2022.5.25 Lecture 7 10:25 – 11:55

Lecture on

Magnetic Properties of Materials

磁性 (Magnetism)

Institute for Solid State Physics, University of Tokyo Shingo Katsumoto

- 1. Landau diamagnetism
- 2. de Haas-van Alphen effect
- 3. Orbital diamagnetism of graphene, graphite

Chapter 4 Interaction between spins

1. Exchange interaction from Heitler-London approximation

Spin Hamiltonian and quantum entanglement

Hubbard Hamiltonian

Superexchange interaction

RKKY interaction

Double exchange interaction

Theory of Magnetic insulators Molecular field approximation

Spin Hamiltonian and quantum entanglement

Spin Hamiltonian for EPR analysis: Obtained by integrating out the orbital part in the second order perturbation.

Direct exchange interaction:

$$\tilde{\mathcal{H}} = \mu_{\rm B} \boldsymbol{S} \tilde{\boldsymbol{g}} \boldsymbol{H} + D \left[S_z^2 - \frac{S(S+1)}{3} \right] + E(S_x^2 - S_y^2)$$

$$\mathscr{H}_{\text{int}} = K_{ab} - \frac{1}{2}J_{ab}(1 + 4\boldsymbol{s}_a \cdot \boldsymbol{s}_b)$$

This gives the same matrix elements for the basis of relevant levels.

Quantum entanglement

Two systems, freedomsbases
$$\{|1\rangle, |2\rangle\}$$

 $\{|p\rangle, |q\rangle\}$ states $|\psi\rangle = a_1 |1\rangle + a_2 |2\rangle$
 $|\phi\rangle = a_p |p\rangle + a_q |q\rangle$

Not entangled: $|\Psi_n\rangle = |\psi\rangle \otimes |\phi\rangle = a_1 a_p |1\rangle |p\rangle + a_1 a_q |1\rangle |q\rangle + a_2 a_p |2\rangle |p\rangle + a_2 a_q |2\rangle |q\rangle$ The state is written as a direct product.

Maximally entangled state:

$$|\xi\rangle = \frac{1}{\sqrt{2}}(|1\rangle |p\rangle + |2\rangle |q\rangle)$$
 Two states are unseparable.

Quantum entanglement and effective Hamiltonian

 $|\zeta\rangle$

Maximally entangled state: $|\xi\rangle = \frac{1}{\sqrt{2}}(|1\rangle |p\rangle + |2\rangle |q\rangle)$

Another maximally entangled state:

Let us consider the case the basis is limited to $\{|\xi\rangle, |\zeta\rangle\}$

Consider a Hamiltonian working on $\{|1\rangle, |2\rangle\}$

$$= \frac{1}{\sqrt{2}} (|1\rangle |p\rangle + |2\rangle |q\rangle)$$

$$= \frac{1}{\sqrt{2}} (|1\rangle |q\rangle + |2\rangle |p\rangle)$$
to $\{|\xi\rangle, |\zeta\rangle\}$

$$2\rangle \mathcal{H}_{n} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$$

$$\langle \xi |\mathcal{H}_{n}|\xi\rangle = h_{11} + h_{22}, \quad \langle \xi |\mathcal{H}_{n}|\zeta\rangle = h_{12} + h_{21},$$

$$\langle \zeta |\mathcal{H}_{n}|\zeta\rangle = h_{11} + h_{22}$$

Consider a Hamiltonian working on $\{|p\rangle, |q\rangle\}$ $\mathscr{H}_{a} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$

Though \mathscr{H}_n and \mathscr{H}_a are completely different, as long as we limit the basis to $\{|\xi\rangle, |\zeta\rangle\}$ we cannot distinguish \mathscr{H}_n and \mathscr{H}_a .

