Physics of Semiconductors (Appendix)

Shingo Katsumoto
Dept. Physics and Inst. for Solid State Physics, University of Tokyo

July 18, 2016

Appendix K: Confinement with a triangular potential

To solve a problem in final report, the following knowledge on quantum confinement with a triangular potential is required.

Let us approximate a confinement potential for two-dimensional electrons with a downward triangular potential. This is a simple but a good approximation for confinement at MOS interfaces. The problem can be viewed as a slope with a limit wall, which is a well known problem in elementary quantum mechanics. We take it as a one-dimensional potential problem along x-axis and write down the Schrödinger equation as

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right) \psi=E \psi, \quad V(x)= \begin{cases}a x & (x>0, \quad a>0) \tag{8.1}\\ \infty & (x \leq 0)\end{cases}
$$

The equation can be rewritten with a variable transformation

$$
\begin{equation*}
s=\left(\frac{2 m a}{\hbar^{2}}\right)^{1 / 3}\left(x-\frac{E}{a}\right) . \tag{8.2}
\end{equation*}
$$

as

$$
\begin{equation*}
\frac{d^{2} \psi}{d s^{2}}=s \psi \tag{8.3}
\end{equation*}
$$

This differential equation is mathematically called Airy or Stokes-type differential equation. The solutions are called Airy functions, which are classified with the asymptotic behavior for $s \rightarrow \infty$, into $\operatorname{Ai}(\psi \rightarrow 0)$ and $\mathrm{Bi}(\psi \rightarrow \infty)$. They are plotted in Fig.8.1(b). As the basis of quantum mechanical wavefunctions we should adopt Ai for vanishment at the infinite point.

Asymptotic forms of Ai for $s \rightarrow \pm \infty$ are given as

$$
\begin{align*}
\operatorname{Ai}(s) & \sim \frac{1}{2 \sqrt{\pi} s^{1 / 4}} \exp \left(-\frac{2}{3} s^{3 / 2}\right) \quad(s \rightarrow \infty) \tag{8.4}\\
& \sim \frac{1}{\sqrt{\pi}|s|^{1 / 4}} \cos \left(\frac{2}{3}|s|^{3 / 2}-\frac{\pi}{4}\right) \quad(s \rightarrow-\infty) \tag{8.5}
\end{align*}
$$

In $x<0, V=\infty$ and the boundary condition at $x=0$ is $\psi(+0)=0$. From the constraint, a zero of $\psi(x)$ should be placed at $x=0$. We write zeros of Ai from the smallest with ascending order $s_{1}, s_{2}, \cdots s_{n}, \cdots$. Then from eq.(8.2), the energy eigenvalue E_{n} correspondint to n is obtained as

$$
\begin{equation*}
E_{n}=-\left(\frac{\hbar^{2} a^{2}}{2 m}\right)^{1 / 3} s_{n} \tag{8.6}
\end{equation*}
$$

From the asymptotic form eq.(8.5), approximate values for s_{n} for large n are given as

$$
\begin{equation*}
s_{n} \sim-\left(\frac{3 \pi(4 n-1)}{8}\right)^{2 / 3} \tag{8.7}
\end{equation*}
$$

Figure 8.1: (a) Schematic illustration of a triangular potential. (b) Airy functions.

Figure 8.2: (a) Energy eigenvalues and eigenstates in a triangular confinement potential. Drawn from the lowest energy for $n=1,2,3$. (b) Inverse of distance between neighboring zero Δs of Airy function $\operatorname{Ai}(s)$ as a function of s. $\operatorname{Ai}(s)$ is also plotted as a broken curve.

