2022.5.11 Lecture 5 10:25 – 11:55

Lecture on

Magnetic Properties of Materials 磁性 (Magnetism)

Institute for Solid State Physics, University of Tokyo

Shingo Katsumoto

Review of last four lectures

Chapter 1 Basic Notions of Magnetism

Classical pictures of magnetic moments in materials:

Magnetic charges

Circular currents

Breakdown of classical magnetism: cancellation of paramagnetic and diamagnetic terms (Bohr-van Leeuwen theorem)

Quest for the sources of magnetic dipoles in materials.

Spins and spin-orbit interactions

Chapter 2 Magnetism of Localized Electrons

Spherical potential, closed shell magnetization

Electronic states of magnetic ions

≻ LS (j-j) coupling, Hund's rule

Ligand field

Representative experimental method: magnetic resonance

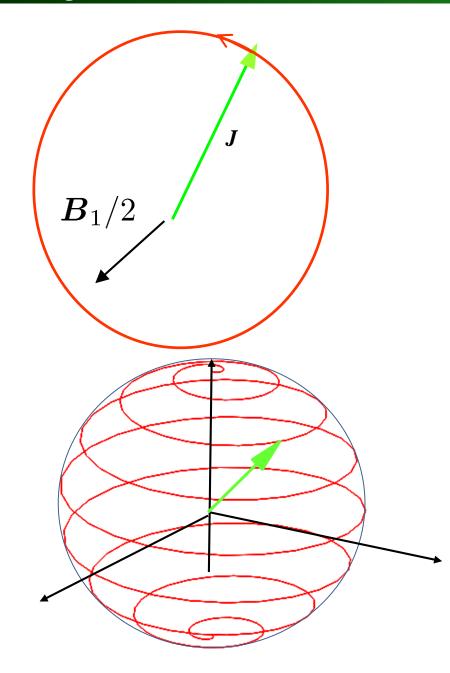
Outline

- Magnetic resonance (continued)
- Spin Hamiltonian
- > Example of analyzing experimental data on electron paramagnetic resonance
- Application of paramagnetism: magnetic refrigeration

Chapter 3 Magnetism of conduction electrons

- Pauli paramagnetism
- Landau diamagnetism

Magnetic resonance (2)



High frequency magnetic field in xy-plane $B(t) = B_1 \cos(\omega t)$ $= \frac{B_1}{2} [\exp(i\omega t) + \exp(-i\omega t)]$ Two rotational magnetic fields

when $\omega \approx \omega_{\rm L}$

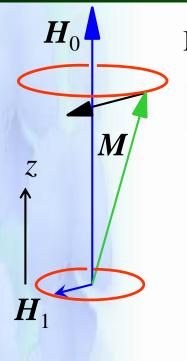
On the rotational coordinate: $\omega \approx 0, 2\omega_{\rm L}$

Ignore $2\omega_L$ component: rotational wave approximation

Precession around $\boldsymbol{B}_1 \quad \omega_1 = g_j \frac{eB_1}{2m}$

Total motion: spiral

Magnetic resonance



Macroscopic magnetization M

Classical equation of motion

Phenomenological introduction of relaxation time

$$\begin{bmatrix} \frac{dM_z}{dt} = \gamma [\mathbf{M} \times \mathbf{H}]_z + \frac{M_0 - M_z}{T_1}, \\ \frac{dM_{x,y}}{dt} = \gamma [\mathbf{M} \times \mathbf{H}]_{x,y} - \frac{M_{x,y}}{T_2}. \end{bmatrix}$$

 T_1 : energy relaxation time, T_2 : phase relaxation time

 $\begin{array}{l} \mathbf{H}_{0}: \text{ static field } (\mathbf{z}) \\ \mathbf{H}_{1}: \text{ rotating field with } -\omega \end{array} \right\} \quad \mathbf{H} = \left(\frac{H_{1}}{2}\cos\omega t, -\frac{H_{1}}{2}\sin\omega t, H_{0}\right) \end{array}$

Then the equation of motion is given as

$$-\frac{dM_x}{dt} = \gamma [M_y H_0 + M_z \frac{H_1}{2} \sin \omega t] - \frac{M_x}{T_2},$$

$$\frac{dM_y}{dt} = \gamma [M_z \frac{H_1}{2} \cos \omega t - M_x H_0] - \frac{M_y}{T_2},$$

$$-\frac{dM_z}{dt} = \gamma [-M_x H_1 \sin \omega t - M_y \frac{H_1}{2} \cos \omega t] + \frac{M_0 - M_z}{T_1}$$

Magnetic resonance (2)

-0.5

-10

-5

conditions We introduce the coordinate system (x', y', z') $\begin{cases} \frac{dM_{x'}}{dt} = \frac{dM_{y'}}{dt} = 0 \quad \text{(stationary state)}, \\ M_z \simeq M_0 = \chi_0 H_0 \quad \text{(oblique angle is small)} \end{cases}$ rotating around *z*-axis with freq. ω . $\begin{cases} M_{x'} = M_x \cos \omega t - M_y \sin \omega t, \\ M_{y'} = M_x \sin \omega t + M_y \cos \omega t \end{cases}$ Solution $\int_{M_{x'}} M_{x'} = \chi_0 \omega_0 T_2 \frac{(\omega_0 - \omega) T_2 H_1 / 2}{1 + (\omega_0 - \omega)^2 T_2^2 + \gamma^2 (H_1 / 2)^2 T_1 T_2}$ $M_{y'} = \chi_0 \omega_0 T_2 \frac{H_1 / 2}{1 + (\omega_0 - \omega)^2 T_2^2 + \gamma^2 (H_1 / 2)^2 T_1 T_2}$ $\chi''(\omega)$ $(\chi_0\omega_0T_2/2)$ absorption 0.5 Original $\chi'(\omega)$ $M_x = \chi'(\omega)H_1\cos\omega t + \chi''(\omega)H_1\sin\omega t,$ coordinate $M_{u} = -\chi'(\omega)H_{1}\sin\omega t + \chi''(\omega)H_{1}\cos\omega t$