Quantum measurement and entanglement

$$N_{\rm min} = \frac{3k_{\rm B}TV}{2\pi g^2 \mu_{\rm B}^2 S(S+1)Q_0} \left(\frac{\Delta H_0}{H_0}\right) \sqrt{\frac{k_{\rm B}T_{\rm d}FB}{P_0}}$$

In inductive measurement the EPR needs $N_{min} \sim 10^{10}$

How you make this to one?

What is measurement?

System to be measured: $\{|\uparrow\rangle, |\downarrow\rangle\}$ Degree of freedom which human can distinguish: $\{|A\rangle, |B\rangle\}$

Measurement is to create a maximally entangled state between them.

$$\Psi = \frac{1}{\sqrt{2}} [|\uparrow\rangle |A\rangle + |\downarrow\rangle |B\rangle]$$

Schrödinger's cat problem is a problem of measurement.

 $|\text{Alive cat}\rangle |\gamma - \rangle + |\text{Dead cat}\rangle |\gamma + \rangle$

Coulomb blockade in quantum dots

Constant interaction: U

Electron number: *N* Interaction energy

$$E_{cN} = {}_{N}C_{2}U = \frac{N(N-1)U}{2} = \frac{U(N-1/2)^{2}}{2} - \frac{U}{8}$$

Chemical potential $\Delta E_+(N) = (N-1)U$

Coulomb oscillation

Pauli blockade

When both dot1 and dot2 are occupied by up (down) spin, the conduction is blocked.

K. Ono et al., Science **297**, 1313 (2002) ₈

Spin quantum bit

CNOT gate for electron spins

Zajac et al. Science **359**, 439 (2018).

Detection of Larmor precession

Spin-charge entanglement and detection of spin-spin interaction

A Initialize Measure С J = 0*J* = 19.7 MHz $|\uparrow\uparrow\rangle$ (control) $|\psi_{\rm B}\rangle = |\downarrow\rangle$ θ_{R} $f_{J=0}^{R}$ (target) $|\psi_{\rm L}\rangle = |\downarrow\rangle$ $f^{\mathsf{L}}_{|\psi_{\mathsf{R}}\rangle=|\uparrow\rangle}$ $f_{J=0}^{L}$ \odot θ_{L} CNOT $-\frac{1}{2}$ B |↓↑> |↑↓> τ_{R} $V_{\rm S}$ VVVI $f_{J=0}^{L}$ $f_{J=0}^{R}$ $\tau_{\rm dc}$ $V_{\rm M}$ $| \uparrow \uparrow \rangle$ D t_{CNOT} Ε 0.8- $\theta_{\rm R}$ (degrees) 0.6-180 360 540 720 0.4-0.8-0.2-0.2 0.0- $|\psi_{\rm in}\rangle = |\downarrow\uparrow\rangle$ 0.4 $|\psi_{\mathsf{in}}\rangle = |\downarrow\downarrow\rangle$ 0.6-0.4-0.2-0.2-0.0- $150 \ \tau_{\rm R}(\rm ns)$ 200 600 800 0 50 100 250 0 200 400 $\tau_{\rm P}({\rm ns})$

Hubbard model

Anti-ferromagnetic exchange interaction by electron transfer

Two site model:
$$(i, j)$$

Hopping operator: $t(a_{i\sigma}^{\dagger}a_{j\sigma} + h.c.)$
 $|n;m\rangle = |\sigma; -\sigma\rangle$
 $Intermediate state Enhancement U$
 $n_{i\sigma} = a_{i\sigma}^{\dagger}a_{i\sigma}$
 $Intermediate state Enhancement U$
 $Intermediate state Enhancement U$

In Hamiltonian form: $\mathscr{H} = t \sum_{\sigma=\uparrow\downarrow} (a_{1\sigma}^{\dagger}a_{2\sigma} + a_{2\sigma}^{\dagger}a_{1\sigma}) + U(n_{1\uparrow}n_{1\downarrow} + n_{2\uparrow}n_{2\downarrow})$

