{log[1− 2Uχ(0)(q, ω)]}. (6.114)

For calculation of specific heat, only temperature-dependent parts in ∆F are necessary.

coth
ℏω
kBT

= 1 +
2

eℏω/kBT − 1
. (6.115)

In the above, the first term “1” in the right hand side is the zero-point motion of paramagnons and ignored in the calcula-

tion of specific heat. In eq. (6.114), we need to consider the contribution of χ(0)(q, ω), susceptibility of non-interacting

system. In (q, ω)-plane shown in Fig. 6.4, the largest contribution is given in region-III, in which we can expand χ(0)(q, ω)

as

χ(0)(q, ω) =
1

2
ρ(ϵF)

[
1−A0

(
q

kF

)2

+ iC0
ℏω
ϵF

kF
q

]
. (6.116)

Here the expansion coefficients are

A0 =
1

12
, C0 =

π

4
. (6.117)

For the simplest approximation we use this expression of χ(0)(q, ω). Let α ≡ Uρ(ϵF) be the interaction constant, we

reach

∆F (T ) =
N

2
ρ(ϵF)ϵ

2
F

∫ qc

0

q2dq

∫ ∞

0

dω
2

eβω − 1
Im

[
log

(
1− α+ αA0q

2 − iαC0
ω

q

)]
= −N

2
ρ(ϵF)ϵ

2
F

∫ qc

0

q2dq

∫ ∞

0

dω
2

eβω − 1
arctan

[
ω

q

C0

K2
0 +A0q2

]
. (6.118)

As before, for simplicity of representation, unit of wavenumber q is taken as kF, ℏ = 1, unit of energy ω is taken as ϵF.

qc is a cutoff of wavenumber. Here expansion in region-III is effective only for finite q and the cutoff is indispensable and

is around 1 (kF). And K0 is

K2
0 =

1− α

α
. (6.119)

We further apply low temperature approximation ω ≪ 1 and arctanx ∼ x to obtain

∆F (T )

N
= −2π2

3
ρ(ϵF)(kBT )

2 C0

2πA0
log

K2
0 +A0q

2
c

K2
0

, (6.120)

from which we know the spin-fluctuation contribution to low temperature specific heat is proportional to T . Then if we

write

C = γT, γ0 ≡ 2π2

3
k2Bρ(ϵF), (6.121)

E14-4



then the coefficient γ is

γ = γ0

(
1 +

C0

πA0
log

K2
0 +A0q

2
c

K2
0

)
, (6.122)

where γ0 is the temperature coefficient of specific heat of electron systems without contribution from spin fluctuation.

Equation (6.122) tells that the temperature coefficient of specific heat logarithmically diverges as the condition approaches

Stoner ferromagnetic criterion α → 1, K0 → 0.

6.5.2 SCR spin-fluctuation theory

So far, Hellmann-Feynman theorem and fluctuation-dissipation theorem are used to obtain the expression for free

energy of thermal equilibrium with dynamic susceptibility. By applying RPA to dynamic susceptibility, the effect of spin-

fluctuation is included. However, at this stage the theory just describes low-temperature approximation of paramagnetic

states. A problem here is, as is always the case of many-body problem, the effect of spin-fluctuation should be reflected

on the spin-fluctuation. Hence this simply cannot be applied to ferromagnetic state with spontaneous magnetization. For

that we need to consider self-consistent equation as in the case of Heisenberg model.

Then, here, we consider the free energy in the presence of magnetization M . The free energy is given as the sum of

free energy F0(M,T ) of non-interacting system and the quantity in eq. (6.113) by

F (M,T ) = F0(M,T ) +
NeU

2
− bM −

∑
q

∫ I

0

dI ′
1

2π

∫
dω coth

ℏω
2kBT

Im[χ+−(M, I ′; q, ω)]. (6.123)

−bM is the Zeeman term. Here, as a notation, the magnetization M and the interaction parameter I are specified in the

dynamic susceptibility χ+−.

As we saw in the GL theory static spontaneous magnetization M is given by extremum condition of F as

∂F (M,T )

∂M
= 0. (6.124)

This can be viewed as magnetic equation of state.

We restart with eq. (6.113), which does not contain any approximation. In HF mean-field approximation, integrand of

the second term in right-hand side is replaced with the one without interaction (I = 0), thus the integration with dI ′ over

region [0, I] is replaced with simple product of I .

