2022.4.13 Lecture 2 10:25 – 11:55

Lecture on

Magnetic Properties of Materials

and the second

磁性 (Magnetism)

Institute for Solid State Physics, University of Tokyo Shingo Katsumoto

Chapter1 Basic Notions of Magnetism

Classical pictures of magnetic moments in materials: > Magnetic charges

Circular currents

Experimental methods to measure magnetization

Paramagnetic and diamagnetic terms in classical magnetization

Breakdown of classical magnetism: cancellation of paramagnetic and diamagnetic terms (Bohr-van Lewuuen theorem)

Introduction of spin angular momentum by relativistic quantum mechanics

- 1. Spin-orbit interaction
- 2. Magnetism in quantum theory

Chapter 2 Magnetism in localized systems

- 1. Spherical potential
- 2. Larmor precession
- 3. Magnetism of inert gas
- 4. LS multiplex ground state of open shell ions and Hund's rule

Magnetic moment of electron spin

Dirac eq. with electromagnetic field $i\hbar \frac{\partial \psi}{\partial t} = [c \boldsymbol{\alpha} (\boldsymbol{p} + e\boldsymbol{A}) + \beta m - e\phi] \psi$ $\left[\left(i\hbar \frac{\partial}{\partial t} + e\phi \right) - c \sum_{j=x,y,z} \alpha_j \left(-i\hbar \frac{\partial}{\partial r_j} + eA_j \right) - \beta mc^2 \right] \psi = 0$

Operation from left:
$$i\hbar \frac{\partial}{\partial t} + e\phi + c \sum_{j=x,y,z} \alpha_j \left(-i\hbar \frac{\partial}{\partial r_j} + eA_j \right) + \beta mc^2$$

We obtain

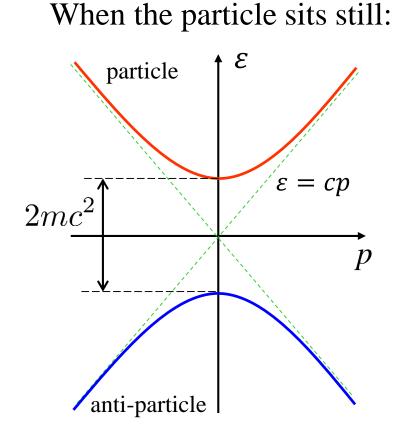
$$\left(i\hbar\frac{\partial}{\partial t} + e\phi\right)^2 - c^2(\boldsymbol{p} + e\boldsymbol{A})^2 - m^2c^4 + ic\hbar e(\boldsymbol{\alpha} \cdot \boldsymbol{E}) + i\hbar c^2 e(\alpha_x \alpha_y B_z + \alpha_y \alpha_z B_x + \alpha_z \alpha_x B_y)\right]\psi = 0$$

Because
$$\alpha_x \alpha_y = i\sigma_z^{(4)}, \quad \alpha_y \alpha_z = i\sigma_x^{(4)}, \quad \alpha_z \alpha_x = i\sigma_y^{(4)}$$

$$\left[\left(i\hbar \frac{\partial}{\partial t} + e\phi \right)^2 - c^2 (\boldsymbol{p} + e\boldsymbol{A})^2 - m^2 c^4 + ic\hbar e(\boldsymbol{\alpha} \cdot \boldsymbol{E}) - \hbar c^2 e\boldsymbol{\sigma} \cdot \boldsymbol{B} \right] \psi = 0$$

Magnetic moment of electron spin (2)

Stationary solution:
$$\psi(\mathbf{r}, t) = \exp(-i\epsilon t/\hbar)\varphi(\mathbf{r})$$


$$\begin{bmatrix} (\epsilon + e\phi)^2 - c^2(\mathbf{p} + e\mathbf{A})^2 - m^2c^4 + ic\hbar e(\mathbf{\alpha} \cdot \mathbf{E}) - \hbar c^2 e\boldsymbol{\sigma} \cdot \mathbf{B} \end{bmatrix} \varphi = 0$$
 $\phi = 0, \ \mathbf{E} = 0$
Low energy $expansion$
 $e = mc^2 + \delta$ We take first order in $\frac{\delta}{mc^2}$
 $\begin{bmatrix} \frac{1}{2m}(\mathbf{p} + e\mathbf{A})^2 + \frac{e\hbar}{2m}\boldsymbol{\sigma} \cdot \mathbf{B} \end{bmatrix} \varphi = \delta\varphi$
Bohr magneton
 $\mu_{\rm B} \equiv \frac{e\hbar}{2m} \approx 9.274 \times 10^{-24} \ \mathrm{JT}^{-1}$
 $\frac{e\hbar}{2m}\boldsymbol{\sigma} \cdot \mathbf{B} = \mu_{\rm B}\boldsymbol{\sigma} \cdot \mathbf{B} = 2\mu_{\rm B}\mathbf{s} \cdot \mathbf{B}$

