2022.4.27 Lecture 4

10:25 - 11:55

Magnetic Properties of Materials 磁性 (Magnetism)

5

Institute for Solid State Physics, University of Tokyo Shingo Katsumoto Electronic states in magnetic ions
 LS coupling approach
 j-j coupling approach

> Paramagnetism by magnetic ions in insulators

Curie law Breakdown of LS coupling approach in 3*d* transition metals

Ligand field approach

Octahedron potential

Ligand field approach to 3d orbitals in octahedral potential

High-spin/ Low-spin state in ligand field potential

Van Vleck (anomalous) paramagnetism

Group theoretical approach to level splitting

Experiments on and applications of paramagnetism

1 H rdrogen	1 Atomic Number Pubichem								2 Hee Helium								
3 Li ithium _{sall Metal}	4 Bee Beryllium Alkaline Earth Metal	4 Be Beryllium Hvdrogen					Symbol Name				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas	
11 Na odium kali Metal	12 Mgg Magnesium Alkaline Earth Metal	12 Nonmetal Name					Chemical Group Block				13 Aluminum Post-Transition Metal	14 Silicon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas	
19 K tassium kali Metal	20 Calcium Alkaline Earth Metal	21 SC Scandium Transition Metal	22 Ti Titanium Trensition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Trensition Metai	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metai	27 CO Cobalt Transition Metal	28 Nickel Transition Metai	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Galium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalleid	34 See Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
37 Rb abidium kali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Mo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Ag Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn Tin Post-Transition Metal	51 Sb Antimony Metalloid	52 Te Tellurium Metalloid	53	54 Xee Xenon Noble Gas
55 CS cesium tall Metal	56 Ba Barium Alkaline Earth Metal		72 Hff Hafnium Transition Metal	73 Ta Tantalum	74 W Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hg Mercury Transition Metal	81 TI Thallium Post-Transition Metai	82 Pb Lead	83 Bismuth	84 PO Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Fr ancium kali Metal	88 Raa Radium Akaline Earth Metal	+	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg Seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Mitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Con Copernicium Transition Metal	113 Nh Nihonium Pest-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	116 LV Livermorium Post-Transition Metail	117 TS Tennessine Halogen	118 Og Oganesson Noble Gas
		Ļ	57 La Lanthanum	58 Cee Cerium Lantharide	59 Pr Praseodymium	60 Nd Neodymium Lanthanide	61 Pm Promethium Lanthanide	62 Sm Samarium Lanthaide	63 Eu Europium	64 Gd Gdolinium	65 Tb Terbium	66 Dy Dysprosium Lanthanide	67 Ho Holmium Lantaride	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
		**	89 Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium ectoide	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium

Periodic table of elements

3*d* transition metals

Configuration		ion	p (exp.)	$g_J[J(J+1)]^{1/2}$	$2[S(S+1)]^{1/2}$
$3d^1$	${}^{2}D_{3/2}$	V^{4+}	1.8	1.55	1.73
$3d^2$	${}^{3}F_{2}$	V^{3+}	2.8	1.63	2.83
$3d^3$	${}^{4}F_{3/2}$	V^{2+}	3.8	0.77	3.87
		Cr^{3+}	3.7	0.77	3.87
		Mn^{4+}	4.0	0.77	3.87
$3d^4$	${}^{5}D_{0}$	Cr^{2+}	4.8	0	4.90
		Mn^{3+}	5.0	0	4.90
$3d^5$	${}^{6}S_{5/2}$	Mn^{2+}	5.9	5.92	5.92
		Fe^{3+}	5.9	5.92	5.92
$3d^6$	${}^{5}D_{4}$	Fe^{2+}	5.4	6.7	4.90
$3d^7$	${}^{4}F_{9/2}$	Co^{2+}	4.8	6.63	3.87
$3d^8$	${}^{3}F_{4}$	Ni^{2+}	3.2	5.59	2.83
$3d^9$	${}^{2}D_{5/2}$	Cu^{2+}	1.9	3.55	1.73

The discrepancy tells that we need to take the effect of crystal field into account before going into the spinorbit interaction.