∆FHF =
NeU

2
− I

∑
q

1

2π

∫ ∞

−∞
dω coth

(
ℏω

2kBT

)
Im[χ+−(M, 0; q, ω)]. (6.125)

From the Hubbard model in eq. (6.102), we consider the quantity:〈
∂H

∂I

〉
I=0

= N

N∑
i

⟨ni↑ni↓⟩I=0 = N

N∑
i

⟨ni↑⟩ ⟨ni↓⟩

=
N2

4
(n2

+ − n2
−) =

N2

4
[n2 − (2m)2] =

N2
e

4
−M2. (6.126)

In the above, small characters n, m are the numbers per sites, and

n+ = n↑ + n↓, n− = n↑ − n↓, m =
n−

2
,

where the unit of magnetization is taken as gµB, the spin is 1/2. We take eq. (6.126) multiplied by I as the I-proportional

term in (6.125). Then we can write formally

F (M,T ) = F0(M,T ) + I

(
N2

e

4
−M2

)
− bM : HF Approximation

−
∑
q

∫ I

0

dI ′
1

2π

∫ ∞

−∞
dω coth

ℏω
kBT

Im[χ+−(M, I ′; q, ω)− χ+−(M, 0; q, ω)] : Correction. (6.127)
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As is in paramagnon theory, we apply RPA(eq. (6.87)) to χ+−(M, I ′; q, ω). Then the integration with I ′ can be

performed and the result is

F (M,T ) = F0(M,T ) + I

(
N2

e

4
−M2

)
− bM

−
∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
kBT

Im[log{1− 2Uχ(0)(M ; q, ω)}+ 2Uχ(0)(M ; q, ω)], (6.128)

where we write
χ(0)(M ; q, ω) =

1

2N
χ+−(M, 0; q, ω). (6.129)

We obtain the following magnetic equation of state by calculating magnetization-derivative of eq. (6.124) in eq. (6.128).

∂F0

N∂m
− 2Um− b− 1

N

∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
2kBT

Im

[
2Uχ(0)(M ; q, ω)

1− 2Uχ(0)(M ; q, ω)
2U

∂χ(0)(M ; q, ω)

∂m

]
= 0, (6.130)

which is given as an equation for magnetization per site m = M/N .

Here we formally define magnetization per site in paramagnetic states as

χ =
∂m

∂b
,

1

χ
=

∂b

∂m
. (6.131)

We also write susceptibility per site for non-interacting system as χ0. Free energy of the system with Zeeman term

F0 − bm gives a magnetic equation of state as
∂F0

N∂m
− b = 0. (6.132)

By applying eq. (6.124) to the above with transposition of b, we obtain

∂2F0

N∂m2
=

1

χ0
. (6.133)

Then in eq. (6.130) for the case of paramagnetic state, substituting the above gives

1

χ
=

1

χ0
− 2U

− 1

N

∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
2kBT

(2U)2

× Im

[
χ(q, ω)

∂2χ(0)(q, ω)

∂m2

∣∣∣∣
m=0

+ χ2(q, ω)

{
1

χ(0)
(q, ω)

∂χ(0)(q, ω)

∂m

∣∣∣∣
m=0

}2
]
, (6.134)

the last part of which is calculated as follows. Equation (6.87) of RPA and eq. (6.129) lead to

χ(q, ω) =
χ(0)(q, ω)

1− 2Uχ(0)(q, ω)
. (6.135)

We then apply this to obtain

∂χ

∂m
=

∂χ

∂χ(0)

∂χ(0)

∂m
=

1

(1− 2Uχ(0))2
∂χ(0)

∂m
= χ2 1

χ(0)2

∂χ(0)

∂m
.

Equation (6.134) tells the existence of correction, which is expressed as an integral with ω, to the susceptibility from

the term indicated as “Correction” in eq. (6.127). In the correction, inside Im[· · · ], within two terms in · · · , the first

term is linear in spin-fluctuation, the second is in the second order. Here we only consider the linear term. We further

approximate the first term by replacing ∂2χ(0)/∂m2|m=0 with the value for q = 0, ω = 0.h Then by writing that

g = −(2U)2χ0
∂2χ(0)(q, ω)

∂m2

∣∣∣∣
m=0,q=0,ω=0

, (6.136)
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we obtain the following.

χ0

χ
= 1− 2Uχ0 +

g

N

∑
q

1

2π

∫ ∞

−∞
dω coth

ℏω
2kBT

Im[χ(q, ω)]. (6.137)

We further ignore the temperature dependence of susceptibility of non-interacting system χ0. This should be taken into

account, e.g., in comparison with experiments etc., though here our purpose is to see the essential structure of SCR-SF

theory. However, we still have the problem of inconsistency in that application of RPA (eq. (6.135)) to the result of

(6.137) results in a disagreement of the divergent point of dynamic susceptibility ω ̸= 0 and that of static one (ω = 0). In

spite of the progress of approximation, a simple RPA still cannot satisfy the self-consistent condition.

The difficulty is avoided in the SCR-SF theory in the following way. We write the susceptibility at absolute zero as

χ0

χ(T = 0)
= 1− 2Uχ0 +

g

N

∑
q

1

π

∫ ∞

0

dωIm[χ(q, ω)]T=0. (6.138)

The third term in the rhs represents the contribution of spin-fluctuation with q ̸= 0 at absolute zero, namely the zero-point

motion. As can be seen here, the effect of spin-fluctuation enters into the denominator of RPA representation making the

condition of ferromagnetism difficult to be satisfied.