 $-2\mu_{\rm B}s$

Therefore the magnetic moment is

Two-component separation approximation

Stationary Dirac equation $[c\alpha p + mc^2\beta]\varphi = \epsilon\varphi$ $\alpha_k = \begin{pmatrix} 0 & \sigma_k \\ \sigma_k & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \quad 4 \times 4 \text{ matrices}$ Pauli representation

 $\epsilon = \pm mc^2$

+ corresponds to I, – corresponds to –I in β

 \rightarrow upper two laws: particle, lower two: anti-particle (?)

Finite momentum *p* requires correction.

 $\tan 2\theta = \frac{p}{mc} \qquad \psi_{\uparrow} = e^{i(kz - \omega t)} \begin{pmatrix} \cos \theta \\ 0 \\ \sin \theta \\ 0 \end{pmatrix} \quad \text{Leak to lower laws}$

Stationary equation $(c \boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta mc^2 + V)\varphi = \epsilon \varphi$ Two-component approximation $\varphi = \begin{pmatrix} \varphi_A \\ \varphi_B \end{pmatrix}$

Simultaneous equations
$$\begin{cases} \boldsymbol{\sigma} \cdot \boldsymbol{p}\varphi_{\rm B} = c^{-1}(\delta - V)\varphi_{\rm A}, \\ \boldsymbol{\sigma} \cdot \boldsymbol{p}\varphi_{\rm A} = c^{-1}(\delta - V + 2mc^2)\varphi_{\rm B}. \end{cases} \quad \delta = \epsilon - mc^2$$

Erase of
$$\varphi_{\rm B}$$
 $c^{-2}\boldsymbol{\sigma} \cdot \boldsymbol{p}(\delta - V + 2mc^2)^{-1}\boldsymbol{\sigma} \cdot \boldsymbol{p}\varphi_{\rm A} = (\delta - V)\varphi_{\rm A}$

Low velocity $(p \ll mc)$ expansion $c^2(\delta - V + 2mc^2)^{-1} \approx \frac{1}{2m} \left[1 - \frac{\delta - V}{2mc^2} + \cdots \right]$

Normalization condition $\langle \varphi | \varphi \rangle = \langle \varphi_A | \varphi_A \rangle + \langle \varphi_B | \varphi_B \rangle = 1$

Introduction of magnetic field $p \rightarrow p + eA$

Correction due to leakage
$$\langle \varphi_{\rm B} | \varphi_{\rm B} \rangle = \left\langle \varphi_{\rm A} \left| \left[\frac{p^2 + e\hbar \boldsymbol{\sigma} \cdot \boldsymbol{B}}{4m^2c^2} \right] \right| \varphi_{\rm A} \right\rangle = O\left(\frac{v^2}{c^2}\right)$$

Corrected two-component
wavefunction
$$\varphi_a = \left(1 + \frac{p^2 + e\hbar\boldsymbol{\sigma} \cdot \boldsymbol{B}}{8m^2c^2}\right)\varphi_A$$

Pauli two-component approximation

Zeeman Spin-orbit interaction

$$\begin{bmatrix} \frac{p^2}{2m} + V + \frac{e\hbar}{2m}\boldsymbol{\sigma} \cdot \boldsymbol{B} \\ -\frac{e\hbar\boldsymbol{\sigma} \cdot \boldsymbol{p} \times \boldsymbol{E}}{4m^2c^2} - \frac{e\hbar^2}{8m^2c^2} \nabla \cdot \boldsymbol{E} \\ -\frac{p^4}{8m^3c^2} - \frac{e\hbar p^2}{4m^3c^2} \boldsymbol{\sigma} \cdot \boldsymbol{B} - \frac{(e\hbar B)^2}{8m^3c^2} \end{bmatrix} \varphi_a = \delta\varphi_a$$