Two-site Hubbard Hamiltonian

Effective Hamiltonian for 2-site Hubbard Hamiltonian

Possible 6-states:

Good quantum number operators

$$\begin{aligned} |\uparrow\downarrow;0\rangle, \ |0;\uparrow\downarrow\rangle, \ |\uparrow;\uparrow\rangle, \ \frac{1}{\sqrt{2}}(|\uparrow;\downarrow\rangle+|\downarrow;\uparrow\rangle), \ |\downarrow;\downarrow\rangle, \ \frac{1}{\sqrt{2}}(|\uparrow;\downarrow\rangle-|\downarrow;\uparrow\rangle) \\ s_i &= \sum_{\sigma\sigma'} a_{i\sigma}^{\dagger} \left(\frac{\sigma}{2}\right)_{\sigma\sigma'} a_{i\sigma'}, \quad S = \sum_{i=1,2} s_i, \quad N = \sum_{i,\sigma} n_{i\sigma} \end{aligned}$$

$$a^{-2} = 1 + (4t/U)^{2} \qquad \boxed{No. \quad S \quad S_{z}} \qquad E \qquad \text{Eigenstate}} \\ 1 \quad 0 \quad 0 \qquad U \qquad \frac{1}{\sqrt{2}} (|\uparrow\downarrow;0\rangle - |0;\uparrow\downarrow\rangle) \\ \mathcal{H}_{\text{eff}} = -J \left(s_{1} \cdot s_{2} - \frac{1}{4} \right), \qquad 2 \qquad \left(1 + \frac{1}{a} \right) \frac{U}{2} \quad \frac{\sqrt{1+a}}{2} (|\uparrow\downarrow;0\rangle + |0;\uparrow\downarrow\rangle) + \sqrt{\frac{1-a}{2}} |0,0\rangle \\ \mathcal{H}_{\text{eff}} = -\frac{4t^{2}}{U} \qquad 3 \qquad \left(1 - \frac{1}{a} \right) \frac{U}{2} \quad \sqrt{\frac{1+a}{2}} |0,0\rangle - \frac{\sqrt{1-a}}{2} (|\uparrow\downarrow;0\rangle + |0;\uparrow\downarrow\rangle) \\ \frac{4 \quad 1 \quad +1 \quad 0}{6 \quad -1} \qquad \frac{|1,+1\rangle}{|1,0\rangle} \\ \frac{1}{|1,-1\rangle} \end{cases}$$

Superexchange interaction

Compounds of magnetic ions and closed shell negative ions often have anti-ferromagnetism or ferromagnetism.

What is the mechanism (spin-spin interaction?) of magnetism?

Superexchange mechanism Small amount of electrons on a negative ions moves to a neighboring magnetic ion. Then spin appears on the negative ion which have exchange interaction with another neighboring magnetic ion.

Goodenough-Kanamori rules

Angles, orbitals, electrons numbers determine ferromagnetic, anti-ferromagnetic and the strength

s-d exchange interaction

Scattering of electrons s by a local magnetic ion S at the origin.

$$|\boldsymbol{k},\sigma
angle
ightarrow |\boldsymbol{k}',\sigma'
angle \qquad \mathscr{H}_{\mathrm{scatt}} = -2J\delta(\boldsymbol{r})\boldsymbol{S}\cdot\boldsymbol{s}$$

This works as if a delta-function magnetic field: $2JS\delta(r)/(g_e\mu_B)$

Fourier transformation:

$$\boldsymbol{B}_{\text{eff}}(\boldsymbol{r}) = \frac{2J\delta(\boldsymbol{r})}{g_{\text{e}}\mu_{\boldsymbol{B}}} \cdot \boldsymbol{S} = \int \frac{d\boldsymbol{q}}{(2\pi)^3 \sqrt{V}} \boldsymbol{B}_{\boldsymbol{q}} e^{i\boldsymbol{q}\cdot\boldsymbol{r}}$$

