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Ch.3 Heterojun
tion and quantum 
on�nement to two-dimensional systems

Today, I would like to introdu
e how to produ
e two-dimensional systems of ele
trons or holes with emphasis on

heterojun
tion. Porf. Akiyama gave an explanation on the treatment of heterojun
tions based on k�p perturbation and

I will not revisit it though I would like to 
on�rm what we are treating when we see heterojun
tions as simple step

fun
tion potential. In very short, in a Blo
h-type wavefun
tion we drop the latti
e periodi
 fun
tions renormalizing their

effe
t into �band stru
ture� and the residual plane waves are �envelope fun
tions�. Then we 
an map the problem of

heterojun
tion into a potential problem of envelope fun
tions. As noted by Prof. Akiyama, 
onne
tion of envelope fun
-

tions at the interfa
e 
ontains subtle problems and we should pay attention that envelope fun
tions are not wavefun
tion

themselves.

3.1 Heterojun
tion

3.1.1 Envelope fun
tion (review)

Envelope fun
tion is one of the basi
 
on
epts in treating heterojun
tions. Prof. Akiyama already gave a detailed

explanation on the k�p treatment of heterojun
tions and here we only review the 
on
ept. Let u

nk

(r) exp(ik � r)

(u

nk

(r): latti
e periodi
 fun
tion) be a Blo
h-type latti
e eigen fun
tion. n is the band index. Around the band edge,

u

nk

(r)mainly re�e
ts latti
e-spe
i�
 band stru
tures and the plane wave part represents spatial modulation of the band-

edge properties. When there is a spatial modulation in material parameters, u

nk

(r) gets the modulation and the effe
t is

absorbed as if the modulation generates a potential for the plane wave part. Now if we forget the latti
e periodi
 fun
tion

and think the �plane wave� part as a �wavefun
tion� we 
an simplify the problem to a potential problem of quantum

me
hani
s. The �plane wave part� is the envelope fun
tion to be exa
t. Band 
al
ulations for heterojun
tions are

surprizingly dif�
ult but on
e it is renormalized into a potential problem, the rest is just elementary quantumme
hani
s.

Let us review. Consider a perturbation potential U(r) is added to the latti
e Hamiltonian H

0

. Let �(r) be an

eigenstate of the system and

[H

0

+ U(r)℄�(r) = E�(r): (3.1)

�(r) 
an be expanded with jn;ki be
ause of their 
ompleteness as

�(r) =

X

n;k

f(n;k)jn;ki: (3.2)

Substituting the above into (3.1) and operation of hn

0

;k

0

j give the next expression:

[E

0

(n

0

;k

0

)�E℄f(n

0

;k

0

) +

X

n;k

hn

0

;k

0

jU jn;kif(n;k) = 0: (3.3)

We repla
e u

nk

with u

n0

(r) assuming weak dependen
e of k on k and ignore interband mixing to obtain

�

n

(r) = u

n0

X

k

f(n;k)e

ikr

� u

n0

f

n

(r); (3.4)
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where f

n

(r) is 
alled envelope fun
tion. Envelope fun
tion is a summation of plane wave parts in the Blo
h fun
tions

for in
luding the effe
t of U(r) (formally inverse Fourier transform) From (3.3), dropping n

0

, we obtain

~

2

k

02

2m

�

f(k

0

) +

X

k

U

k

0

�k

f(k) = Ef(k

0

): (3.5)

Inverse Fourier transform of the both sides on k

0

gives

�

�

~

2

r

2

2m

�

+ U(r)

�

f(r) = Ef(r): (3.6)

Note that the se
ond term in (3.5) is a 
onvolution. Equation (3.6) is nothing but the S
hrödinger equation for a parti
le

with the effe
tive mass in the potential U(r). The renormalization of the problem into envelope fun
tion is hen
e 
alled

effe
tive mass approximation.

3.1.2 Anderson's rule for heterojun
tion

Equation (3.6) means when there is some spatial stru
ture other than the latti
e potential of matrix material, we 
an

treat it as a potential problem of a parti
le with the effe
tive mass. If the potential is just �at or very soft, the envelope

fun
tion is almost a plane wave or a free parti
le. When we 
onsidered pn-jun
tions we adopted a rigid band model

1

,

in whi
h the energy band has spatial slope keeping the band gaps. This approximation is based on the effe
tive mass

approximation.

Prof. Akiyama also gave an explanation on whether this approximation is appli
able or not to the heterojun
tion

problem and if it is, how. Generally there is an abrupt variation in the latti
e periodi
 fun
tion u

nk

(r) and dire
t

appli
ation is questionable. Even if we su

eed in renormalizing the effe
t into a step fun
tion potential, that should have

a dis
ontinuous 
hange and requires summation over a wide range of k to obtain an envelope fun
tion and repla
ement

of u

nk

with u

n0

also be
omes a problem. I'll skip the dis
ussion but to summarise, whether we 
an apply the effe
tive

mass approximation to a heterojun
tion depends on the 
ombination of materials whi
h 
ompose the jun
tion. In the


ase of GaAs/Al

x

Ga

1�x

As, it is established that the step fun
tion potential and 
ontinuous envelope fun
tion and the

derivative over the jun
tion interfa
e is a good approximation. In general 
ombination, the simplest approximation

that 
ontinuous and differentiable envelope fun
tion does not hold but with some additional rule, similar treatment is

available.

In summary, the model in whi
h band gaps and effe
tive masses are spe
i�
 to materials and �rigid� to interfa
es,

is mostly adopted in treatments of heterojun
tions. In real many ele
tron systems, we 
onsider envelope fun
tions

(effe
tive mass approximation) as one-ele
tron fun
tions to form Slater determinant.
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Figure 3.1: A simple model of heterojun
tion (Anderson's rule). (a) Energies required for extra
tion of an ele
tron from

the Fermi energy to the va
uum level (workfun
tionW

j

). (b) Band alignment assuming �xed ele
tron af�nity �

A;B

. (
)

In equilibrium, E

F

should be 
onstant throughout the jun
tion and a

ordingly jun
tion potential, in other words band

bending appears.

1

In solid state physi
s, the term �rigid band model� is mostly used in the mixing of energy of bands in the formation of alloys. The present usage

is rather minor.
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Figure 3.2: Three types of heterojun
tions. (a) type I. Ordinary alignment. The potential is lower in the narrower

side both for ele
trons (
ondu
tion band) and holes (valen
e band). (b) type II. Staggered alignment. At one side,

the potential for ele
trons is lower while that for holes is higher. (
) type III. Gap disappearan
e (semi-metal). The


ondu
tion band in one side is 
onne
ted to the valen
e band in the other side. The bandgap disappears 
onsequently.

What we should 
onsider next, in this model, is to �nd appropriate values for�E




and�E

v

for a given 
ombination

of semi
ondu
tors. Knowing band gaps E

gA

and E

gB

respe
tively for semi
ondu
tors A and B, we put

E

gB

�E

gA

= �E




+�E

v

:

Therefore another 
ondition gives the values. An attempt to give the 
ondition from experimental data phenomenolog-

i
ally was made by R. L. Anderson in the age they did not know the band stru
ture even in the bulk. The method is

illustration in Fig.3.1and 
alled Anderson's rule. To extra
t an ele
tron at the 
ondu
tion ban bottom into va
uum needs

ele
tron af�nity �

A

for A, �

B

for B. These quantities 
an be measured e.g. with photoele
tron spe
tros
opy. Then

assuming the va
uum level is 
ommon for A and B,

�E




= �

B

� �

A

:

With the positions of E

F

, we 
an draw the band diagram as in Fig.3.1(
) from the 
ondition that E

F

should be �at

throughout the jun
tion.