Quantum Mechanical Treatment of Magnetism

$$\mathcal{H} = \sum_{n} \left[\frac{1}{2m} (\boldsymbol{p}_{n} + e\boldsymbol{A}(\boldsymbol{r}_{n})^{2} + U(\boldsymbol{r}_{n}) + g\mu_{\mathrm{B}}\boldsymbol{s}_{n} \cdot \boldsymbol{B} \right] + V(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots)$$

Nucleus potential g-factor

Symmetric gauge $\boldsymbol{A}(\boldsymbol{r}_n) = (\boldsymbol{B} \times \boldsymbol{r}_n)/2$

$$\mathcal{H} = \sum_{n} \left[\frac{\boldsymbol{p}_{n}^{2}}{2m} + U(\boldsymbol{r}_{n}) \right] + V(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \cdots) \qquad \cdots \qquad \mathcal{H}_{0}$$

 $\hbar \boldsymbol{l}_n \equiv \boldsymbol{r}_n imes \boldsymbol{p}_n + \mu_{\mathrm{B}} \sum_n (\boldsymbol{l}_n + g \boldsymbol{s}_n) \cdot \boldsymbol{B} \quad \dots \quad \mathcal{H}_1$

$$+\frac{e^2}{8m}\sum_n \{r_n^2 B^2 - (\boldsymbol{B} \cdot \boldsymbol{r}_n)^2\} \quad \cdots \quad \mathcal{H}_2$$

Magnetic moment

Commutation relations

$$[r_{n\alpha}, p_{n\beta}] = r_{n\alpha}p_{n\beta} - p_{n\beta}r_{n\alpha} = i\hbar\delta_{\alpha\beta} \quad (\alpha, \beta = x, y, z)$$
$$[s_{n\alpha}, s_{n\beta}] = is_{n\gamma} \quad (\alpha, \beta, \gamma = x, y, z \text{ (cyclic)})$$
$$[l_{n\alpha}, l_{n\beta}] = il_{n\gamma} \quad (\alpha, \beta, \gamma = x, y, z \text{ (cyclic)})$$

Magnetic moment
$$\mu = -\frac{\partial \mathcal{H}}{\partial B} = -\mu_{\rm B} \sum_{n} (\boldsymbol{l}_{n} + g\boldsymbol{s}_{n}) - \frac{e^{2}}{4m} \sum_{n} \{\boldsymbol{r}_{n}^{2}\boldsymbol{B} - \boldsymbol{r}_{n}(\boldsymbol{r}_{n} \cdot \boldsymbol{B})\}$$
$$= -\mu_{\rm B} \sum_{n} (\boldsymbol{l}_{n} + g\boldsymbol{s}_{n}) - \frac{e^{2}}{4m} \sum_{n} (\boldsymbol{r}_{n} \times (\boldsymbol{B} \times \boldsymbol{r}_{n}))\}$$
Paramagnetic Diamagnetic

-0

This expression does not have drastic changes other than spin magnetic moment. However ...

Comment: Spins of nucleons

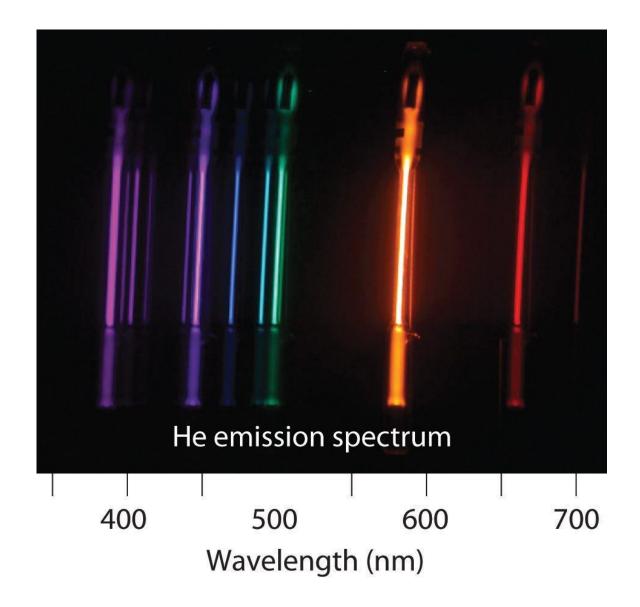
Protons, Neutrons, Muons have spins.

