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Appendix K: Con�nement with a triangular potential

To solve a problem in �nal report, the following knowledge on quantum on�nement with a triangular potential is

required.

Let us approximate a on�nement potential for two-dimensional eletrons with a downward triangular potential.

This is a simple but a good approximation for on�nement at MOS interfaes. The problem an be viewed as a slope

with a limit wall, whih is a well known problem in elementary quantum mehanis. We take it as a one-dimensional

potential problem along x-axis and write down the Shrödinger equation as
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The equation an be rewritten with a variable transformation
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This differential equation is mathematially alled Airy or Stokes-type differential equation. The solutions are alled

Airy funtions, whih are lassi�ed with the asymptoti behavior for s!1, into Ai ( ! 0) and Bi ( !1). They

are plotted in Fig.8.1(b). As the basis of quantum mehanial wavefuntions we should adopt Ai for vanishment at the

in�nite point.

Asymptoti forms of Ai for s! �1 are given as
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In x < 0, V =1 and the boundary ondition at x = 0 is  (+0) = 0. From the onstraint, a zero of  (x) should be

plaed at x = 0. We write zeros of Ai from the smallest with asending order s
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orrespondint to n is obtained as
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From the asymptoti form eq.(8.5), approximate values for s

n

for large n are given as
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Figure 8.1: (a) Shemati illustration of a triangular potential. (b) Airy funtions.
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Figure 8.2: (a) Energy eigenvalues and eigenstates in a triangular on�nement potential. Drawn from the lowest energy

for n = 1; 2; 3. (b) Inverse of distane between neighboring zero �s of Airy funtion Ai(s) as a funtion of s. Ai(s) is

also plotted as a broken urve.
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