10

dispersion

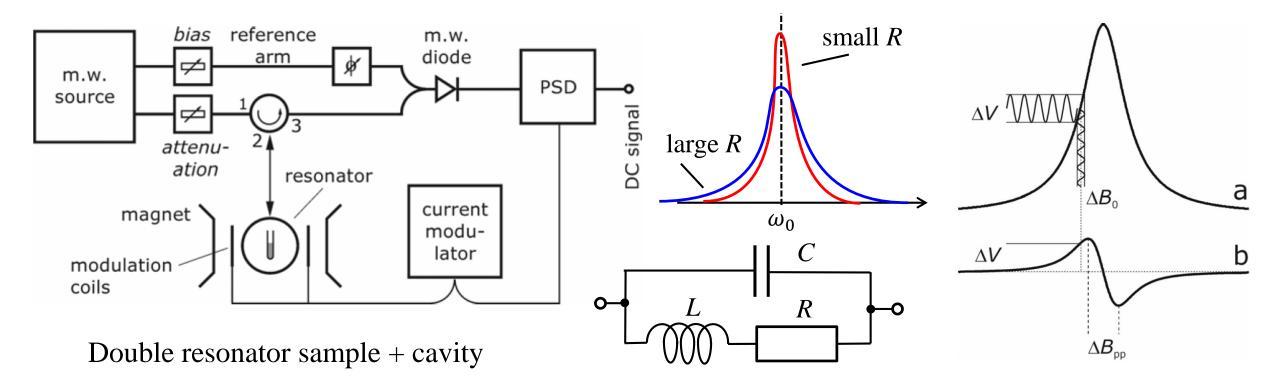
 $T_2(\omega_0-\omega)$

5

large relaxation

 $\begin{array}{l} \gamma^{2}H_{1}^{2}T_{1}T_{2} \ll 1 \\ \chi'(\omega) = \frac{\chi_{0}\omega_{0}}{2}T_{2}\frac{(\omega_{0}-\omega)T_{2}}{1+(\omega_{0}-\omega)^{2}T_{2}^{2}}, \\ \chi''(\omega) = \frac{\chi_{0}\omega_{0}}{2}T_{2}\frac{1}{1+(\omega_{0}-\omega)^{2}T_{2}^{2}} \end{array}$

Electron paramagnetic resonance (EPR) experimental setup



Continuous wave (CW) measurement: detection of resonance dissipation

Pulse, Fourier transform measurement: detection of magnetic field due to the precession of magnetic moment

Spin Hamiltonian

For the comparison of the theory with EPR experiments we need to go a little further in approximation.

Effective spin Hamiltonian:Only contains spin operators, i.e. the orbital part is already(in case \mathcal{H}_{CF} is diagonalized)integrated out.

{o}	In ket form:	$ \begin{cases} \varphi_{0}, \varphi_{1}, \cdots, \end{cases} & \text{diagonalizes} \qquad \mathcal{H}_{\text{orb}} = \mathcal{H}_{0} + \mathcal{H}_{\text{CF}} \\ \varphi_{n}\rangle = n\rangle_{\text{o}} \\ _{\text{o}}\langle n \mathcal{H}_{\text{orb}} n'\rangle_{\text{o}} = E_{n}\delta_{nn'} \end{cases} $			
{s} Spin basis for total spin S:		$\{\phi_{-2S}, \phi_{-2S+1}, \cdots, \phi_{2S}\}$			
	In ket form:	tet form: $ \phi_m\rangle = m\rangle_s$			
	Perturbation Hamiltonian:	$\mathcal{H}' = \lambda \boldsymbol{L} \cdot \boldsymbol{S} + \mu_{\mathrm{B}} (\boldsymbol{L} + g_{\mathrm{e}} \boldsymbol{S}) \cdot \boldsymbol{H}$ g_e : g-factor of electron spin-orbit Zeeman			
Expand the wavefunction with {o} and {s}as:		$\Psi = \sum_{nm} a_{nm} \varphi_n \phi_m = \sum_{nm} a_{nm} \left n \right\rangle_{\rm o} \left m \right\rangle_{\rm s}$			

Spin Hamiltonian (2)

Eigenenergy equation: $\mathcal{H}\Psi = (\mathcal{H}_{orb} + \mathcal{H}')\Psi = E\Psi.$

Second order perturbation in energy:

Orbital angular moment is quenched:

The second order term \rightarrow reduced to second order in *L*:

The effective spin Hamiltonian: $\frac{1}{7}$

where Λ is a tensor given by

$$\begin{split} \tilde{\mathcal{H}} &= {}_{\mathrm{o}}\langle 0|\mathcal{H}'|0\rangle_{\mathrm{o}} + \sum_{n\neq 0} \frac{{}_{\mathrm{o}}\langle 0|\mathcal{H}'|n\rangle_{{}_{\mathrm{o}}} {}_{\mathrm{o}}\langle n|\mathcal{H}'|0\rangle_{{}_{\mathrm{o}}}}{E_{0} - E_{n}} \\ {}_{\mathrm{o}}\langle 0|\boldsymbol{L}|0\rangle_{{}_{\mathrm{o}}} &= 0 \longrightarrow {}_{\mathrm{o}}\langle 0|\mathcal{H}'|0\rangle_{{}_{\mathrm{o}}} = g_{\mathrm{e}}\mu_{\mathrm{B}}\boldsymbol{S} \cdot \boldsymbol{H} \\ {}_{\mathrm{o}}\langle 0|\mathcal{H}'|n\rangle_{{}_{\mathrm{o}}} = {}_{\mathrm{o}}\langle 0|\boldsymbol{L}|n\rangle_{{}_{\mathrm{o}}} \cdot \frac{(\lambda\boldsymbol{S} + \mu_{\mathrm{B}}\boldsymbol{H})}{(\lambda\boldsymbol{S} + \mu_{\mathrm{B}}\boldsymbol{H})} \\ & \text{effective magnetic field for } \boldsymbol{L} \\ \tilde{\mathcal{H}} &= g_{\mathrm{e}}\mu_{\mathrm{B}}\boldsymbol{S} \cdot \boldsymbol{H} - (\lambda\boldsymbol{S} + \mu_{\mathrm{B}}\boldsymbol{H})\Lambda(\lambda\boldsymbol{S} + \mu_{\mathrm{B}}\boldsymbol{H}) \\ & \Lambda_{ij} = \sum_{n\neq 0} \frac{{}_{\mathrm{o}}\langle 0|L_{i}|n\rangle_{{}_{\mathrm{o}}} \cdot \langle n|L_{j}|0\rangle_{{}_{\mathrm{o}}}}{E_{n} - E_{0}} \quad (i, j = x, y, z) \end{split}$$

Expansion: $\tilde{\mathcal{H}} = \mu_{\rm B} S g_{\rm e} (1 - \lambda \Lambda) H - \lambda^2 S \Lambda S - \mu_{\rm B}^2 H \Lambda H$

$$\tilde{\mathcal{H}} = \mu_{\rm B} \boldsymbol{S} \boldsymbol{g}_{\rm e} (\boldsymbol{1} - \boldsymbol{\lambda} \boldsymbol{\Lambda}) \boldsymbol{H} - \boldsymbol{\lambda}^2 \boldsymbol{S} \boldsymbol{\Lambda} \boldsymbol{S} - \mu_{\rm B}^2 \boldsymbol{H} \boldsymbol{\Lambda} \boldsymbol{H}$$

The third term is small, does not contribute to level splitting \rightarrow Drop

The first term: extension of Zeeman energy with effective g-tensor: \tilde{g}

$$\tilde{g} = g_{\rm e}(\mathbf{1} - \lambda \Lambda)$$

The second term is written as

as
$$-\lambda^2 S \Lambda S = D \left[S_z^2 - \frac{S(S+1)}{3} \right] + E(S_x^2 - S_y^2)$$