MRI

J-PARC

KEK

NMR


Neutron diffraction

μSR

Magnetism of Localized Electrons

Star birth

Second quantization

 $|\boldsymbol{n}\rangle = |n_1, n_2, \cdots\rangle$ Number representation

(index the state with number of particles occupying basis states)

- |0) Vacuum
- $a_j^{\dagger} |0\rangle = |1_j\rangle$ Creation operator of *j*-th state (Hermitian conjugate: annihilation operator)

Fermion: anti-commutation relation

number operator

$$[a_i, a_j]_+ = [a_i^{\dagger}, a_i^{\dagger}]_+ = 0, \quad [a_i, a_j^{\dagger}]_+ =$$
$$\hat{n}_j \equiv a_j^{\dagger} a_j \qquad \hat{n}_j |\mathbf{n}\rangle = n_j |\mathbf{n}\rangle$$

Boson: commutation relation

$$[b_i, b_j] = [b_i^{\dagger}, b_i^{\dagger}] = 0, \quad [b_i, b_j^{\dagger}] = \delta_{ij}$$

$$|n_j\rangle = \frac{1}{\sqrt{n_j!}} (a_j^{\dagger})^{n_j} |0\rangle$$

 δ_{ij}

13

Operators in second quantization representation

Multiparticle operator
$$\mathcal{F}(\boldsymbol{r}_1, \boldsymbol{r}_2, \cdots) = \sum_i f(\boldsymbol{r}_i)$$

Slater determinant $|\psi_{1,2,\cdots}\rangle$

$$\left\langle \psi_{m_1,m_2,\cdots} \right| \mathcal{F} \left| \psi_{n_1,n_2,\cdots} \right\rangle = \sum_i \left\langle \psi_{m_1,m_2,\cdots} \right| f(\boldsymbol{r}_i) \left| \psi_{n_1,n_2,\cdots} \right\rangle$$

Second quantization

Particle statistics

Annihilation and creation operator (anti-)commutation relations

$$egin{aligned} F &= \sum_{mn} \left\langle m | f | n
ight
angle a_m^\dagger a_n \ &\left\langle m | f | n
ight
angle &= \int dm{r} \phi_m^*(m{r}) f(m{r}) \psi_n(m{r}) \end{aligned}$$

$$\langle \psi_{m_1,m_2,\cdots} | \mathcal{F} | \psi_{n_1,n_2,\cdots} \rangle = \langle \boldsymbol{m} | F | \boldsymbol{n} \rangle$$

$$G = \frac{1}{2} \sum_{klmn} \langle kl | g | mn \rangle \, a_k^{\dagger} a_l^{\dagger} a_n a_m$$

Electrons in a central force potential

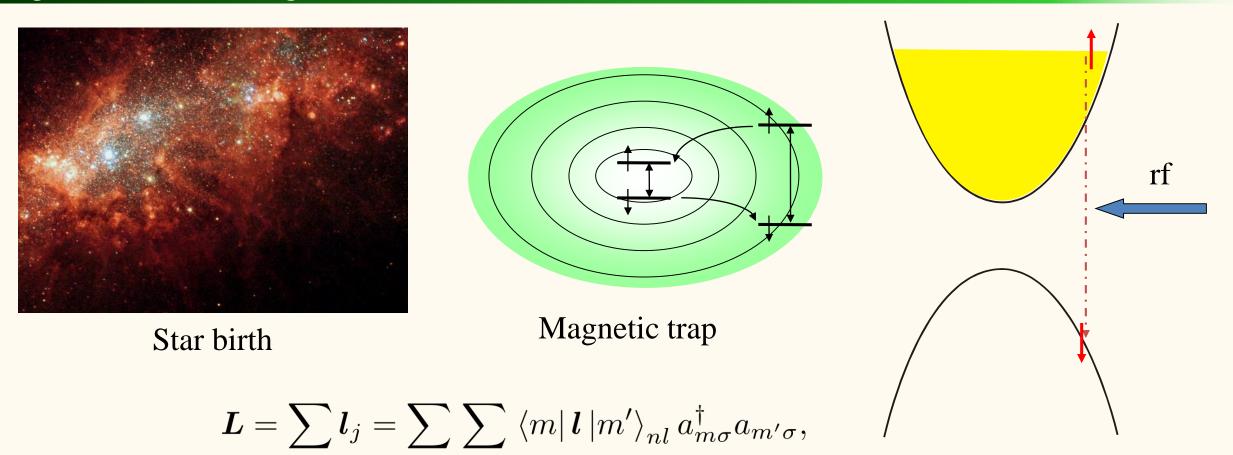
 $\mathcal{H}_{L} = \mathcal{H}_{L0} + \mathcal{H}_{C} + \mathcal{H}_{SOI} + \mathcal{H}_{CF}$ ----crystal field spin-orbit interaction Localized system mutual Coulomb interaction single-electron (non-interaction) Г ٦ lectrons in a central force (spherical) potential

$$\mathcal{H}_{\rm L0} = \sum_{j} \left[\frac{\boldsymbol{p}_j^2}{2m} + V_{\rm sp}(r_j) \right] \quad \text{Ele}$$