Many experimental results support the step fun
tion potential model with �xed�E




,�E

v

sometimes with additional

rules for envelope fun
tion 
onne
tion. However, appropriate values for�E




et
. found in experiments are signi�
antly

shifted fromAnderson's rule. FollowingAnderson's rule, various 
onventionalmethods like 
ommon anion rule, surfa
e

states rule et
. have been proposed though still there is no easy-going method with high a

ura
y for interfa
es, whi
h

break the translational symmetry. That is we still need to adopt large s
ale �rst prin
iple 
al
ulations to obtain reliable

values for band dis
ontinuities. Later we will see some examples of the determination in experiments.

3.1.3 Types of heterojun
tions

Band alignment of heterojun
tions 
an be 
lassi�ed into three types illustrated in Fig.3.2. One of the representative 
om-

binations GaAs-Al

x

Ga

1�x

As has the alignment of type-I (Fig.3.2(a)). A GaAs layer sandwi
hed by two Al

x

Ga

1�x

As

layers thus works as a quantum well both for ele
trons and holes. On the other hand, GaSb and narrow gap InAs form a

jun
tion of type-III in Fig.3.2(
), in whi
h the 
ondu
tion band of InAs and the valen
e band of GaSb overlap and the

energy gap is �shorted� at the interfa
e. If we adopt a mixed 
rystal Al

x

Ga

1�x

Sb instead of GaSb and make the gap

larger, the valen
e band top lowers and at x =**, the top 
rosses that in the InAs and type-II interfa
e is realized.

3.2 Formation of heterojun
tions

3.2.1 Epitaxial growth

Most popular method to form heterojun
tions of semi
ondu
tors is epitaxial growth already presented in the le
ture by

Prof. Akiyama. Epitaxial growth methods 
an be 
lassi�ed into liquid-phase epitaxy, vapour-phase epitaxy, and va
uum

deposition. In liquid-phase epitaxy, pre
ipitation onto 
rystal substrates from melts of ingredients is used. The growths

o

ur in states 
lose to equilibrium and high quality 
rystals 
an be obtained while it is hard to obtain sharp interfa
es.

When one needs sharp interfa
es and pre
ise 
ontrol of layer thi
knesses, usually the latter two methods of epitaxy are

adopted.
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Figure 3.3: Plots of the latti
e 
onstants

and the energy gaps of II-VI, III-V 
om-

pound semi
ondu
tors and IV elemental

semi
ondu
tors. The lines 
onne
ting

the points indi
ate possible mixed 
rys-

tals. Verti
al gray bands indi
ate possible

groups of latti
e mat
hed heterostru
ture

growth.

Figure 3.4: Con
eptual illustration of van der

Waals heterostru
ture, whi
h is produ
ed by

sta
king various two-dimensional materials.

An important point in the formation of heterojun
tion is the latti
e mat
hing in latti
e 
onstants and 
rystal systems.

In Fig.3.3, we plot representative 
ompound semi
ondu
tors and elemental semi
ondu
tors on the plane of latti
e 
on-

stant and energy gap. Most of the plotted semi
ondu
tors have a 
ommon 
rystal system, FCC bravais latti
e. Verti
al

gray bands indi
ate possible groups of latti
e mat
hed heterostru
ture growth though these 
ombinations are not always

available in pra
ti
al growths. Besides these semi
ondu
tors, heterojun
tions of GaN family are important for industrial

demands. They usually have Wurtzite stru
ture (hexagonal 
lose-pa
ked, HCP) and need high temperature treatments,

the heterostru
tures thus are mostly 
omposed within nitride families.

Even with 
onsiderable latti
e mismat
h, a mis�t-dislo
ation free growth to a 
ertain �lm thi
kness is possible. An

estimation of the thi
kness given as a balan
e point of the strain energy 
on
entrated on dislo
ations and that within

whole grown �lm, is 
alled Matthews' 
riti
al thi
kness[2℄. Be
ause a
tual 
rystal growths are 
arried out under

some non-equilibrium 
ondition, the total free energy not ne
essarily takes the minimum, the pro
ess is generally non-

adiabati
. Hen
e the Matthews' thi
kness is just a rough estimation. In many 
ases we need to keep substrate tempera-

tures high enough during growths and the differen
e in 
oef�
ients of thermal expansion in the two materials sometimes


auses dislo
ations or strains. Many points should be taken into a

ount in a
tual growths[3℄.
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3.2.2 van der Waals heterostru
ture

Re
ently van der Waals heterostru
ture, whi
h is formed in 
ompletely different way, is 
olle
ting attentions[4℄. That is

a me
hani
al sta
king of two-dimensional materials like graphene as shown in Fig.3.4 (graphene will be introdu
ed later

as a two-dimensional ele
tron system without heterointerfa
e). Sometimes epitaxial growth like CVD is adopted but

in many 
ases me
hani
al sta
king of exfoliated two dimensional materials 
reates high-quality heterostru
ture, whi
h

implies possible 
ompletely new formation method of heterostru
ture.

3.3 Qauntum well

A region with lower potential sandwi
hed with two heterojun
tions to higher potential materials is quantum well.

The readers should be familiar with it sin
e introdu
tion of elementary quantum me
hani
s. In other words, however,

the semi
ondu
tor heterojun
tion te
hnology has made the quantum well as a real substan
e from just an exer
ise for

students.

3.3.1 Dis
rete quantum levels in a quantum well

Let the well width be L, the barrier height V

0

. In x � �L=2, L=2 � x (outside the well) S
hrödinger equation is

�

�

~

2

d

2

2mdx

2

+ V

0

�

 = E : (3.7)

Let us put � �

p

2mjE � V

0

j=~ and let C

1;2

,D

1;2

be 
onstants spe
i�
 to the regions, the solution outside the well 
an

be written as

 (x) =

(

C

1

exp(i�x) + C

2

exp(�i�x) E � V

0

;

D

1

exp(�x) +D

2

exp(��x) E < V

0

:

(3.8)

In the 
ase of E < V

0

, the wavefun
tion should be lo
alized around the well and zero for x! �1, then

L=2 < xでD

+

1

= 0; x < �L=2でD

�

2

= 0:

Supers
ript � distinguish the regions positive/negative of x. Inside the well, letting C

1

, C

2

be 
onstants, we write the

wavefun
tion with plane waves as

 = C

1

exp(ikx) + C

2

exp(�ikx); k �

p

2mE

~

; (3.9)

where for simpli
ity, we assume the effe
tivemassm is 
ommon for inside and outside the well. The boundary 
ondition

at x = �L=2 where the potential is dis
ontinuous is now applied. Continuity and differentiability at the potential

boundary x = 0 require

Continuity

(

C

1

exp(ikL=2) + C

2

exp(�ikL=2) = D

+

2

exp(��L=2);

C

1

exp(�ikL=2) + C

2

exp(ikL=2) = D

�

1

exp(��L=2);

Differentiability

(

ikC

1

exp(ikL=2)� ikC

2

exp(�ikL=2) = ��D

+

2

exp(��L=2);

ikC

1

exp(�ikL=2)� ikC

2

exp(ikL=2) = �D

�

1

exp(��L=2);

respe
tively. Erasing the 
onstants the following 
ondition is obtained.

exp(2ikL) =

�

�� ik

�+ ik

�

2

= exp

�

�4i ar
tan

k

�

�

;

) kL = �2 ar
tan

k

p

�

2

0

� k

2

+ n�; �

2

0

�

2mV

0

~

2

; n = 1; 2; � � � : (3.10)

Let us take kL as a positive value without loosing generality be
ause the solutions 
ontain �k equivalently, and we

restri
t the value of ar
tan(x) between 0 and �=2. As shown in Fig.3.5(a), the 
rossing points of the 
urves and the

line, �2 ar
tan(k=

p

�

2

0

� k

2

) + n� and kL give the values of k, whi
h satisfy (3.10). As easily guessed from the

analogy with the 
ase of in�nite barriers, even numbers of n 
orrespond to odd parity wavefun
tions, while odd numbers


orrespond to even parities.