principal axes: x, y, z

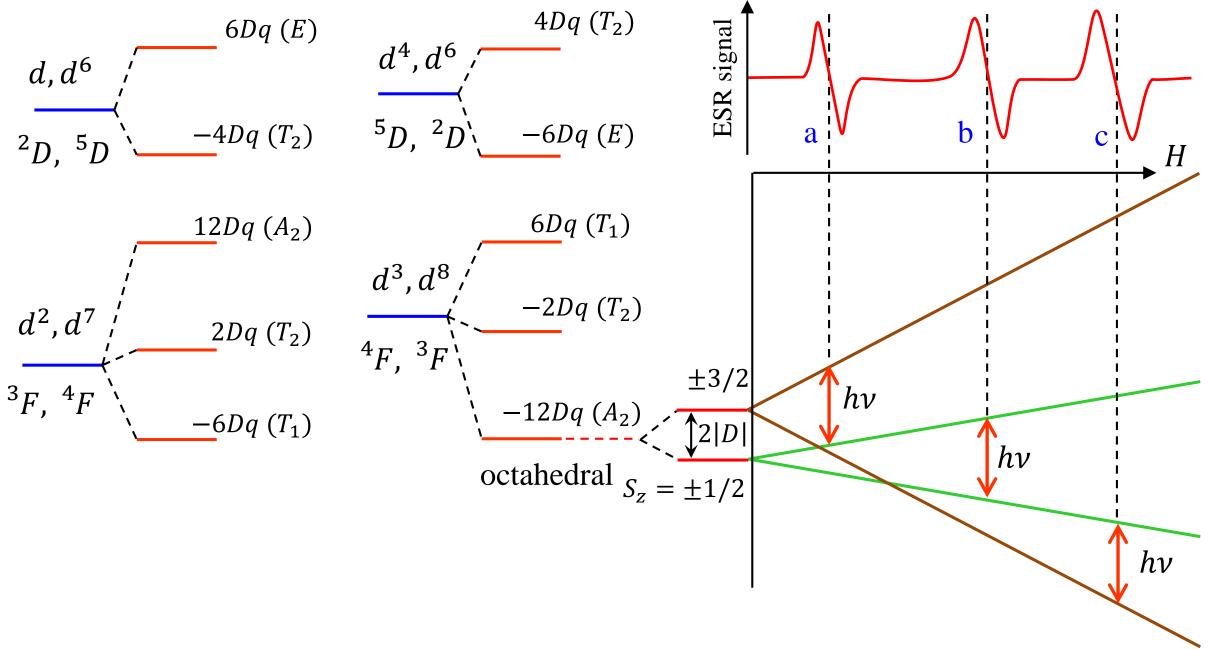
D: axial fine structure parameter

E: rhombic fine structure parameter

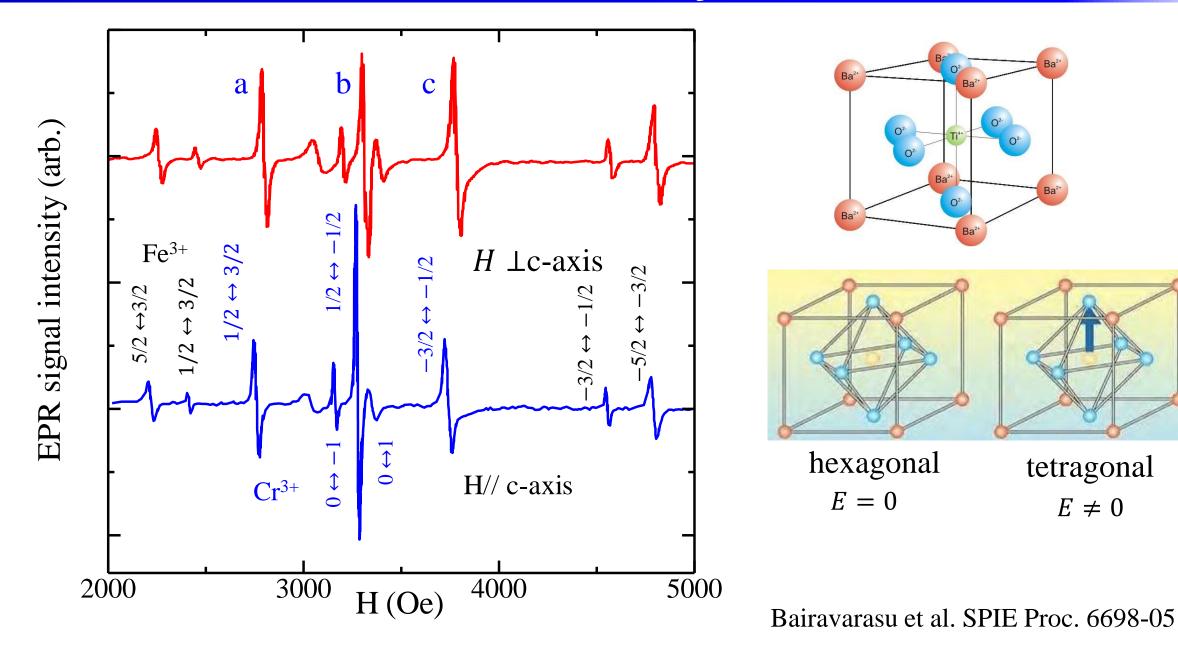
The form frequently used for the analysis of experiments

$$\tilde{\mathcal{H}} = \mu_{\rm B} \boldsymbol{S} \tilde{\boldsymbol{g}} \boldsymbol{H} + D \left[S_z^2 - \frac{S(S+1)}{3} \right] + E(S_x^2 - S_y^2)$$

Weak crystal field approximation

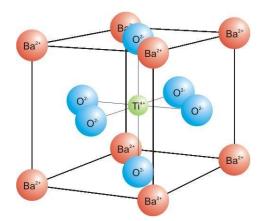


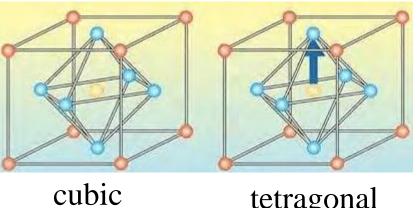
EPR signal from Cr³⁺ and Fe³⁺ ions in BaTiO₃



EPR signal from Cr³⁺ and Fe³⁺ ions in BaTiO₃

-	Ion	Crystal	g		$ D (\mathrm{cm}^{-1})$	$ E ({\rm cm}^{-1})$
-	Fe^{3+}	BaTiO ₃	2.000		0.022	0.0079
	anot	her report	2.003		0.0987	
-	Cr^{3+}	BaTiO ₃	1.975		0.046	0.0055
		h-BaTiO ₃	H1 <i>g</i> _z =	1.9797	0.105	
			H1 $g_{x,y}$ =	1.9857		
			H2 g_z =	1.9736	0.3220	
			H2 $g_{x,y}$ =	1.9756		
hexagonal Ba1 Ba2 Ba2 Ba2 Ba2 Ba2 Ba2 Ba2 Ba2 Ba2 Ba2		Til O1 Ti2 O2		Cr ³⁺ (H2)	Cr ³⁺ (H1)	
Boettcher et al. JPC			CM 17 , 276	53 (2005)	Magnetic Field	



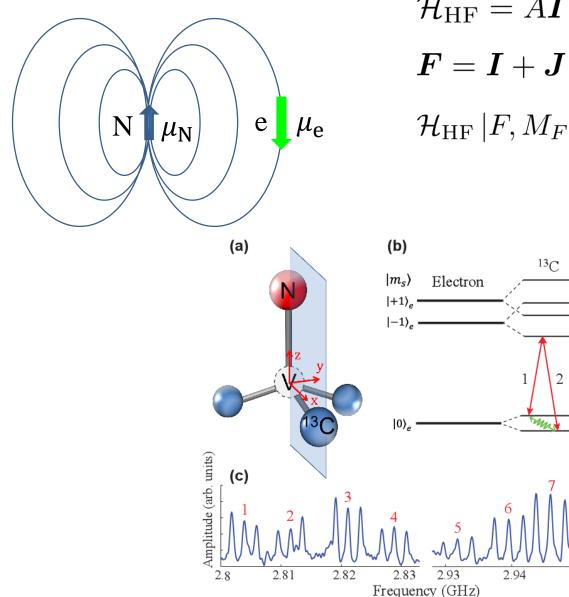


cubic	tetragonal
E = 0	$E \neq 0$

Bairavarasu et al. SPIE Proc. 6698-05

Hyperfine structures

electron-nuclear spin exchange interaction:



 $\mathcal{H}_{\rm HF} = A\mathbf{I} \cdot \mathbf{J} \quad \text{the same form as spin-orbit interaction}$ $\mathbf{F} = \mathbf{I} + \mathbf{J}$ $\mathcal{H}_{\rm HF} | F, M_F \rangle = A \frac{\mathbf{F}^2 - \mathbf{I}^2 - \mathbf{J}^2}{2} | F, M_F \rangle$ $= A \frac{F(F+1) - I(I+1) - J(J+1)}{2} | F, M_F \rangle$

NV center

[] Δ

2.95

Rama et al., PRB 94, 060101 (`16).