Eigenfunction in polar coordinate: (r, θ, φ)

$$\psi_{nlm}(\boldsymbol{r}) = R_{nl}(r)Y_{lm}(\theta,\varphi)$$

Radial wavefunction
$$R_{nl}(r) = b_{nl}\rho^l e^{-\rho/2} L_{n+1}^{2l+1}(\rho), \quad \rho \equiv \frac{2}{n} \frac{r}{a_0}$$


Eigen energy
$$\epsilon_{nl} = -\frac{R_{\infty}}{n^2}, \quad R_{\infty} = \frac{me^4}{8\epsilon_0 h^3 c}$$

$$\mathcal{H}_{\rm L0} = \sum_{nl} \epsilon_{nl} \sum_{m\sigma} a^{\dagger}_{nlm\sigma} a_{nlm\sigma}$$

Larmor precession

$$\begin{array}{c} \textbf{B} \\ \textbf{Coulomb potential} \quad V_{\rm sp}(r_j) = -\frac{Ze^2}{4\pi\epsilon_0}\frac{1}{r_j} \\ \textbf{\omega}_{\rm L} \\ \textbf{Total orbital angular momentum} \quad \hbar \textbf{L} = \hbar \sum_{i} \textbf{l}_i \\ \mathcal{H}_1 = \mu_{\rm B} \textbf{L} \cdot \textbf{B} = \mu_{\rm B} L_z B \\ \textbf{L} \\ \textbf{Directional quantization} \quad L_z = M : -L, -L + 1, \cdots, L - 1, L \\ \textbf{E} = E_0 + \mu_{\rm B} MB \equiv E_0 + \hbar\omega_{\rm L} M, \quad \boldsymbol{\omega}_{\rm L} \equiv \frac{\mu_{\rm B} B}{\hbar} = \frac{eB}{2m} \text{ (Larmor frequency)} \\ \textbf{Heisenberg equation} \quad \frac{d\textbf{L}}{dt} = \frac{1}{i\hbar} [\textbf{L}, \mathcal{H}_0 + \mathcal{H}_1 + \mathcal{H}_2] \\ \textbf{Larmor precession} \quad L_x(t) = L_0 \cos(\omega_{\rm L} t + \theta_0), \quad L_y(t) = L_0 \sin(\omega_{\rm L} t + \theta_0) \\ \textbf{In the case of spin: g-factor} \quad \omega_{\rm L} = g \frac{eB}{2m} \approx \frac{eB}{m} \end{array}$$

Magnetism of inert gases

Evaporation cooling

Total angular momentum

$$oldsymbol{S} = \sum_{j} oldsymbol{s}_{j} = \sum_{m} \sum_{\sigma\sigma'} \left(rac{\sigma}{2}
ight)_{\sigma\sigma'} a^{\dagger}_{m\sigma} a_{m\sigma'},$$

 $oldsymbol{J} = \sum_{j} oldsymbol{j}_{j} = oldsymbol{L} + oldsymbol{S}$

 $\sigma mm'$

Magnetism of inert gases

Inert gases: Closed shell structure L = S = 0 due to quantization!

Residual is the dielectric term: $\boldsymbol{\mu}_{\text{dia}} = -\frac{e^2}{4m} \sum_n [\boldsymbol{r}_n \times (\boldsymbol{B} \times \boldsymbol{r}_n)]$ $= -\frac{e}{2} \sum_n [\boldsymbol{r}_n \times (\boldsymbol{\omega}_{\text{L}} \times \boldsymbol{r}_n)] = -\frac{\mu_{\text{B}}}{\hbar} \sum_n [\boldsymbol{r}_n \times (m\boldsymbol{v}_n)]$ Larmor rotation angular momentum