Octahedral ligand field

R

r

ligand (

ion

Potential generated by ligands at an octahedron vertices:

$$\frac{r}{R} \ll 1 \qquad v_{\rm cb}(\mathbf{r}) = eD\left(x^4 + y^4 + z^4 - \frac{3}{5}r^4\right) \qquad D = \frac{35Ze}{4R^5}$$

We are considering: Open shell 3d electrons

Single (3)*d* electron in $v_{cb}(r)$

Diagonalization in the space of 3d wavefunction

$$Y_{20}(\theta,\varphi) = \sqrt{\frac{5}{16\pi}}(3\cos^2\theta - 1),$$
$$Y_{2\pm 1}(\theta,\varphi) = \mp \sqrt{\frac{15}{8\pi}}\cos\theta\sin\theta e^{\pm i\varphi},$$
$$M = \pm 1$$
$$M = \pm 2$$
$$Y_{2\pm 2}(\theta,\varphi) = \sqrt{\frac{15}{32\pi}}\sin^2\theta e^{\pm 2i\varphi}$$

Looking for eigenfunction in tetrahedral potential

Linear combination of *d*-orbitals

Radial part \rightarrow common for 5 orbitals

Angular part \rightarrow second order in (x, y, z)

(1)
$$r^{2}(3\cos^{2}\theta - 1) = 2(x^{2} + y^{2}) - z^{2}$$

(2) $r^{2}\cos\theta\sin\theta e^{\pm i\varphi} = z(x \pm iy)$
(3) $r^{2}\sin^{2}\theta e^{\pm 2i\varphi} = x^{2} \pm 2ixy - y^{2}$ Possible terms: $x^{2}, y^{2}, z^{2}, yz, zx, xy$

First order in *x*, *y*, $z \rightarrow$ disappearance of off-diagonal term by integration of odd-function

Candidates: $\frac{yz}{r^2}$, $\frac{zx}{r^2}$, $\frac{xy}{r^2}$ Easily obtained by adding/subtracting (2), (3)

In order for vanishing off-diagonal term of $x^4 + y^4 + z^4$, we should take differences between x^2, y^2, z^2 : $x^2 - z^2, y^2 - z^2$ orthogonalize $\longrightarrow 3z^2 - r^2, x^2 - y^2$

Obtained from (1) (itself), (3) (addition)

Octahedral ligand field (2)

X

V

 ϕ_u

 ϕ_v

 e_g

$$\begin{array}{c} \phi_{\xi} \left(yz\right) & \phi_{\eta} \left(zx\right) & \phi_{\zeta} \left(xy\right) \\ & & & \\$$

$$\begin{cases}
\phi_u = \phi_{320} = \sqrt{\frac{5}{16\pi}} \frac{3z^2 - r^2}{r^2} R_{32}(r), \\
\phi_v = -\frac{1}{\sqrt{2}} (\phi_{322} + \phi_{32-2}) = \sqrt{\frac{5}{16\pi}} \frac{x^2 - y^2}{r^2} R_{32}(r)
\end{cases}$$

Energy level splitting and quenching of orbital magnetic moment

$$q = \frac{2e}{105} \langle r^4 \rangle = \frac{2e}{105} \int |R_{32}(r)|^2 r^4(r^2 dr)$$

Orbital angular momentum:

e.g.
$$\phi_{\zeta} = -\frac{i}{\sqrt{2}}(\phi_{n22} - \phi_{n2-2})$$

$$\langle \phi_{\zeta} | l_z | \phi_{\zeta} \rangle = 2 - 2 = 0$$

Neither t_{2g} nor e_g orbital does not have angular momentum

Explanation of quenching of orbital angular moment

High-spin and low-spin states

Topics in paramagnetism from 3d, 4f ions

Jahn-Teller distortion

Distortion energy = energy lowering by symmetry lowering

Plane through trig Angle with trigonal axis	gonal axis	Plane normal to tr Angle with arbitrary lir	igonal axis ne
(deg.)	g	(deg.)	g
0	2.234	0	2.248
30	2.235	30	2.246
50	2.238	60	2.240
70	2.240	. 90	2.244
90	2.243		

B.Bleaney, Proc.Phys.Soc.London A63,408(1950).

 $CuSiF_66H_20$

Van Vleck (anomalous) paramagnetism

LS coupling approach

Config	guration	ion	p (exp.)	$g_J[J(J+1)]^{1/2}$	$2[S(S+1)]^{1/2}$				
$4f^3$	${}^{4}I_{9/2}$	Nd^{3+}	3.8	3.62	3.68				
$4f^5$	${}^{6}H_{5/2}$	Sm^{3+}	1.5	0.84	1.53	(
$4f^6$	$^{7}F_{0}$	Eu^{3+}	3.6	0.00	3.40	<			
$4f^7$	${}^{8}S_{7/2}$	Gd^{3+}	7.9	7.94	7.94				
$\mathcal{H}_{\text{SOI}} = \lambda L \cdot S$ $= \frac{\lambda}{2} [J(J+1) - S(S+1) - L(L+1)]$									
In the	e case of	Eu^{3+} (J	<i>I</i> =0)		4-				
ΔE_{LS}	$S = E_{LS}$	S(J) -	$E_{LS}(J -$	$(-1) = \lambda J$	2-	` `			
Excite	ed state	\rightarrow finite	e moment	-	La Cie Pr	Nd Pm Sm E			