In Fig.3.5(b), we show the form of wavefun
tions for the bound states in the 
ase of l = 8.
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Figure 3.5: (a) A plot for graphi
al solutions of k whi
h satisfy eq.(3.10). The 
rossing points of the fun
tions

�2 ar
tan(k=�) + n� and kL give the solutions of (3.10). (b) Bound eigenstates for n = 1; 2; 3 under the 
ondi-

tion l = 8. The baselines for the wavefun
tions are the eigenenergiesE

1;2;3

measured with V

0

(for l = 8 there are only

three bound state solutions, whi
h is different from the situation in the left �gure).

3.3.2 Opti
al absorption in quantum wells

In spite of the prin
iple of �not going into opto-material s
ien
e� in this le
ture, we would like to have a short look at

opti
al absorption in quantum wells. As usual we take z-axis verti
al to the well plane. We write the envelope fun
tions

for ele
trons and holes as �

e

(z) and �

h

(z) respe
tively and then approximate the total wavefun
tion as

 

e

(r) = �

e

(z) exp(ik

xy

� r

xy

)u




(r);

 

h

(r) = �

h

(z) exp(ik

xy

� r

xy

)u

v

(r):

)

(3.11)

u




, u

v

are latti
e periodi
 parts of the Blo
h eigenfun
tion with k = 0. Dire
t type inter-band opti
al absorption

probabilities are proportional to

hu




(r)jrju

v

(r)i

Z

1

�1

dz�

e

(z)

�

�

h

(z): (3.12)

In the 
ase of in�nite height barriers, the envelope fun
tions are written as sin(n�z=L), 
os(l�z=L) (n = 2; 4; � � � ,

l = 1; 3; � � � ) and the latter integration over z in (3.12) is �nite only between ele
tron envelope fun
tion and hole

envelope fun
tion with the same quantum index (n or l in this 
ase). For �nite heights, this orthogonality breaks leaving

parity sele
tion rule but still elements between different quantum indi
es are small and we only 
onsider the transition

between the states with the same index. The energy asso
iated with the transition is

E = E

g

+�E

(eh)

n

+

~

2

2�

k

2

xy

; (3.13)

where�E

(eh)

n

is the sum of the energies for ele
tron and hole in n-th energy levels, 1=� = 1=m

�

e

+1=m

�

h

is the redu
ed

mass. The last term for two-dimensional kineti
 energy indi
ates that there should be 
ontinuous absorption spe
trum

above�E

(eh)

n


orresponding to the two-dimensional density of states.

From E = (~

2

=2m

�

)k

2

and n = �k

2

=(2�)

2

= (E=4�)(2m

�

=~

2

), the two-dimensional density of states 
an be

written as

dn

dE

=

m

�

2�~

2

H(E) (H(x) : Heaviside fun
tion): (3.14)

This is 
onstant for energy and with (3.13), we expe
t a stair
ase like opti
al absorption spe
trum.

Formaion of ex
itons appears in opti
al absorption as peaks at energies lower than the fundamental absorption edge.

Su
h peaks for ex
itons in quantum wells are illustrated in Fig.3.6(a). Only the ground states (n = 0) of the ex
itons
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Figure 3.6: (a) Illustration of theoreti
ally proposed opti
al absorption spe
trum, in whi
h both the 
oupling density of

states and the ex
iton density of states in the quantum well are taken into a

ount. The approximation that the transition

exists only between ele
trons and holes with the same quantum index. In the valen
e band of f

 semi
ondu
tors we have

heavy and ligh holes and transitions with the two bands are 
onsidered in the �gure. (b) Opti
al absorption spe
trum of

a AlAs/GaAs multiple (40 layers) quantum well with width 7.6 nm. The �nite barrier height 
auses transitions between

the levels with different quantum indi
es, whi
h appear in ex
iton peaks.

are 
onsidered. And 
oupling density of states between ele
trons and holes with different subband quantum indi
es

is ignored assuming that the barrier is high enough. Figure 3.6(b) shows an experimental result on an AlGaAs/GaAs

multiple quantum well with width 7.6 nm. The lineshape of the absorption spe
trum 
an be understood as an overlap

of stair
ase-like shape re�e
ting the two-dimensional density of states (3.14) and absorption by ex
itons indi
ated as

hh or lh. Be
ause the barrier height is �nite in the experiment, peaks due to the transition between states with different

quantum indi
es are also observed. The effe
t of low-dimensionality is observable in in
reases of binding energy of

ex
itons, whi
h results in wider separation of ex
iton peaks from absorption edges and the peaks persist up to higher

temperatures.

Now we 
an see that the opti
al absorption spe
tra 
an provide experimental determination of band-dis
ontinuities

�E




, �E

v

. In the 
ombination of GaAs-Al

x

Ga

1�x

As, resea
hers 
ould not separate lh and hh peaks in very early

experiments presumably due to low quality of samples. The result on
e led them to a wrong 
on
lusion of �E




:

�E

v

= 85 : 15 be
ause �E

v

should be too small to a

omodate the lh level. After the revised experiments, it was

established that �E




: �E

v

= 57 : 43 is a good empiri
al law.

3.4 Quantum barrier

�Upside down� of a quantum well potential gives a quantum barrier potential. In the quantum well problem, the fo
us

was on the bound states inside the well while in quantum barriers we see 
hara
teristi
 tunneling phenomena in the

upside-down states of resonant s
attering.

3.4.1 Transfer matrix

Let us 
onsider a region Q in a one-dimensional spa
e and as shown in Fig.3.8(a), and in
oming wavefun
tion A(k)

with wavenumber k from the left hand side (LHS), outgoing wavefun
tion A

2

(k) to the right hand side (RHS), and

B

2

(k), B

1

(k) for the other way around. Here we take the momentum k to be 
ommon for the momentum 
onservation.

The suf�
es 1 and 2 indi
ates the boundaries 1 and 2.

Let us take for an example that a re
tangular barrier with width L, and height V

0

. Let the wavefun
tion inside the

barrier be V

i

(�) +W

i

(�). V , W 
orrespond to e

��x

, e

�x

respe
tively and from the S
hrödinger equation, �V

i

=�x =

��V

i

, �W

i

=�x = �W

i

. The suf�x i indi
ates positions in real spa
e, just as above, putting 1 and 2 to the left and the

right edges of the barrier and

V

2

= V

1

e

��L

; W

2

=W

1

e

�L

:
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Figure 3.7: S
heme of T-matrix

Now the boundary 
ondition 
an be written as �A

1;2

=�x = ikA

1;2

, �B

1;2

=�x = �ikB

1;2

, hen
e,

A

1

+B

1

= V

1

+W

1

; A

2

+B

2

= e

��L

V

1

+ e

�L

W

1

; (3.15)

ik(A

1

�B

1

) = �(�V

1

�W

1

); ik(A

2

�B

2

) = �(�e

��L

V

1

+ e

�L

W

1

): (3.16)

For short expression, k, � for A � V are not shown.