ESR detector/analyzer

EPR public software

EPR-WinSim

https://www.niehs.nih.gov/research/ resources/software/tox-pharm/tools/

Easyspin

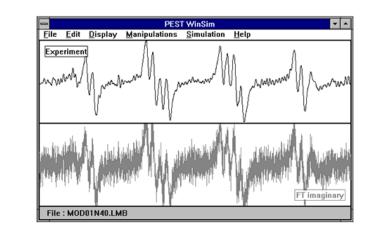
https://www.easyspin.org/

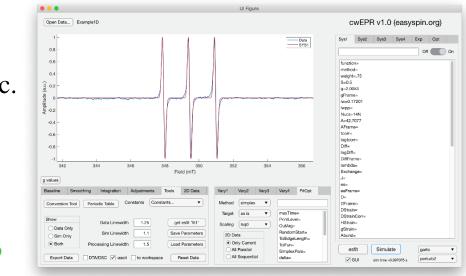
Works on MATLAB

GUI front: cwEPR etc.

Announcement of Easyspin for Octave

https://octave.discourse.group /t/easyspin-for-octave/1177

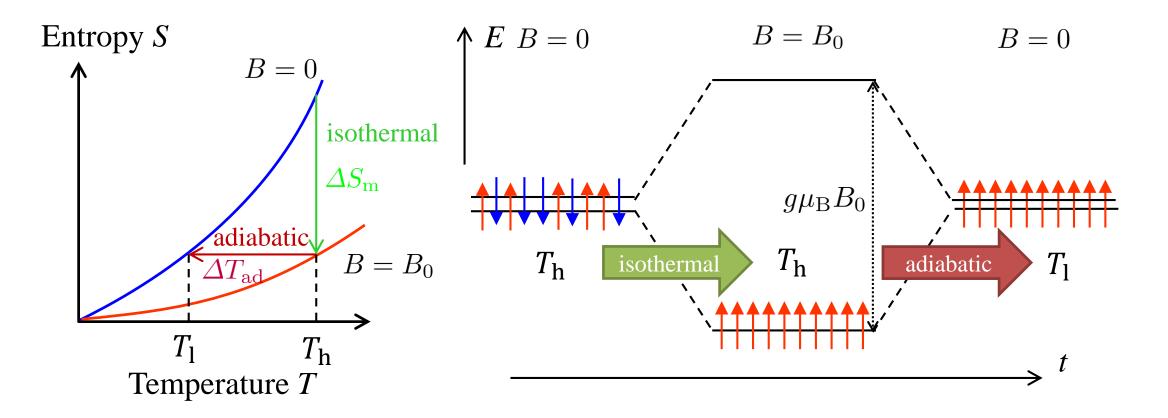




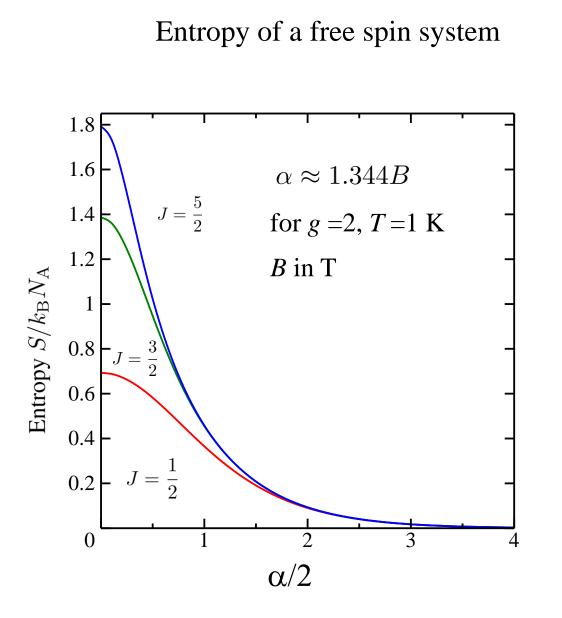
Commercial machines

Magnetic refrigeration

Many attempts for commercial use



Magnetic refrigeration (2)



$$\Delta S(B,T_{\rm i}) = S(0,T_{\rm i}) - S(B,T_{\rm i}) = \int_{T_{\rm f}}^{T_{\rm i}} \frac{C_{\rm m}}{T} dT,$$
$$C_{\rm m} = T \left(\frac{\partial S}{\partial T}\right)_{B=0}$$
$$M = N_{\rm A}g\mu_{\rm B} \left[\frac{2J+1}{2}\coth\left(\frac{2J+1}{2}\alpha\right) - \frac{1}{2}\coth\frac{\alpha}{2}\right]$$
$$\alpha \equiv \frac{g\mu_{\rm B}B}{1-T_{\rm e}}$$