Magnetic moment spatial distribution and susceptibility in frequency space.

$$\boldsymbol{m}(\boldsymbol{r}) = \int \chi(\boldsymbol{q}) \boldsymbol{B}_{\boldsymbol{q}} \frac{d\boldsymbol{q}}{(2\pi)^3 \sqrt{V}}$$

Perturbation of \mathscr{H}_{scatt} on plane waves

$$\varphi_{\boldsymbol{k}}(\boldsymbol{r}) = \frac{e^{i\boldsymbol{k}\cdot\boldsymbol{r}}}{\sqrt{V}} \pm \frac{JS}{V} \int \frac{e^{i\boldsymbol{k}\cdot\boldsymbol{r}}}{E(\boldsymbol{k}+\boldsymbol{q}) - E(\boldsymbol{k})} \frac{d\boldsymbol{q}}{(2\pi)^3\sqrt{V}}$$

$$\boldsymbol{m}_{\boldsymbol{k}}(\boldsymbol{r}) = \frac{g_{\mathrm{e}}\mu_{\mathrm{B}}}{2} (\varphi_{\boldsymbol{k}-}^* \varphi_{\boldsymbol{k}-} - \varphi_{\boldsymbol{k}+}^* \varphi_{\boldsymbol{k}+})$$

RKKY interaction

$$\begin{split} \boldsymbol{m}_{\boldsymbol{k}}(\boldsymbol{r}) &= \frac{g_{\mathrm{e}}\mu_{\mathrm{B}}}{2} (\varphi_{\boldsymbol{k}-}^{*}\varphi_{\boldsymbol{k}-} - \varphi_{\boldsymbol{k}+}^{*}\varphi_{\boldsymbol{k}+}) \\ &= -\frac{g_{\mathrm{e}}\mu_{\mathrm{B}}JS}{V^{2}} \int \left(\frac{1}{E(\boldsymbol{k}+\boldsymbol{q}) - E(\boldsymbol{k})} + \frac{1}{E(\boldsymbol{k}-\boldsymbol{q}) - E(\boldsymbol{k})} \right) e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \frac{d\boldsymbol{q}}{(2\pi)^{3}} \\ \chi(\boldsymbol{q}) &= \frac{g_{\mathrm{e}}^{2}\mu_{\mathrm{B}}^{2}}{2V} \int_{\boldsymbol{k} \leq k_{\mathrm{F}}} \left(\frac{1}{E(\boldsymbol{k}+\boldsymbol{q}) - E(\boldsymbol{k})} + \frac{1}{E(\boldsymbol{k}-\boldsymbol{q}) - E(\boldsymbol{k})} \right) \frac{d\boldsymbol{k}}{(2\pi)^{3}} \\ &= \frac{3N}{8} \frac{(g_{\mathrm{e}}\mu_{\mathrm{B}})^{2}}{E_{\mathrm{F}}} \frac{1}{2} \left(1 + \frac{4k_{\mathrm{F}}^{2} - q^{2}}{4qk_{\mathrm{F}}} \log \left| \frac{2k_{\mathrm{F}} + q}{2k_{\mathrm{F}} - q} \right| \right) \end{split}$$

$$x = q/2k_{\rm F}$$
 $f(x) = 1 + \frac{1-x^2}{2x}\log\left|\frac{1+x}{1-x}\right|$

$$F(r) = \frac{1}{2\pi} \int d\mathbf{q} e^{i\mathbf{q}\cdot\mathbf{r}} f\left(\frac{q}{2k_{\rm F}}\right) = \frac{2}{r} \int_0^\infty q\sin(qr) f\left(\frac{q}{2k_{\rm F}}\right) dq$$
$$= \frac{1}{r} \int_{-\infty}^\infty q\sin(qr) f\left(\frac{q}{2k_{\rm F}}\right) dq$$