First we erase V

1

,W

1

, then (A

2

; B

2

) and be expressed with (A

1

; B

1

). Be
ause of the linearity, the solution 
an be

written in a matrix form as

�

A

2

B

2

�

=

�

m

11

m

12

m

21

m

22

��

A

1

B

1

�

�M

T

�

A

1

B

1

�

: (3.17)

Then matrix fm

ij

g is obtained as

8

>

>

>

>

>

<

>

>

>

>

>

:

m

11

=

�


osh(�L) + i

k

2

� �

2

2k�

sinh(�L)

�

;

m

12

= �i

k

2

+ �

2

2k�

sinh(�L);

m

21

= m

�

12

; m

22

= m

�

11

:

(3.18)

Spe
i�
 form ofM

T

surely depends on shape of potential though the relation between input and output 
an always

be written in the matrix form as in (3.17) guaranteed by the linearity of S
hrödinger equation. A matrix likeM

T

is 
alled

transfer matrix (T-matrix).

In Eq.(3.18),M

T

has the symmetry ofm

21

= m

�

12

,m

22

= m

�

11

, whi
h 
omes from the time-reversal symmetry and

the even symmetry in the potential shape.

Let B

2

= 0, and the ratio of transmission wave A

2

and re�e
tion wave B

1

to the in
ident wave A

1


an be given

from (3.17), (3.18) as

t �

A

2

A

1

=

jm

11

j

2

� jm

12

j

2

m

�

11

=

1

m

�

11

=

2ik�

(k

2

� �

2

) sinh(�L) + 2ik� 
osh(�L)

; (3.19)

r �

B

1

A

1

= �

m

21

m

22

=

(k

2

+ �

2

) sinh(�L)

(k

2

� �

2

) sinh(�L)� 2ik� 
osh(�L)

: (3.20)

t, r are 
alled imaginary transmission 
oef�
ient and imaginary re�e
tion 
oef�
ient respe
tively. They are related

to the transmission and re�e
tion 
oef�
ients as

Transmission: T = jtj

2

; Re�e
tion: R = jrj

2

; jtj

2

+ jrj

2

= 1; (3.21)

and the T-matrixM

T


an be expressed with them as

M

T

=

�

1=t

�

�r

�

=t

�

�r=t 1=t

�

: (3.22)

3.4.2 Transmission through double-barrier stru
ture

Let us 
onsider the transmission through the double barrier potential illustrated in Fig.3.8. Quantum well and quantum

barrier are upside down to ea
h other and the double barrier may have the position in between them. Let the boundaries
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Figure 3.8: S
hemati
 illustration of double bar-

rier potential.

be 1�4 as in the �gure and the wavefun
tions also as A

1�4

and B

1�4

. For the left barrier the setup is the same as that in

the previous se
tion and (3.18) is appl
able. Next in the well part between the barriers, a parti
le gains a kineti
 phase

fa
tor exp(ikW ) during the traverse. Hen
e as T-matrix for this part we 
an adopt

M

W

=

�

exp(ikW ) 0

0 exp(�ikW )

�

: (3.23)

The right barrier is just the same as the left. The expression of T-matrix does not depend on lo
al 
oordinates andM

T


an be used as it it.

Then the total T-matrix M

DW

of the double barrier stru
ture is, as obvious from the de�nition, obtained as the

produ
t of all T-matri
es as

M

DW

=

�

m

11

m

12

m

21

m

22

��

e

ikW

0

0 e

�ikW

��

m

11

m

12

m

21

m

22

�

�

�

T

11

T

12

T

21

T

22

�

: (3.24)

The transmission 
oef�
ient is, from (3.24),

T

11

= m

2

11

exp(ikW ) + jm

12

j

2

exp(�ikW ) (* m

12

= m

�

21

):

The interferen
e effe
t due to the double barrier stru
ture appears in the se
ond term. Let the argument of m

11

be ',

and writingm

11

= jm

11

j exp(i') we get

T

11

T

�

11

= ((jm

11

j

2

e

2i'

e

ikW

+ jm

12

j

2

e

�ikW

)(jm

11

j

2

e

�2i'

e

�ikW

+ jm

12

j

2

e

ikW

)

= (jm

2

11

� jm

12

j

2

)

2

+ 2jm

11

j

2

jm

12

j

2

(1 + 
os(2('+ kW )))

= 1 + 4jm

11

j

2

jm

12

j

2


os

2

('+ kW ):

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

e= /E V0

T

e

T

l

(a) (b)

l=1

1.522.5
n=1

n=2

Figure 3.9: (a) Transmission 
oef�
ient T 
al
ulated on (3.25) as a fun
tion of the energy of in
oming wave for various

barrier widths. Well width - barrier width relation is �xed toW = 2L. (b) The same results are plotted in a gray s
ale

as a fun
tion of the in
oming energy and the barrier width. White broken lines indi
ate the resonan
e 
ondition (3.26),

(3.27).

9-9



The the transmission 
oef�
ient is obtained as

T =

1

jT

11

j

2

=

1

1 + 4jm

11

j

2

jm

12

j

2


os

2

('+ kW )

: (3.25)

The �nal form of transmission 
oef�
ient is then in 
ombination obtained with (3.18).

Figure 3.9(a) shows thus 
al
ulated transmission 
oef�
ient T for various barrier widths L as a fun
tion of energy

of in
oming wave. The relation between the barrier width and the well width is �xed as W = 2L. Here L and E are

transfomed into dimensionless parameters l � (

p

2mV

0

=~)L and E は � � E=V

0

respe
tively. The points where the

transmission 
oef�
ient hits 1 are due to resonant s
attering and the 
ondition is written as

'+ kW =

�

n�

1

2

�

� (n = 1; 2; � � � ); (3.26)

from (3.25), where ' is witten from (3.18) as

' = ar
tan

�

k

2

� �

2

2k�

tanh(�L)

�

; (3.27)

where we restri
t the region to ��=2 < ' < �=2. With this, n should take a natural number.

In Fig.3.9(b), the same data are plotted in a gray s
ale versus a plane of energy and barrier width. White broken lines

indi
ate the resonant s
attering 
ondition in the above equation. With in
reasing l, the peaks be
ome sharper, whi
h

tenden
y is due to the elongation of time for staying inside the well, that makes the life width determined from the

un
ertainty relation smaller. If we take the limit L ! 1 keepingW �nite, the system be
omes a quantum well with a

�nite barrier height and the resonant s
attering 
ondition approa
hes to that for bound eigenstates.

3.4.3 Transport of double barrier diode

Double barrier diode is a devi
e, whi
h realized the double barrier stru
ture with hetero-inferfa
es. Here we introdu
e

an experiment on su
h a devi
e with GaAs-AlAs hetero-interfa
es, p-type doped ele
trodes. Hen
e the devi
e works

as a double barrier for holes. The band dis
ontinuity is �E

v

=0.47 eV. There are two spe
ies of holes at the top of

valen
e band in GaAs with effe
tive masses 0:51m

0

and 0:082m

0

, whi
h are 
alled �heavy� and �light� holes (hh and

lh) respe
tively. We ignore the mass differen
e in AlAs for simpli
ity (a
tually the differen
e is not small but does not

affe
t the result signi�
antly). The potential prepared has, as shown in the upper panel of Fig.3.10(a), widths of 5nm

(a)

5nm

0.46

0.32
0.30

0.55eV

0.17
0.083
0.077
0.019

H5

L2
H4

H3
L1
H2
H1

GaAs GaAs

A
lA

s

A
lA

s

eVsd

eSouce

Drain

(b)

Figure 3.10: (a) Upper panel: Potential diagram of the double barrier

diode prepared for the present experiment. The energy base is taken to

the top of the valen
e band and the energy of holes is positive in this plot.