Z	Element	Susceptibility	Larmor rotation angular e^2
2	Не	-1.9×10^{-6} -7.2×10^{-6}	$\mu_{\rm d} = -\frac{e^2}{4m} \left\langle x^2 + y^2 \right\rangle B = -\frac{e^2}{6m} \left\langle r^2 \right\rangle B$
10	Ne	-7.2×10^{-6}	
18	Ar	-19.4×10^{-6} -28×10^{-6} -43×10^{-6}	$\chi = -\frac{N_{\rm A} Z e^2 \langle r^2 \rangle}{6m} \qquad {\rm Moll \ susceptibility}$
36	Kr	-28×10^{-6}	$\sim 6m$
54	Xe	-43×10^{-6}	$\frac{\langle r^2 \rangle}{a_{\rm B}^2} \sim ??$
			a_{B}^2

PERIODIC TABLE OF ELEMENTS

1 H Hydrogen Nonmetal	1 Atomic Number									2 Hee Helium Noble Gas							
3 Lithium Aikali Metal	4 Be Beryllium Alkaline Earth Metal			Hy	/drogen	S Nam	ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Normetal	9 F Fluorine Halogen	10 Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Aikaline Earth Metal			N	A							13 Aluminum Post-Transition Metal	14 Si Silicon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halegen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium Transition Metal	22 Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 Cu Copper Transition Metal	30 Zn _{Zinc} Transition Metal	31 Gallium Post-Transition Metal	32 Gee Germanium Metalleid	33 As Arsenic Metalloid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Aikaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Ag silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn Tin Post-Transition Metal	51 Sb Antimony Metalloid	52 Te Tellurium Metalloid	53 Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium	56 Ba Barium	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 W Tungsten Transition Metal	75 Re Rhenium	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bismuth	84 Po Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Francium Alkali Metal	88 Radium Alkaline Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 Fl Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Ogg Oganesson Noble Gas
			57 La	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm ^{Samarium}	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 HO Holmium	68 Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
		**	89 ACC Actinium Actinide	90 Th Thorium Actinide	91 Pa Protactinium Actinide	92 Uuranium Actinide	93 Np Neptunium Actinide	94 Pu Plutonium Actinide	95 Americium Actinide	96 Cm Curium Actinide	97 Bk Berkelium Actinide	98 Cf Californium Actinide	99 Es Einsteinium Actinide	100 Fm Fermium Actinide	101 Md Mendelevium Actinide	102 NO Nobelium Actinide	103 Lr Lawrencium Actinide

Electronic states in magnetic ions

Open shell electronic states

Angular momentum *l* orbit $m = -l, -l + 1, \cdots, l$

State of many electrons: indexed with *L* and *S* : state (*L*, *S*) degenerated in the absence of coulomb term

(*L*, *S*) term degenerated (2L+1)(2S+1): LS multiplex

Which state is the ground state?

$$\mathcal{H}_{\mathcal{C}} = \frac{1}{2} \sum_{m_1, \cdots, m_4} \sum_{\sigma_1 \sigma_2} \left\langle m_1 m_2 \left| \frac{e^2}{4\pi\epsilon_0 r} \right| m_3 m_4 \right\rangle a^{\dagger}_{m_1 \sigma_1} a^{\dagger}_{m_2 \sigma_2} a_{m_3 \sigma_3} a_{m_4 \sigma_4} \right\rangle$$

$$\left\langle m_1 m_2 \left| \frac{e^2}{4\pi\epsilon_0 r} \right| m_3 m_4 \right\rangle = \int d\mathbf{r}_1 d\mathbf{r}_2 u_{m_1}^*(\mathbf{r}_1) u_{m_2}^*(\mathbf{r}_2) \frac{e^2}{4\pi\epsilon_0 |\mathbf{r}_1 - \mathbf{r}_2|} u_{m_3}(\mathbf{r}_2) u_{m_4}(\mathbf{r}_1) u_{m_4}(\mathbf{r}_2) u_{m_4}(\mathbf{r}_3) u_{m_4}(\mathbf{r}_4) u_{m_5}(\mathbf{r}_4) u_{m_5}($$