 $k_{\rm B}T$

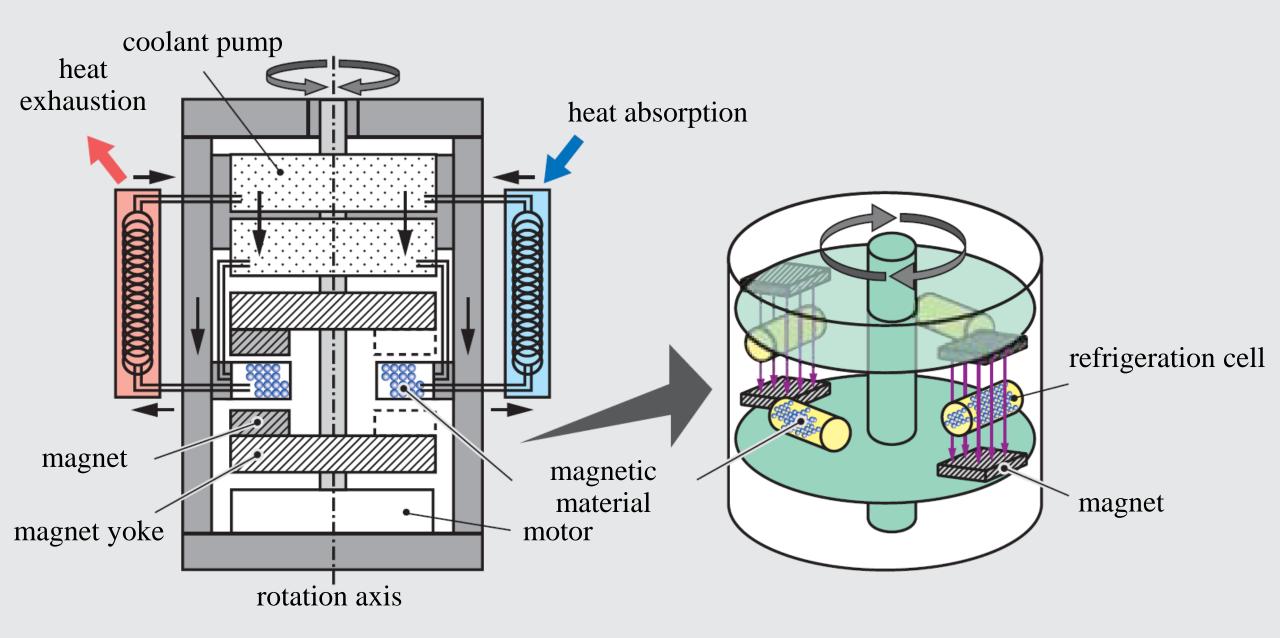
$$\frac{S}{N_{\rm A}k_{\rm B}} = \frac{\alpha}{2} \coth \frac{\alpha}{2} - \frac{2J+1}{2}\alpha \coth \left[\frac{2J+1}{2}\alpha\right] + \ln \left[\frac{\sinh[(2J+1)\alpha/2]}{\sinh\alpha/2}\right]$$

Cooling material

Maxwell relation:

$$\left(\frac{\partial S}{\partial B}\right)_T = \left(\frac{\partial M}{\partial T}\right)_B$$

Active magnetic refrigeration



Chapter 3 Magnetism of Conduction Electrons

Niels Bohr

Werner Heisenberg

Wolfgang Pauli

Lise Meitner

George Gamow

Lev Landau

Hans Kramers

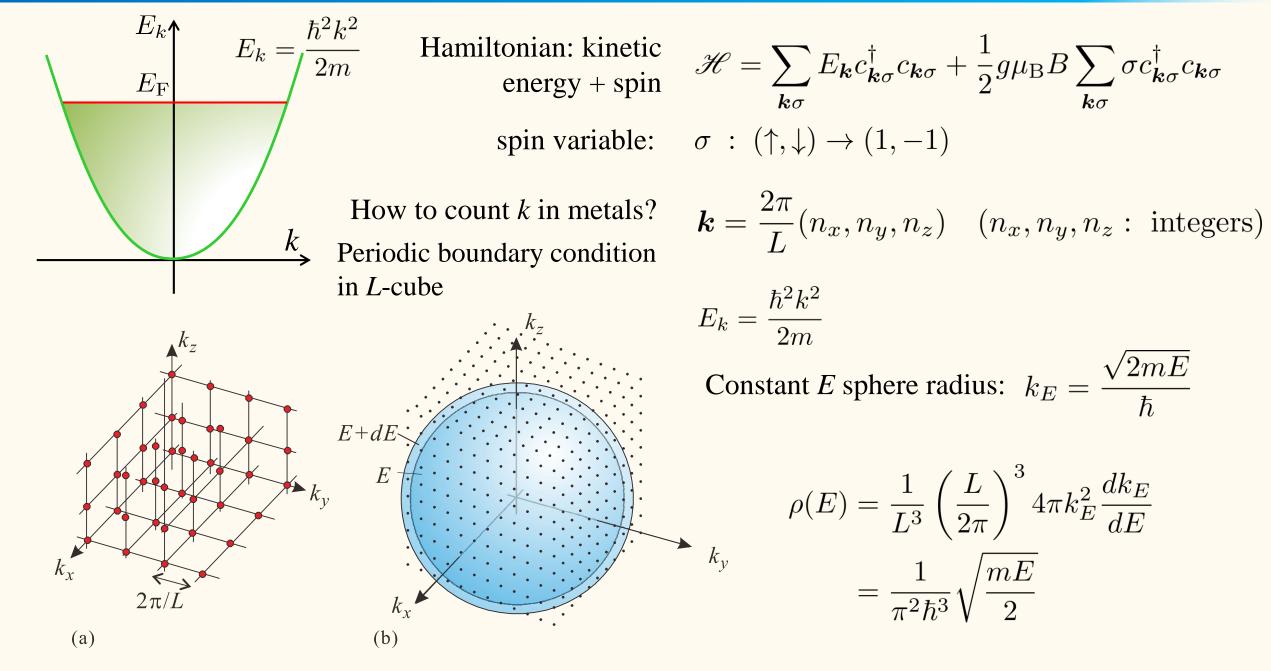
Photo: heisenbergfamily.org 1930 conference https://medium.com/lantern-theater-company-searchlight/the-fractured-physics-community-639742855629