H1�H5,L1; L2 are the positions of resonant levels for heavy holes and

light holes respe
tively. Lower panel: S
anning transmission ele
tron

mi
rograph of the sample. Darker regions are AlAs. (b) S
hemati


potential diagram for a sour
e-drain biased double barrier diode.
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Figure 3.11: Energy dependen
e of transmission 
oef�
ient for

the double barrier stru
ture with parameters given in the text and

with eq.(3.25). The peaks hit 1 a
tually but too narrow to be

sampled.

both for the barriers and the well. The barriers and the well parts do not have any doping. Figure 3.10(a) shows a

photograph of the sample 
ross se
tion taken by a s
anning transmission ele
tron mi
ros
ope, STEM.

The transmission 
oef�
ient T thus 
al
ulated with the above parameters and the stru
ture shown in Fig.3.10 is

displayed as a fun
tion of energy in Fig.3.11. Be
ause the effe
tive masses of holes are 
omparatively heavy and the

barrier height is high, the transmission peaks are very sharp. We thus 
an see the behavior of tail only in the semi-log

plot. We see below the barrier threshold, 5 heavy hole resonan
e peaks and 2 light hole peaks. Figure 3.10(a) shows the

positions of resonan
e levels in the well numeri
ally 
al
ulated from eq.(3.26).

In order to see the behavior of tunneling, usually sour
e-drain voltage V

sd

is applied as illustrated in Fig.3.10(b).

Inside the sour
e and the drain, highly 
on
entrated holes s
reen the ele
tri
 �eld and the applied voltage should mainly


onsumed a
ross the double barrier regions. In a
tual situation, however, the 
onta
t resistan
es also 
ause signi�
ant

voltage drops.

We ignore the distortion of the originally re
tangular-shaped potential due to the applied ele
tri
 �eld. Then, as in

the illustration, the energy of an inje
ted hole is in a

ordan
e with the resonant level when the applied voltage rea
hes

twi
e of it. The transmission 
oef�
ient takes a peak at that time, that is the amount of holes passing through the barriers

within a unit time, namely the 
urrent should take a peak (see Appendix E for more realisti
 
urrent lineshape).

0 1 2

0 0.5 1 1.5 2
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0.4

Vsd (V)

Vsd (V)

50

25

I s
d

(
A

)
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H3H1
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H5

H2,
L1

0 1 2

0 0.5 1 1.5 2

0.2

0.4

E
n

er
g

y 
le

v
el

 (
ev

)

0 1 2

10-3

10-2

0 0.1-0.1

H1

H2, L1 H3

H4

L2 H5

Vsd (V)

C
I

V
-

d
/d

(a
rb

it
ra

ry
 u

n
it

)

d
/d

V
I

(a
rb

. u
n

it
)

(a) (b)

Figure 3.12: (a) Current-voltage 
hara
teristi
s of the double barrier diode introdu
ed in Fig.3.10. Resonant levels


orresponding to the peaks are indi
ated by the arrows. The inset indi
ates peak positions of energy levels on the voltage

axis. (b) Emphasis is on the peak positions with differentiating the 
urrent with the voltage and the absolute value being

plotted in semi-log s
ale. The inset is enlargement around the origin.
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LW
V0

Figure 3.13: One dimensional re
tangular potential (

Kronig-Penny type potential)

A measured 
urrent-voltage 
urve in a double barrier diode (the one in Fig.3.10) is shown in Fig.3.12(a). Several


urrent peaks appear versus the voltage. To 
larify the peak positions the absolute value of voltage-derivative the 
urrent

with a 
onstant bias C is plotted in a semi-log s
ale in Fig.3.12(b)

2

.

3.4.4 Superlatti
e

The next step, in the 
ourse of quantum me
hani
s, we have double quantum well, whi
h is very important as a qubit.

We skip it, to my regret, for the shortage of time. I would like to remind you we have le
tures on �nano-quantum

information� in the applied physi
s department (but in Japanese). Here I would like to give a short introdu
tion of

heterojun
tion superlatti
e, whi
h was proposed by Leo Esaki and Raphael Tsu and has provided ri
h physi
s. The

basi
 idea of heterojun
tion superlatti
e is realization of Kronig-Penny type potential, illustrated in Fig.3.13. This, in

a sense, re
overs spatial translational symmetry of the latti
e lost by the introdu
tion of the interfa
e but in a different

manner.

Let us express a Kronig-Penny type potential as V

KP

(x) and write down the S
hrödinger equation as

�

�

~

2

d

2

2mdx

2

+ V

KP

(x)

�

 (x) = E (x); V

KP

(x) = V

KP

(x+ d): (3.28)

A

ording to Blo
h theorem, we write the eigenstate wavefun
tion as a produ
t of a plane wave and a latti
e periodi


fun
tion with d = L+W as the latti
e 
onstant.

 

K

(x) = u

K

(x)e

iKx

; u

K

(x+ d) = u

K

(x); K �

�s

Nd

: (3.29)

s takes an integer from�N + 1 to N � 1. The transfer matrixM

d


orresponding to the unit 
ell of the system is

M

d

=

�

e

ikW

0

0 e

�ikW

��

m

11

m

12

m

21

m

22

�

=

�

m

11

e

ikW

m

12

e

ikW

m

21

e

�ikW

m

22

e

�ikW

�

: (3.30)

As before, we write the input/output in the left hand side of i-th 
ell as (a

i

; b

i

), then from (3.29),

�

a

i+1

b

i+1

�

=M

d

�

a

i

b

i

�

= e

iKd

�

a

i

b

i

�

(3.31)

should hold, that is, this is a problem of engenvalue e

iKd

of matrixM

d

. From the unitarity ofM

d

, or from �reversed�

equation of (3.31), the two eigenvalues e

�iKd

are obtained. We re-use fm

ij

g in (3.18) to get to the equations

e

iKd

+ e

�iKd

= 2 
osKd = TrM

d

= 2Re(e

�ikW

m

�

11

); (3.32)


os [K(L+W )℄ = 
osh(�L) 
os(kW )�

k

2

� �

2

2k�

sinh(�L) sin(kW ): (3.33)

By use of ' in (3.27), expression


os(Kd) = jm

11

j 
os(kW + ') =

1

jtj


os(kW + ') (3.34)

is available.

Transforming the Kronig-Pennypotential to a series of Æ-fun
tion potentials 
an be attainedwith taking limitsL! 0,

W ! d, V

0

!1(V

0

L = C(
onstant) to obtain the 
ondition


os(Kd) = 
os(kd) +

mC

~

2

k

sin(kd): (3.35)
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Figure 3.14: RHS of (3.35) as a fun
tion of kd.

Here mdC=~

2

is taken to be 13. The gray belts

indi
ate �allowed bands�.

Figure 3.14 shows the RHS as a fun
tion of kd. The solution K for (3.35) exists for the RHS to be in [�1;+1℄


orresponding to the gray bands namely the energy bands.

Let us simplify the energy dispersion relation of a single band as

E(K) =

E

nw

2

(1� 
osKd): (3.36)

The group velo
ity and the effe
tive mass are

v

g

(K) =

E

nw

d

2~

sinKd; m

�

(K) =

~

2

E

nw

d

2

se
Kd: (3.37)

The equation of motion of an ele
tron in a periodi
 potential under a uniform ele
tri
 �eld E

m

is written as

m

�

dv

dt

= ~

dK

dt

= F = eE

m

: (3.38)

We see an effe
tive mass in a periodi
 potential 
an be negative.

An a

eleration a

ording to (3.38) results in K = eE

m

t=~. Now we put a wave pa
ket with zero-velo
iy at the

origin x = 0, and observe the time evolution. From (3.37),

v

g

(t) =

E

nw

d

2~

sin

�

eE

m

d

~

t

�

; x(t) =

E

nw

2eE

m

�

1� 
os

�

eE

m

d

~

t

��

: (3.39)

The result indi
ates that in spite of the 
onstant a

eleration, the wave pa
ket os
illates in spa
e. The phenomenon is


alled Blo
h os
illation, an observation of whi
h in an a
tual latti
e is almost impossible due to various s
attering. In a

superlatti
e, however, the super-period devides the large original band into �mini-bands� and the a

eleration to the top

of a mini-band before s
attering. The Blo
k os
illation was thus observed in superlatti
es in opti
al measurements.