Dominating terms

$$m_{1} = m_{2} = m_{3} = m_{4}$$

$$\left\langle m_{1}m_{1} \left| \frac{e^{2}}{4\pi\epsilon_{0}r} \left| m_{1}m_{1} \right\rangle a_{m_{1}\uparrow}^{\dagger}a_{m_{1}\downarrow}^{\dagger}a_{m_{1}\uparrow}a_{m_{1}\downarrow} = U_{0}\sum_{m}\hat{n}_{m\uparrow}\hat{n}_{m\downarrow} \quad (\hat{n}_{m\sigma} = a_{m\sigma}^{\dagger}a_{m\sigma})$$
Coulomb repulsion in the same orbit
$$m_{1} = m_{4} \neq m_{2} = m_{3}$$

$$\frac{1}{2} \sum_{m_1 \neq m_2} U(m_1, m_2) \hat{n}_{m_1} \hat{n}_{m_2} \quad \left(\hat{n}_m = \sum_{\sigma} n_{m\sigma} \right)$$

Coulomb repulsion between different orbits

$$m_{1} = m_{3} \neq m_{2} = m_{4}$$
Exchange term
$$\frac{1}{2} \sum_{m_{1} \neq m_{2}} \sum_{\sigma_{1} \sigma_{2}} J(m_{1}, m_{2}) a^{\dagger}_{m_{1} \sigma_{1}} a^{\dagger}_{m_{2} \sigma_{2}} a_{m_{1} \sigma_{2}} a_{m_{2} \sigma_{1}}$$

$$= -\frac{1}{2} \sum_{m_{1} \neq m_{2}} J(m_{1}, m_{2}) \left(\frac{1}{2} \hat{n}_{m_{1}} \hat{n}_{m_{2}} + 2s_{m_{1}} \cdot s_{m_{2}}\right)$$

Spin operator
$$s_m = \sum_{\sigma_1 \sigma_2} \left(\frac{\sigma}{2}\right)_{\sigma_1 \sigma_2} a^{\dagger}_{m \sigma_1} a_{m \sigma_2}$$

Exchange integral $J(m_1, m_2)$

$$J(m_1, m_2) = \int d\mathbf{r}_1 d\mathbf{r}_2 u_{m_1}^*(\mathbf{r}_1) u_{m_2} \frac{e^2}{4\pi\epsilon_0 |\mathbf{r}_1 - \mathbf{r}_2|} u_{m_1}(\mathbf{r}_2) u_{m_2}^*(\mathbf{r}_2)$$

$$= \int d\mathbf{r}_1 d\mathbf{r}_2 u_{m_1}^*(\mathbf{r}_1) u_{m_2} \left[\int d\mathbf{q} \frac{e^2}{\epsilon_0 q^2} e^{i\mathbf{q} \cdot (\mathbf{r}_1 - \mathbf{r}_2)} \right] u_{m_1}(\mathbf{r}_2) u_{m_2}^*(\mathbf{r}_2)$$

$$= \int d\mathbf{q} \frac{e^2}{\epsilon_0 q^2} \left| \int d\mathbf{r}_1 u_{m_1}^*(\mathbf{r}_1) u_{m_2}(\mathbf{r}_1) e^{i\mathbf{q} \cdot \mathbf{r}_1} \right|^2 > 0$$

Hund's rule

Hund's rule

The ground LS multiplex is determined by the following

- 1. It should have maximum *S*.
- 2. Under the condition 1., it should have maximum *L*.

3d transition metal ions

Element	Configuration	Ion	Configuration	L	S
Sc	$3d^{1}4s^{2}$				
Ti	$3d^24s^2$	Ti^{3+}, V^{4+}	$3d^1$	2	1/2
V	$3d^{3}4s^{2}$	V^{3+}	$3d^2$	3	1
Cr	$3d^54s^1$	Cr^{3+}, V^{2+}	$3d^3$	3	3/2
Mn	$3d^{5}4s^{2}$	Mn^{3+}, Cr^{2+}	$3d^4$	2	2
Fe	$3d^{6}4s^{2}$	${ m Fe^{3+}, Mn^{2+}}$	$3d^{5}$	0	5/2
Co	$3d^{7}4s^{2}$	Co^{3+}, Fe^{2+}	$3d^{6}$	2	2
Ni	$3d^{8}4s^{2}$	Co^{2+}	$3d^{7}$	3	3/2
Cu	$3d^{10}4s^{1}$	Ni ²⁺	$3d^{8}$	3	1
Zn	$3d^{10}4s^2$	Cu^{2+}	$3d^9$	2	1/2

Summary

- 1. Spin-orbit interaction
- 2. Magnetism in quantum theory

Chapter 2 Magnetism in localized systems

- 1. Spherical potential
- 2. Larmor precession
- 3. Magnetism of inert gas
- 4. LS multiplex ground state of open shell ions and Hund's rule