Chapter 3 Magnetism of Conduction Electrons

3.1 Pauli paramagnetism
3.2 Landau diamagnetism

https://sci-toys.com/scitoys/scitoys/magnets/pyrolytic

Spin paramagnetism in free electrons



Pauli paramagnetism

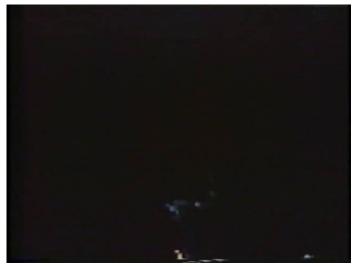
Expectation value of
magnetic moment:
$$-\frac{g\mu_{\rm B}}{2}\sum_{k\sigma}\sigma\left\langle c_{k\sigma}^{\dagger}c_{k\sigma}\right\rangle = \frac{g\mu_{\rm B}}{2}\sum_{k}\left[f\left(E_{k}-\frac{g\mu_{\rm B}B}{2}\right) - f\left(E_{k}+\frac{g\mu_{\rm B}B}{2}\right)\right]$$

Fermi distribution
function:
$$f(E) = \frac{1}{\exp[(E-\mu)/k_{\rm B}T]+1}$$

Chemical potential μ is determined from $N_{\rm e} = \int_{0}^{\infty} dE\rho(E) \left[f\left(E_{k}-\frac{g\mu_{\rm B}B}{2}\right) + f\left(E_{k}+\frac{g\mu_{\rm B}B}{2}\right)\right]$
Magnetization: $M = \frac{g\mu_{\rm B}}{2}\int_{0}^{\infty} dE\rho(E) \left[f\left(E_{k}-\frac{g\mu_{\rm B}B}{2}\right) - f\left(E_{k}+\frac{g\mu_{\rm B}B}{2}\right)\right]$
$$1 \int_{E_{\rm F}} T \to 0$$

$$2\left(\frac{g\mu_{\rm B}B}{2}\right)$$

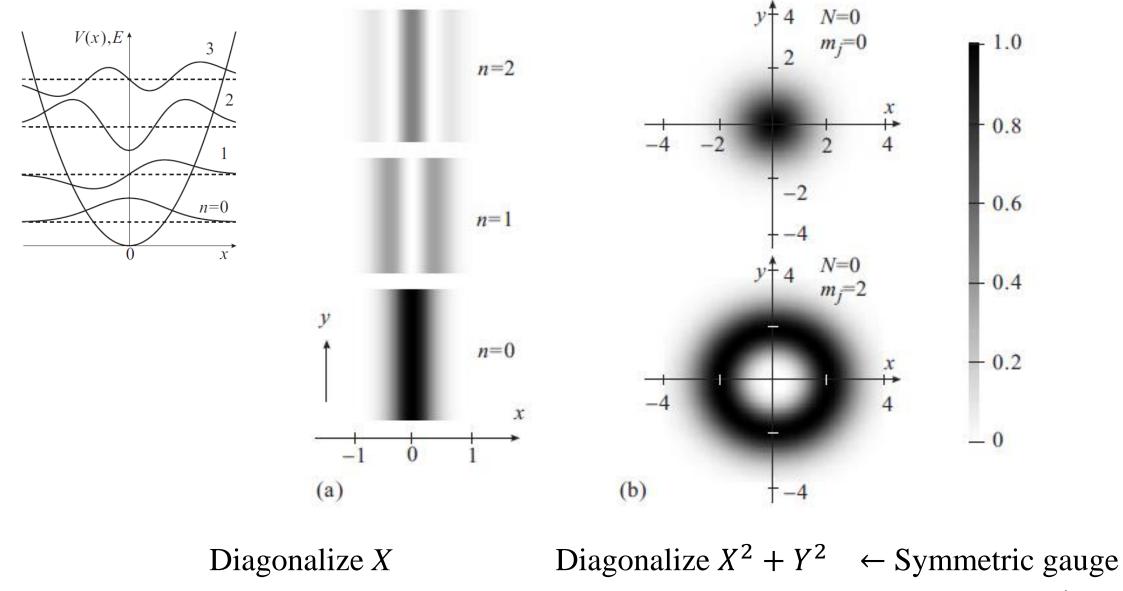
Pauli paramagnetic susceptibility
 $\chi_{\rm Pauli} = \left(\frac{g\mu_{\rm B}}{2}\right)^{2} [2\rho(E_{\rm F})]$



Landau quantization

ree electron + nagnetic field $\mathscr{H} = \frac{1}{2m} \sum_{i} (\mathbf{p}_{i} + e\mathbf{A})^{2}$ Landau gauge: $\mathbf{A} = (0, Bx, 0) \qquad \mathbf{B} = \operatorname{rot} \mathbf{A}$ = (0, 0, B)Hamiltonian free electron + magnetic field Schrödinger equation: $-\frac{\hbar^2}{2m} \left| \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2} + \left(\frac{\partial}{\partial y} - i \frac{eB}{\hbar} x \right)^2 \right| \psi = E \psi$ Homogeneous for y and z \rightarrow Functional form assumption: $\psi = \exp[i(k_u y + k_z z)]u(x)$ Differential equation for $x - \frac{\hbar^2}{2m} \left| \frac{d^2u}{dx^2} + \left(k_y - \frac{eB}{\hbar} x \right)^2 u \right| = \left(E - \frac{\hbar^2 k_z^2}{2m} \right) u$ Harmonic oscillator at $x_{c} = \frac{\hbar k_{y}}{eB}$ $\frac{m\omega_{c}^{2}}{2} = \frac{(eB)^{2}}{2m}$ $\therefore \omega_{c} = \frac{eB}{m}$: Cyclotron frequency Landau quantization $E(n,k_z) = \frac{\hbar^2 k_z^2}{2m} + \left(n + \frac{1}{2}\right)\hbar\omega_c = \frac{\hbar^2 k_z^2}{2m} + (2n+1)\mu_B B \quad (n = 0, 1, 2, \cdots)$

Landau quantization: forms of wavefunctions



 $\boldsymbol{A} = \boldsymbol{B} \times \boldsymbol{r}/2$

Orbital diamagnetism

How to count density of states?