3.5 Modulation doping and two-dimensional ele
trons

The most popuar arti�
ial stru
ture made with heterojun
tions is the two-dimensional ele
trons with modulation doped

heterojun
tions (two-dimensional ele
tron gas, 2DEG). As is illustrated in Fig.3.15, in a single heterojun
tion, doping

is given just in the wider band region. Now let us see what happens here for n-type doping.

Let us take the z-axis verti
al to the surfa
e and the hetero-interfa
e plane as in the �gure. In a �rigid band�model, the


ondu
tion band dis
ontinuity�E




emerges and the 
arriers re-distribute. Let us take the plain 
ase of the 
ombination

of Al

x

Ga

1�x

As and GaAs. Then we 
an adopt the approximation that the envelope fun
tion in the effe
tive mass

approximation as the ele
tron wavefun
tion itself, and ele
tron-ele
tron intera
tion 
an be treated within the Hartree

approximation

3

. Then, the Poission-S
hrödinger equation in
luding the ele
trostati
 potential formed by ionized donor,

the band dis
ontinuity and the 2DEG itself should be solved self-
onsistently for obtaining quantilzed energy levels and

wavefun
tion (envelope fun
tion) along the dire
tion perpendi
ular to the 2DEG plane.

2

This transformation is just for the 
larity in sight.

3

Even within the mean �eld theory, the intera
tion term 
ontains the Fo
k term (ex
hange), but the 
ontribution was 
al
ulated to be small.
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Figure 3.15: S
hemati
 
ross se
tional view of two-dimensional ele
trons at a modulation doped Al

x

Ga

1�x

As/GaAs

heterointerfa
e.

z-axis is taken to be perpendi
ular to the heterointerfa
e plane. As in Fig.3.15, the surfa
e S
hottky barrier 
reates a

surfa
e depletion layer. Let the 
harge at the surfa
e be�Q and the ele
tri
 �eld from the 
harge should be 
ompensated

with that from 
harges at ionized donors (in the �gure Si) +Q in the amount and s
reened from inside. Let us write the

number of all the residual ionized donors per unit area (integrated along z-axis) as N

ddep

. The ele
trostati
 potential

from the 
harges is, far inside the latti
e from the doping region, V

D

(z) = (4�e

2

=��

0

)N

dep

z. Between the doped

region and the hetero-interfa
e, a non-doped region 
alled �spa
er � is often pla
es. The spa
er spatially separates the

2DEG and the ionized impurities, de
reases s
attering probabilities of two-dimensional ele
trons, resulting in very high

mobility of ele
trons. A too thi
k spa
er, however, lifts up the band depletes the well and throws out the 2DEG.

Let us adopt a variable separation type expression for 2DEG wavefuntion,	(r) =  (x; y)�(z). �(z) is the envelope

fun
tion along z-axis. The areal 
on
entration n

2d

is the fun
tion of dis
retized energy level E

z

, whi
h is in other

words the kineti
 energy along z-axis for �(z). The areal 
harge density at position z

0

is then �en

2d

j�(z

0

)j

2

, the sheet


harge of whi
h 
reates the ele
tri
 �eld �(4�e

2

=��

0

)n

2d

j�(z

0

)j

2

jz � z

0

j as 
al
ulated from the Gauss theorem. In the

Hartree-only mean �eld approximation, the potential should in
lude these terms. The potential 
reated by the 2DEG

itself is

V

2d

(z) = �

4�e

2

��

0

n

2d

(E

z

)

Z

1

��

j�(z

0

)j

2

jz � z

0

jdz

0

:

Here the integral 
ut-off � should be taken longer enough than the penetration depth of �(z) in to AlGaAs barrier. We

write a step potential with dis
ontinuity�E




just at the interfa
e as V

h

(z). Now the total potential 
an be written as

V (z) = V

h

(z) +

4�e

2

��

0

�

N

dep

z � n

2d

(E

z

)

Z

1

��

jz � z

0

jj�(z

0

)j

2

dz

0

�

: (3.40)

S
hrödinger equation for �(z)

�

�

~

2

2m

�

(z)

�

2

�z

2

+ V (z)

�

�(z) = E

z

�(z) (3.41)

should be solved self-
onsistently to obtain (
onsistent) �(z). The effe
tive masses m

�

are different in the two spe
ies

of semi
ondu
tors and the boundary 
ondition should be

�(0)

(A)

= �(0)

(B)

;

1

m

�

A

d�

(A)

dz

�

�

�

�

=

1

m

�

B

d�

(B)

dz

�

�

�

�

: (3.42)

In the Poisson-S
hrödinger pro
edure, one should solve the equations from (3.40) to (3.42) 
onsistently. The above

only treats the Hartree term. In general, the Fo
k term, or the 
orrelation effe
t is also important in mean �eld theory.

However, it is known that the 
orrelation effe
t does not affe
t �(z) or E

z

so mu
h and here we ignore it for simpli
ity.

It is 
omparatively easy to solve Poisson-S
hrödinger equation numeri
ally for a simple band with small spin-orbit

intera
tion, like the 
ondu
tion band in GaAs. For more 
ompli
ated 
ases, e.g., multiple valleys, strong spin-orbit

intera
tion, et
., the s
ale of numeri
al 
al
ulation in
reases. If one needs to expand the 
al
ulation to other quantities

with obtained �(z) for su
h a 
ase, approximate formulas with simple mathemati
al forms are 
onvenient. For example,

in Fang-Howard approximation, the formula

�(z) =

r

b

2

2

z exp

�

�

bz

2

�

(3.43)
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Figure 3.16: (a) Two-dimensional 
rystal stru
ture in graphene. Carbon atoms form a two-dimensional honey
omb

latti
e. This 
an be also viewed as a superposition of two fa
e-
entered re
tangular latti
es (A position atoms and B

position atoms). (b) Re
ipro
al latti
e of the latti
e in (a). b

1

and b

2

are re
ipro
al latti
e ve
tors 
orresponding to a

1

and a

2

respe
tively. �-point is the 
enter of �rst Brillouin zone and symmetri
 points K-point and M-point are also

indi
ated in the �gure.

is used as the trial fun
tion with b as a parameter for variational 
al
ulation. The result of the variational 
al
ulation is

given as

b

3

=

48�me

2

��

0

~

2

�

11

32

n

2d

+N

d

�

: (3.44)

In this approximation, penetration of wavefun
tion into the barrier (spa
er) is ignored. Another approximation form

whi
h takes su
h penetration into a

ount is given in, e.g. ref.[6℄.

3.6 A two-dimensional material: band stru
ture of graphene

Another way to form two-dimensional ele
tron system, is the utilization of two-dimensional materials, in whi
h the

atoms aligned on two-dimensional planes. Graphene is a representative two-dimensional material, in whi
h in-plane

atomi
 
onne
tion is on sp

2

�-bonding and a kind of three-way standoff appears in the stru
ture resulting in so-
alled

Dira
 point.