Very short review of point group theory

Group: Set *A* with operator *

Element a_i a * b = c projection $D(a_i)$ square matrix $D(a_i) = D(c)$ Representation of group A

 $D'(a_i) = S^{-1}D(a_i)S$ $D'(a_i), D(a_i)$: equivalent representation

A set of symmetry operations around a point in space is called a point group

- E : Identical operation
- C_n : Rotation of $2\pi/n$
- C'_2 : π rotation around two-fold axis perpendicular to the principal axis. Written as C'_2 or U_2 and called Umklappung.
- I : Space inversion $(\boldsymbol{r} \rightarrow -\boldsymbol{r})$
- σ : Mirroring
- IC_n : Circumference. Space inversion after rotation of $2\pi/n$.
- S_n : Improper rotation. Mirroring after rotation of $2\pi/n$.

In crystals: requirement of (discrete) translational symmetry 32 crystal point groups

Crystal point groups

system	Schönflies	Hermann-Mau	examples	
	symbol	full	abbreviated	
triclinic	C_1	1	1	
	$C_i, (S_2)$	$\overline{1}$	$\overline{1}$	Al_2SiO_5
monoclinic	$C_{1h}, (S_1)$	m	m	KNO ₂
	C_2	2	2	
	C_{2h}	2/m	2/ m	
orthorhombic	C_{2v}	2mm	mm	
	$D_2, (V)$	222	222	
	$D_{2h}, (V_h)$	2/m2/m2/m	mmm	I, Ga
tetragonal	C_4	4	4	
	S_4	4	4	
	C_{4h}	4/m	4/m	$CaWO_4$
	$D_{2d}, (V_d)$	$\bar{4}2m$	$\bar{4}2m$	
	C_{4v}	4mm	4mm	
	D_4	422	42	
	D_{4h}	4/m2/m2/m	4/mmm	${ m TiO}_2$, In, β -Sn

rhombohedral	C_3	3	3	AsI_3
	$C_3, (S_6)$	3	3	${ m FeTiO_3}$
	C_{3v}	3m	3m	
	D_3	32	32	Se
	D_{3d}	32/m	3m	Bi, As, Sb, Al_2O_3
hexagonal	$C_{3h}, (S_3)$	6	6	
	C_6	6	6	
	C_{6h}	6/m	6/m	
	D_{3h}	62m	62m	
	C_{6v}	6mm	6mm	ZnO, NiAs
	D_6	622	62	CeF ₃
	D_{6h}	6/m2/m2/m	6/mmm	Mg, Zn, graphite
cubic	Т	23	23	NaClO ₃
	T_h	2/m3	m3	FeS ₂
	T_d	43m	43m	ZnS
	0	432	43	β -Mn
	O_h	4/m32/m	m3m	NaCl, diamond, Cu
icosahedral	C_5	5	5	
	$C_{5i}, (S_{10})$	10	10	
	C_{5v}	5m	5m	
	C_{5h}, S_5	5	5	
	D_5	52	52	
	D_{5d}	52/m	5/m	C ₈₀
	D_{5h}	$1 \bar{0} 2/m$	$1\bar{0}2/m$	C ₇₀
	Ι	532	532	
	I_h			C_{60}

Reducible/irreducible representations

R: symmetry operator Symmetry operation on functions $\varphi(\mathbf{r}) \rightarrow \varphi$

$$\varphi(\mathbf{r}) \to \varphi'(\mathbf{r}) = \varphi(R^{-1}\mathbf{r})$$

$$\mathscr{A}_{\varphi} = \{\varphi_1, \varphi_2, \cdots\} \xrightarrow{R} \mathscr{A}'_{\varphi} = \{\varphi'_1, \varphi'_2, \cdots\}$$

If $\mathscr{A}' = \mathscr{A}$ then \mathscr{A} can be a representation basis of R $D_{ij}(R) = \langle \varphi_i | R | \varphi_j \rangle$

If block diagonalization is possible: reducible representation

$$SD(R)S^{-1} = \begin{pmatrix} D_1(R) & & 0\\ & D_2(R) & \\ 0 & & \ddots \end{pmatrix}$$