Periodic boundary condition in a cube with side length *L*

z-direction $k_z = \frac{2\pi}{L} n_z \ (n_z = 0, \pm 1, \cdots)$ $E_z = \frac{\hbar^2 k_z^2}{2m}$ Number of k_z below $E_z = \frac{2L\sqrt{2mE_z}}{L}$ y-direction $k_y = \frac{2\pi}{L} n_y \ (n_y = 0, \pm 1, \cdots)$ *x*-direction $-\frac{L}{2} \le x_{c} \le \frac{L}{2}$ $-\frac{L}{2} \le \frac{\hbar}{eB}k_{y} = \frac{\hbar}{eB}\frac{2\pi}{L}n_{y} \le \frac{L}{2}$ $\therefore |n_{y}| \le \frac{eBL^{2}}{4\pi\hbar}$ Landau level degeneracy (in *xy*-plane) is $\frac{eBL^{2}}{h}$ the number of states the number of states below the total energy: $\Omega(E) = \frac{L^3}{h^2} \sqrt{8m} eB \sum_{n=1}^{n_{\text{max}}} \sqrt{E - (2n+1)\mu_{\text{B}}B} \qquad n_{\text{max}} = \text{int}\left(\frac{E - \mu_{\text{B}}B}{2}\right)$

Free energy:
$$F = N\mu - 2k_{\rm B}T \int \frac{d\Omega}{dE} \ln\{1 + \exp[-(E-\mu)/k_{\rm B}T]\}dE$$

Partial integration

$$\int \frac{d\Omega}{dE} \ln\{1 + \exp[-(E-\mu)/k_{\rm B}T]\} dE = -\int \Omega(E) \left(-\frac{1}{k_{\rm B}T}\right) \frac{\exp[-(E-\mu)/k_{\rm B}T]}{1 + \exp[-(E-\mu)/k_{\rm B}T]} dE$$
$$= \frac{1}{k_{\rm B}T} \int \left[\int \Omega(E) dE\right] \frac{d}{dE} \frac{1}{1 + \exp[(E-\mu)/k_{\rm B}T]} dE$$
$$= \frac{1}{k_{\rm B}T} \frac{2\sqrt{8m}}{3} \frac{eBL^3}{h^2} \int \sum_{n=0}^{n_{\rm max}} [E - (2n+1)\mu_{\rm B}B]^{3/2} \frac{d}{dE} \frac{1}{1 + \exp[(E-\mu)/k_{\rm B}T]} dE$$

$$F = N_{\rm e}\mu - A \int \phi(E) \frac{d}{dE} \frac{1}{1 + \exp[(E - \mu)/k_{\rm B}T]} dE \qquad \begin{cases} A = \frac{16L^3}{3\pi^2\hbar^3} m^{3/2} (\mu_{\rm B}B)^{5/2}, \\ \phi(E) = \sum_{n=0}^{n_{\rm max}} \left[\frac{E}{2\mu_{\rm B}B} - \left(n + \frac{1}{2}\right) \right]^{3/2} \\ \phi(E) = \frac{e\hbar}{2m} \end{cases}$$

Orbital diamagnetism (3)

To calculate
$$\phi(E) = \sum_{n=0}^{n_{\text{max}}} \left[\frac{E}{2\mu_{\text{B}}B} - \left(n + \frac{1}{2}\right) \right]^{3/2}$$

We use an asymptotic expansion $x \gg 1$ $\sum_{n=0}^{n_{\text{max}}} \left[x - \left(n + \frac{1}{2}\right) \right]^{3/2} \approx \frac{2}{5}x^{5/2} - \frac{1}{16}x^{1/2} + \cdots$

which can be obtained by applying Euler-Maclaurin formula to $F(y) = (x - y)^{3/2}$

$$\sum_{n=0}^{n_0} F(n+1/2) \approx \int_0^{n_0+1} dy F(y) - \frac{1}{24} [F'(n_0+1) - F'(0)] \approx \frac{2}{5} x^{5/2} - \frac{1}{16} x^{1/2}$$

The free energy: $F = \text{const.} - \frac{L^3}{3} \rho(E_{\text{F}}) (\mu_{\text{B}} B)^2 + \cdots$

Landau orbital diamagnetism: $\chi_{\text{Landau}} = -\frac{2}{3}\rho(E_{\text{F}})\mu_{\text{B}}^2$

Total susceptibility of free electrons: $\chi = \chi_{\text{Pauli}} + \chi_{\text{Landau}} = \frac{4}{3}\rho(E_{\text{F}})\mu_{\text{B}}^2$

Summary

- Magnetic resonance (continued)
- Spin Hamiltonian
- Example of analyzing experimental data on electron paramagnetic resonance
- Application of paramagnetism: magnetic refrigeration

Chapter 3 Magnetism of conduction electrons

- Pauli paramagnetism
- Landau diamagnetism