As shown in Fig.3.16(a), single layer graphene 
rystal is a two-dimensional honey
omb latti
e of 
arbon. The

diamond shown in the �gure is a unit 
ell and unit latti
e ve
tors and re
ipro
al ve
tors are

a

1

=

�
p

3a=2

a=2

�

; a

2

=

�

0

a

�

; b

1

=

�

4�=

p

3a

0

�

; b

2

=

�

�2�=

p

3a

2�=a

�

: (3.45)

Below we 
al
ulate ele
troni
 states of graphene under simplest tight binding model. It is a 
oarse approximation,

whi
h 
annot be 
ompared with experiments quantitatively. It may be a help, however, to understand why Dira
 points

are pla
ed at the Fermi energy in graphene. Carbon is a group IV element and the outermost ele
trons are in 2s, 2p

x

,

2p

y

, 2p

z

. From the view of 
hemi
al bonds, as 
an be guessed from the latti
e stru
ture, taking linear 
ombinations of

these orbitals, they are divided into � ele
trons in sp

2

hybrid orbitals and � ele
trons. � ele
trons are in 
ovalent bonds

and the energy band pla
es at a low position forming the honey
omb latti
e. Hen
e the Fermi level is determined by �

ele
trons. Let us 
onsider, then, the �-ele
trons on a honey
omb latti
e and write down S
hrödinger equation.

From

 =H  ; (3.46)

we divide the wavefun
tion to those on site A and B as shown in Fig.3.16(a) and apply tight-binding approximation.

9-15



÷
ø

ö
ç
è

æ
0,

3

a

÷
ø

ö
ç
è

æ
-

2
,

32

aa

÷
ø

ö
ç
è

æ
--

2
,

32

aa

x

y

d1

d2

d3

Figure 3.17: Three ve
tors representing the nearest neighbour 
oupling of

a 
arbon atom.

That is

 = �

A

 

A

+ �

B

 

B

; (3.47)

 

A

=

X

j2A

exp(ikr

j

)�(r � r

j

); (3.48a)

 

B

=

X

j2B

exp(ikr

j

)�(r � r

j

); (3.48b)

where �(r) is an atomi
 wavefun
tion of �-ele
tron, r

j

is a latti
e point. We prepare wavefun
tions on partial latti
es,

Hamiltonians for partial latti
es and between the latti
es as

H

AA

= h 

A

jH j 

A

i; H

BB

= h 

B

jH j 

B

i; H

AB

= H

�

BA

= h 

A

jH j 

B

i: (3.49)

The total number of atoms in the system is taken as 2N , that is

h 

A

j 

A

i = h 

B

j 

B

i = N: (3.50)

In the tight binding model (h 

A

j 

B

i = 0), eq.(3.47) is substituted into (3.46) and the 
ondition for the existen
e of

non-trivial solution of (�

A

; �

B

) leads to the se
ular equation

�

�

�

�

H

AA

�NE H

AB

H

BA

H

BB

�NE

�

�

�

�

= 0: (3.51)

Then we obtain

E = (2N)

�1

�

H

AA

+H

BB

�

p

(H

AA

�H

BB

)

2

+ 4jH

AB

j

2

�

� h

AA

� jh

AB

j; (3.52)

where we have used the symmetryH

AA

= H

BB

, and the small letter quantities are atomi
 ones obtained by multiplying

(2N)

�1

.

Now for

H

AB

=

X

l2A;j2B

exp [ik(r

j

� r

l

)℄ h�(r � r

l

)jH j�(r � r

j

)i

r

; (3.53)

we apply further approximation that the integral h�(r � r

l

)jH j�(r � r

j

)i

r

is non-zero only for the nearest neighbour.

For 
al
ulation of a single term, we pi
k up the atom labeled A in Fig.3.16(a), and the ve
tors to the nearest neighbour

1, 2, 3 asd

i

(i = 1; 2; 3). As we 
an see in the �gure,

k � d

1

=

k

x

a

p

3

; k � d

2

=

�

�

k

x

2

p

3

+

k

y

2

�

a; k � d

3

=

�

�

k

x

2

p

3

�

k

y

2

�

a; (3.54)

where a = ja

1

j = ja

2

j. And the terms h�(r � r

l

)jH j�(r � r

j

)i

r

should be the same for the symmetry and we write

the value as �. Then we obtain

h

AB

=

0

�

3

X

j=1

exp(ik � d

j

)

1

A

�: (3.55)
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Figure 3.18: Left panel: Three dimensional wireframe plot of energy

band in graphene (3.56). The dispersion around the Dira
 points are

displayed. Upper and lower energy parts are 
ut off for 
onvenien
e.

Upper panel : Illustration of Dira
 
orn.

We obtain the next expression for the eigenenergy with substituting eqs.(3.54), (3.55) into (3.52).

E = h

AA

� �

s

1 + 4 
os

p

3k

x

a

2


os

k

y

a

2

+ 4 
os

2

k

y

a

2

: (3.56)

The se
ond term is the perturbation from resonant integral between neighboring atoms. It vanishes at K-point in the

re
ipro
al latti
e, i.e.,

(k

x

; k

y

) =

�

0;�

4�

3a

�

;

�

2�

p

3a

;�

2�

3a

�

;

�

�

2�

p

3a

;�

2�

3a

�

: (3.57)

Fixing k

y

to k

y

= 4�=3a, and around k

x

= 0(a K-point), (3.56) gives

E

�

k

x

;

4�

3a

�

� h

AA

+

p

3�a

2

jk

x

j: (3.58)

Namely, the upper band at a K-point shows linear dispersions whi
h form a downward 
usp at zero energy. In the lower

again linear dispersions form an upward 
usp, hen
e resulting in so 
alled Dira
 point at the K-point, whi
h does not

have energy gap nor effe
tive mass.

The details in (3.56) 
annot be 
ompared with a realisti
 band stru
ture, but just like 
osine band in one-dimensional

tight-binding model, we 
an easily have insight into, e.g., why Dira
 points appear at K-points. It is apparent that the

three fold symmetry of the resonant integral in (3.55) is the origin of the Dira
 points. The symmetry does not 
hange

with the a

ura
y of the approximation and we 
an 
on
lude that the Dira
 points exist at K-points in real graphenes. It

is also an interesting example that su
h a symmetry 
auses degenera
y in energy levels.
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Appendix D: Ex
itons in low dimensional systems

An ex
iton is a bound state of a hole and an ele
tron 
reated by photon irradiation. Ex
itons have great effe
ts on opti
al

absorption and emission. An ex
iton is more stable than a free ele
tron-hole pair by the binding energy, has a longer

lifetime, hen
e the absorption 
oef�
ient is larger than that of the band-edge. There are many types of ex
itons and here

we 
onsider Wannier-type free ex
itons, whi
h have mu
h larger spatial size than the latti
e 
onstant. Wannier-type

free ex
iton 
an be treated as a single-body problem within a simple approximation. Let the effe
tive binding potential

be V (r) = a=jr � r

0

j. Bounded energy levels E

n

(n = 1; 2; � � � ) are hydrogen-atom like with the effe
tive Rydberg


onstant R

�

. Namely they are written as E

n

= �R

�

=n

2

. In quantum 
on�ned stru
tures, when the 
on�nement length

is shorter than the effe
tive Bohr radius a

�

B

, the dimension for ex
itons are also lowered.

Let us treat it as a problem of a hydrogen atom then we treat S
hrödinger equation with a Coulomb-type 
entral for
e

potential V




(r),

�

�

~

2

2m

�

r

2

+ V




(r)

�

 (r) = E (r); (D.1)

in lower dimensions. Herem

�

is the ele
tron-hole redu
ed mass. And we need to 
hange the potential form as

V

2d




(r) = �

e

2

4���

0

jrj

; V

1d




(r) = �

e

2

4���

0

(jzj+ 0:3r

0

)

; (D.2)

parti
ularly for one-dimensional (along z-axis) systems. This is be
ause simple transformation of eq.(D.1) into one-

dimension 
auses anomalous behavior in
luding divergen
e of binding energy. The potential form in eq.(D.2) is given

as an empiri
al formula whi
h well �ts to a pra
ti
al numeri
al 
al
ulation on 
on�nement into a �nite width quantum

wire (a 
ylinder with radius r

0

). Below, we rapidly see the solutions, whi
h are nothing but hydrogen atom solutions.