Direct summation:

$$D(R) = D_1(R) \oplus D_2(R) \oplus \cdots$$

If block diagonalization is impossible: irreducible representation

 $\operatorname{Tr}[D(R)]$: character of representation

Symmetry

E

 C_4 $C_2 = C_4^2$

 C_4^3

 C_2

 C_3 C_3^2

try operations in gr	oup <i>O</i>		z $6C_4$ $3C_2 = 3C_4^2$
Symmetry operation	Rotation axis	Number of operation	
Identical transformation		1	
$\pi/2$ rotation around 4-fold axis	x, y, z	3	
π rotation around 4-fold axis	x, y, z	3	
$3\pi/2$ rotation around 4-fold axis	x, y, z	3	
π rotation around 2-fold axis	(0,1,1), (1,0,1), (1,1,0)	6	-
	(0,1,-1), (-1,0,1), (1,-1,0)		
$2\pi/3$ rotation around 3-fold axis	(1,1,1), (1,1,-1), (1,-1,1), (-1,1,1)	4	-

Simplification to irreducible representation by character table

0	E	$8C_3$	$3C_2 = 3C_4^2$	$6C'_2$	$6C_4$
$\Gamma_{l=0}$	1	1	1	1	1
$\Gamma_{l=1}$	3	0	-1	-1	1
$\Gamma_{l=2}$	5	-1	1	1	-1
$\Gamma_{l=3}$	7	1	-1	-1	-1
$\Gamma_{l=4}$	9	0	1	1	1
$\Gamma_{l=5}$	11	-1	-1	-1	1

Simplification of representation $\Gamma_{l=2} = E \oplus T_2$

Symmetry operation and level degeneracy

Symmetry operator
$$R$$
 $\varphi' = R\varphi$
Transformation of \mathcal{O} $\mathcal{O} \xrightarrow{R} \mathcal{O}'$ $\mathcal{O}'R\varphi = R\mathcal{O}\varphi = R\mathcal{O}R^{-1}R\varphi$ $\mathcal{O} \xrightarrow{R} R\mathcal{O}R^{-1}$
operator:

Assume the system is invariant by operator R

$$R\mathscr{H}R^{-1} = \mathscr{H}, \quad \therefore [R, \mathscr{H}] = 0$$

$$\mathscr{H}\phi = E\phi$$

 $\mathscr{H}R\phi = R\mathscr{H}R^{-1}R\phi = RE\phi = ER\phi$ $R\phi$: eigenfunction of eigenvalue E
Symmetry connected eigenfunctions
 $\{\phi_i\}$: degenerated function set with eigenvalue E of \mathscr{H}

 $R\phi_{\nu} = \sum_{\mu=1}^{d} D_{\mu\nu}(R)\phi_{\mu} \text{ must be irreducible}$ otherwise $D(R) = D_1(R) \oplus D_2(R) = \begin{pmatrix} D_1(R) & 0\\ 0 & D_2(R) \end{pmatrix}$ not symmetry-connected accidental degeneracy

d-level splitting in various crystal fields

Simplification of representation $\Gamma_{l=2} = E \oplus T_2$

Experiments of magnetic moments on atoms/ions and applications

68

Magnetic resonance

$$\begin{aligned} \mathcal{H}_{1} &= g_{J} \mu_{\mathrm{B}} \boldsymbol{J} \cdot \boldsymbol{B}_{0} \\ J_{y} J_{z} - J_{z} J_{y} &= i J_{x}, \quad J_{z} J_{x} - J_{x} J_{z} = i J_{y}, \quad J_{x} J_{y} - J_{y} J_{x} = i J_{z} \\ \frac{d \boldsymbol{J}}{dt} &= \frac{g_{J} \mu_{\mathrm{B}}}{\hbar} \boldsymbol{B}_{0} \times \boldsymbol{J} \\ \omega_{\mathrm{L}} &= g_{J} \frac{e B_{0}}{2m} \quad \text{Larmor precession} \end{aligned}$$

If we observe from rotational coordinate with frequency ω_L

Precession stops: the effect of magnetic field is renormalized into the rotation

Magnetic resonance (2)

High frequency magnetic field in xy-plane $B(t) = B_1 \cos(\omega t)$ $= \frac{B_1}{2} [\exp(i\omega t) + \exp(-i\omega t)]$ Two rotational magnetic fields

when $\omega \approx \omega_{\rm L}$

On the rotational coordinate: $\omega \approx 0, 2\omega_{\rm L}$

Ignore $2\omega_L$ component: rotational wave approximation

Precession around $\boldsymbol{B}_1 \quad \omega_1 = g_j \frac{eB_1}{2m}$

Total motion: spiral

Summary

Ligand field approach to 3d orbitals in octahedral potential

High-spin/Low-spin state in ligand field potential

Van Vleck (anomalous) paramagnetism

Group theoretical approach to level splitting

Experiments on and applications of paramagnetism