RKKY interaction (2)

$$\int_{-\infty}^{\infty} \frac{\sin[2k_{\rm F}r(1\pm x)]}{1\pm x} dx = \pi, \quad \int_{-\infty}^{\infty} \frac{\cos[2k_{\rm F}r(1\pm x)]}{1\pm x} dx = 0$$

$$F(r) = -16\pi k_{\rm F}^3 \frac{2k_{\rm F}r\cos(2k_{\rm F}r) - \sin(2k_{\rm F}r)}{(2k_{\rm F}r)^4}$$

 $5 \times 10^{-3} - 5 \times 10^{-3} -$

Second magnetic ion at **R**

$$-\int \boldsymbol{m}(\boldsymbol{r})\boldsymbol{B}_{\text{eff}}(\boldsymbol{r}-\boldsymbol{R})d\boldsymbol{r} = \frac{3N}{16\pi^2}\frac{J^2}{E_{\text{F}}}F(R)S_{1z}S_{2z}$$

Double exchange interaction

La MnO_3 are anti-ferromagnetic insulator (Mott insulator). But when some La is replaced with Ca, Mn^{4+} ions appear. The system becomes metallic and at the same time this material shows ferromagnetism.

: Kind of kinetic exchange interaction.

http://teetokue.air-nifty.com/blog/2008/04/59_9f47.html

Chapter 5

Theories of Magnetic Insulators

Ferromagnetic Heisenberg Hamiltonian:
$$\mathscr{H} = -2J \sum_{\langle i,j \rangle} S_i \cdot S_j - \mu \sum_i B \cdot S_i$$
 $J, \mu > 0$

Average field approximation: (molecular field approximation)

$$\mathscr{H}_{\text{eff}}(i) = -2J \sum_{\delta} \langle \boldsymbol{S}_{i+\delta} \rangle \cdot \boldsymbol{S}_i - \mu \boldsymbol{B} \cdot \boldsymbol{S}_i = -\mu \boldsymbol{B}_{\text{eff}} \cdot \boldsymbol{S}_i$$

$$\mu \boldsymbol{B}_{\text{eff}} = 2J \sum_{\delta} \langle \boldsymbol{S}_{i+\delta} \rangle + \mu \boldsymbol{B}$$

Remember $M = g_J \mu_{\text{B}} J B_J \left(\frac{g_J \mu_{\text{B}} J B}{k_{\text{B}} T} \right)$ replace $g_J \mu_{\text{B}} \to \mu, \ J \to S, \ B_J \to B_S$
then $M = \mu S B_S \left[\frac{\mu S}{k_{\text{B}} T} \left(B + \frac{2\alpha_z J}{\mu^2} M \right) \right]$

Brillouin function is expanded as

$$B_S(x) = \frac{S+1}{3S}x - \frac{1}{90}\frac{[(S+1)^2 + S^2](S+1)}{S^3}x^3 + \cdots$$

Molecular field approximation (2)

then
$$\left(1 - \frac{2\alpha_z J}{\mu^2}\chi_0\right)M + \frac{1}{90}[(S+1)^2 + S^2]\frac{1}{(k_{\rm B}T)^3}\left(\frac{2\alpha_z J}{\mu^2}\right)^2M^3 = \chi_0 B$$

with $\chi_0 = \mu^2 S(S+1)/3$

The first order term drops at $k_B T_C = \frac{2}{3}S(S+1)\alpha_z J$ which gives the Curie temperature.

Curie-Weiss law
$$\chi = \chi_0 \left(1 - \frac{2\alpha_z J}{\mu^2} \chi_0 \right)^{-1} = \mu^2 \frac{S(S+1)}{3k_{\rm B}(T-T_{\rm C})}$$

Summary Spin Hamiltonian and quantum entanglement Hubbard Hamiltonian Superexchange interaction **RKKY** interaction Double exchange interaction Theory of Magnetic insulators Molecular field approximation