Under variable separation hypothesis, the solutions for eq.(D.1) 
an be written in the forms

 

3d

= �

l

e

��=2

R(�)Y

l;m

(�; ');  

2d

= �

jmj

e

��=2

R(�)e

im'

;  

1d

= R(�): (D.3)

� and � are dimensionless variables, whi
h 
orrespond to radial variable and z variable respe
tively. The de�nitions are

� = �r; � = �(jzj+ 0:3r

0

); � =

p

�8m

�

E

~

: (D.4)

R(�), R(�) are the solutions of the following equations.

8

>

>

>

<

>

>

>

:

�

�

�

2

��

2

+ (p+ 1� �)

�

��

+ q

�

R(�) = 0 : 3-, 2-dimensional;

�

�

2

��

2

+

�

��

+

�

�

�

R(�) = 0; � �

e

2

4��

0

~

r

�

m

�

2E

: 1-dimensional;

(D.5)

where p, q are

p =

(

2l+ 1 (3-dimensional)

2jmj (2-dimensional)

; q =

(

�� l � 1 (3-dimensional)

�� jmj � 1=2 (2-dimensional)

; (D.6)

where l is angular momentum quantum number andm is magneti
 quantum number.

For three and two dimensional systems, R(�) in eq.(D.5) is expanded as follows.

R(�) =

X

�

�

�

�

�

; �

�+1

= �

�

� � q

(� + 1)(� + p+ 1)

: (D.7)

For this R(�) to be �nite, this expansion should stop at a �nite number, whi
h 
ondition requires �

max

= q. The main

quantum number q then is de�ned as follows.

n � � = �

max

+ l + 1 (3-dimensional); n � ��

1

2

= �

max

+ jmj (2-dimensional): (D.8)

The ex
iton energy levels for three- and two-dimensional systems 
an be expressed as follows.

E

3d

bn

= �

E

0

n

2

n = 1; 2; � � � ; (D.9)

E

2d

bn

= �

E

0

(n+ 1=2)

2

n = 0; 1; � � � : (D.10)
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Here the energy unit E

0

is

E

0

=

e

2

8���

0

a

�

0

; a

�

0

=

4���

0

~

2

m

�

e

2

; (D.11)

where a

�

0

is the effe
tive Bohr radius. From eq.(D.8), we see that n = 0 is available for two-dimensional systems and the

ground bound state energy is �4E

0

. This means the binding energy is four times larger than that in three-dimensional

systems where the ground state energy is �E

0

. In the pro
ess of an ex
iton formation, spatial 
on�nement in
reases the

kineti
 energy due to the un
ertainty in momentum. In three-dimensional systems, the enhan
ement o

urs for all three

dimensions while in two dimensional systems, the 
on�nement along the dire
tion perpendi
ular to the plane has already

been in
luded into the shift of band edge and the binding energy is measured from the edge. Hen
e it is qualitatively

easily understood that the ex
iton binding energy be
omes larger with lowering the system dimension.

Generally radial wavefun
tion is expressed with Laguerre bi-polynomial and exponential fun
tions. In three di-

mensional systems, 1s wavefun
tion is written as  

3d

1s

/ exp(�r=a

�

0

). Similarly let  

2d

1s

/ exp(�r=a

�2d

0

), (D.5)

へ l = m = 0 and substitution into S
hrödinger equation gives a

�2d

0

= a

�

0

=2. The spatial size of ex
itons in two-

dimensional systems is half of that in three-dimensional systems in a

ordan
e with in
rement in the binding energy.

Appendix E: Current-voltage 
hara
teristi
s in double barrier resonant tun-

neling devi
e

A
utual ele
tri
 transport in a resonant diode is affe
ted by various fa
tors but in reality, it is re
ommended that 
al
u-

lation of the transmission 
oef�
ien
y in a simple model and taking other effe
ts into a

ount in the next step. Let us

�rst de
ompose the enery of in
oming ele
trons into 
omponent perpendi
ular to the barrier E

z

and that parallel to the

barrier E

k

. We ignore anisotropy of the effe
tive mass. The 
urrent �ows from the left ele
trode to the right one 
an be

written with the group velo
ity v

gz

= �E=~�k

z

along z-axis as

J

L!R

= e

X

k

v

gz

f

L

(1� f

R

)T

=

2e

(2�)

3

~

Z Z

d

(2)

k

k

dk

z

�

�E

z

�k

z

�

f

L

(1� f

R

)T

=

em

2�

2

~

3

Z

1

0

Z

1

0

dE

z

dE

k

f

L

(E)(1� f

R

(E))T (E

z

): (E.1)

Here we assume the dispersion of ele
trons 
an be des
ribedwith a simple parabolli
 bandwith no anomaly. T (E

z

) is the

transmission 
oef�
ient of the barrier at energyE

z

(the notation is a bit 
hanged to avoid 
onfusion with temperature.)

The total 
urrent �ow J is obtained subtra
ting the 
ounter �ow from the above J

L!R

and given as

J = (J

L!R

� J

R!L

) =

Z

1

0

dE

z

T (E

z

)S(E

z

) (E.2)

S(E

z

) =

em

2�

2

~

3

Z

1

0

ff

L

(E)� f

R

(E)g dE

k

: (E.3)

S(E

z

) is 
alled supply fun
tion. We adopt a Fermi-Dira
 distribution for f and obtain S with writing � = (k

B

T )

�1

as

S =

�

emk

B

T

2�

2

~

3

�

ln

�

1 + exp�(E

F

�E

z

)

1 + exp�(E

F

�E

z

� eV )

�

: (E.4)

When the system is Fermi-degenerated

S(E

z

) =

(

(em=2�

2

~

3

)(E

F

�E

z

) (E

F

� V � E

z

� E

F

)

(em=2�

2

~

3

)eV (0 � E

z

� E

F

� eV )

; (E.5)

that is a trapezoidal fun
tion. From the above we 
an 
al
ulate J for the 
ase eV < E

F

as

J =

em

2�

2

~

3

"

eV

Z

E

F

�eV

0

dE

z

T (E

z

) +

Z

E

F

E

F

�eV

dE

z

(E

F

�E

z

)T (E

z

)

#

: (E.6)

Though for detailed 
omparison with experiments, there are many other fa
tors to be a

ounted, here we shift to a

rough approximation. S has a trapezoidal form as shown in Fig.3.19, and the form is transformed into a triangle when
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Figure 3.19: Left panel: S
hemati
 illustration of a supply fun
iton for a Fermi-degenerated system. The upper shows a

s
hemati
 example of transimission 
oef�
ient T whi
h has a peak at E

r

� eV=2. Right panel: S
hemati
 drawing of


urrent-voltage 
hara
teristi
s expe
ted from the left supply fun
tion and transmission 
oef�
ient.

eV ex
eedsE

F

. For simpli
ity, we use this form to 
onsider the I-V 
hara
teristi
s. The zero energy is now taken to the

band edge of sour
e ele
trode and let the resonant energy level in the well beE

r

then T has a peak at E

r

�eV=2. Hen
e

resonant tunneling 
urrent appears with the threshold voltage around E

r

� eV=2 � E

F

as illustrated in the right panel

of Fig.3.19 and rapidly goes down to zero at E

r

� eV=2 � 0. A
tual 
urrent 
ontains thermal ex
itation, in
oherent

tunneling, et
. and very roughly the lineshape sket
hed as the broken line is expe
ted.
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