We take this as an RPA modified in the simplest way by the effect of spin-fluctuation. As is in the case of eq. (6.115),

we again ignore the temperature dependence of zero-point motion in magnon spectrum and take the difference between

eq. (6.137) and eq. (6.138). The approximation gives

χ0

χ
=

χ0

χ(T = 0)
+

g

N

∑
q

1

π

∫ ∞

0

dω
2

eℏωβ − 1
Im[χ(q, ω)]. (6.139)

Here an expansion of χ−1(q, ω) around (q, ω) = (0, 0) is possible as in eq. (6.116). The functional form is

χ0

χ(q, ω)
=

χ0

χ(+0,+0)
+A

(
q

kF

)2

− iC
ω

ϵF

kF
q
. (6.140)

(a) (b)

Fig. 6.6 (a) Temperature dependence of susceptibility in a ferromagnet calculated in the SCR-SF theory. The pa-
rameter here is the interaction parameter, which determines TC. The broken lines are by the simple molecular field
theory. (b) Critical temperature as a function of Stoner parameter α = ID(ϵF) calculated by the SCR-SF theory. The
broken line is 1/5 of the result in the simple molecular field theory. From [1].
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(a) (b)

Fig. 6.7 (a) Specific heat in the vicinity of ferromagnetic transition point calculated with the SCR-SF theory. From
[13]. (b) Specific heat of itinerant electron weak ferromagnet Sc3In under magnetic field around TC. The measured
values in zero-magnetic field is subtracted. Solid and broken lines are results of numerical calculation. From [14].

This form requires agreement of χ(q, ω) with the static susceptibility for q → +0, ω → +0.

In summary, calculation of χ(q, ω) from (6.139) and (??) results in a self-consistent solution. The above is the essential

framework of the SCR-SF theory though realistic calculations are far more complicated even for simplified band structure

with many expansion coefficients[1].

In Fig. 6.6, we show the temperature dependence of susceptibility calculated with the SCR-SF theory for a simple

parabolic band structure and the critical temperature TC as a function of interaction strength α = ID(ϵF) (Stoner param-

eter) [1]. In Fig. 6.6(a), compared with the simplest molecular field theory (broken lines), the SCR-SF theory gives much

better linearity in a wide temperature range, which indicates the Curie-Weiss law. Also as in Fig. 6.6(b), the energy of

paramagnetic state largely lowers due to the contribution of spin-fluctuation in thermal equilibrium, leading to correction

of overestimation in stability of ferromagnetic state. As a result, TC largely lowers from the results of the molecular field

theory.

On the other hand, there still exist many problems and open questions. As shown in Fig. 6.7, there is a large difference

between the calculated behavior of specific heat and those in experiments. Studies on these points have long history and

they are summarized e.g., in [5].

Appendix 14A: Calculation in (6.111)

The calculation shown in the following, very often appears, e.g, in usage of Green’s function (calculation of (6.74) is

almost the same). For your convenience, I would like to show a little of calculation in (6.111). It is probably enough to

see
i

ℏ

∫ ∞

0

dt ⟨S+(q, t)S−(q)⟩ eiωt = (∗∗).

This is calculated as follows.

(∗∗) = i

ℏZ

∫ ∞

0

dtTr
[
e−βH e(i/ℏ)H tS+(q)e

−(i/ℏ)H tS−(q)
]
eiωt

=
i

ℏZ

∫ ∞

0

dt
∑
n,m

⟨n| e−βH +(i/ℏ)H tS+(q) |m⟩ ⟨m| e−(i/ℏ)H tS−(q) |n⟩ eiωt

=
i

ℏZ

∫ ∞

0

dt
∑
n,m

e(−β+(i/ℏ)t)En ⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩ e−(i/ℏ)Emteiωt. (14A.1)
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Here we add a infinitesimal real part to the pure imaginary argument of exponential function, which is a trick often

appears in Fourier integration over half-infinite region. Rigorous proof is of course possible with ϵ-δ logics. Below, we

omit to write but η implicitly means taking the limit η → +0.

(∗∗) =
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩ ie
−βEn

ℏZ

∫ ∞

0

dte(i/ℏ)(En−Em+ℏω+iη)t

=
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩ ρn
[
e(i/ℏ)(ℏω−∆Emn+iη)t

ℏω −∆Emn + iη

]∞
0

=
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩ −ρn
ℏ

1

ω −∆Emn/ℏ+ iη

=
∑
n,m

⟨n|S+(q) |m⟩ ⟨m|S−(−q) |n⟩ −ρn
ℏ

[
1

ω −∆Emn/ℏ
− iπδ(ω −∆Emn/ℏ)

]
. (14A.2)

Then eq. (6.111) is obtained. Here in the last part we have used

lim
η→+0

1

x± iη
=

1

x
∓ iπδ(x). (14A.3)

This equation can be shown from an expression of δ-function as a limit of function:

lim
η→+0

1

π

η

x2 − η2
= δ(x).
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