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Ch.3 Heterojuntion and quantum on�nement to two-dimensional systems

Today, I would like to introdue how to produe two-dimensional systems of eletrons or holes with emphasis on

heterojuntion. Porf. Akiyama gave an explanation on the treatment of heterojuntions based on k�p perturbation and

I will not revisit it though I would like to on�rm what we are treating when we see heterojuntions as simple step

funtion potential. In very short, in a Bloh-type wavefuntion we drop the lattie periodi funtions renormalizing their

effet into �band struture� and the residual plane waves are �envelope funtions�. Then we an map the problem of

heterojuntion into a potential problem of envelope funtions. As noted by Prof. Akiyama, onnetion of envelope fun-

tions at the interfae ontains subtle problems and we should pay attention that envelope funtions are not wavefuntion

themselves.

3.1 Heterojuntion

3.1.1 Envelope funtion (review)

Envelope funtion is one of the basi onepts in treating heterojuntions. Prof. Akiyama already gave a detailed

explanation on the k�p treatment of heterojuntions and here we only review the onept. Let u

nk

(r) exp(ik � r)

(u

nk

(r): lattie periodi funtion) be a Bloh-type lattie eigen funtion. n is the band index. Around the band edge,

u

nk

(r)mainly re�ets lattie-spei� band strutures and the plane wave part represents spatial modulation of the band-

edge properties. When there is a spatial modulation in material parameters, u

nk

(r) gets the modulation and the effet is

absorbed as if the modulation generates a potential for the plane wave part. Now if we forget the lattie periodi funtion

and think the �plane wave� part as a �wavefuntion� we an simplify the problem to a potential problem of quantum

mehanis. The �plane wave part� is the envelope funtion to be exat. Band alulations for heterojuntions are

surprizingly dif�ult but one it is renormalized into a potential problem, the rest is just elementary quantummehanis.

Let us review. Consider a perturbation potential U(r) is added to the lattie Hamiltonian H

0

. Let �(r) be an

eigenstate of the system and

[H

0

+ U(r)℄�(r) = E�(r): (3.1)

�(r) an be expanded with jn;ki beause of their ompleteness as

�(r) =

X

n;k

f(n;k)jn;ki: (3.2)

Substituting the above into (3.1) and operation of hn

0

;k

0

j give the next expression:

[E

0

(n

0

;k

0

)�E℄f(n

0

;k

0

) +

X

n;k

hn

0

;k

0

jU jn;kif(n;k) = 0: (3.3)

We replae u

nk

with u

n0

(r) assuming weak dependene of k on k and ignore interband mixing to obtain

�

n

(r) = u

n0

X

k

f(n;k)e

ikr

� u

n0

f

n

(r); (3.4)
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where f

n

(r) is alled envelope funtion. Envelope funtion is a summation of plane wave parts in the Bloh funtions

for inluding the effet of U(r) (formally inverse Fourier transform) From (3.3), dropping n

0

, we obtain

~

2

k

02

2m

�

f(k

0

) +

X

k

U

k

0

�k

f(k) = Ef(k

0

): (3.5)

Inverse Fourier transform of the both sides on k

0

gives

�

�

~

2

r

2

2m

�

+ U(r)

�

f(r) = Ef(r): (3.6)

Note that the seond term in (3.5) is a onvolution. Equation (3.6) is nothing but the Shrödinger equation for a partile

with the effetive mass in the potential U(r). The renormalization of the problem into envelope funtion is hene alled

effetive mass approximation.

3.1.2 Anderson's rule for heterojuntion

Equation (3.6) means when there is some spatial struture other than the lattie potential of matrix material, we an

treat it as a potential problem of a partile with the effetive mass. If the potential is just �at or very soft, the envelope

funtion is almost a plane wave or a free partile. When we onsidered pn-juntions we adopted a rigid band model

1

,

in whih the energy band has spatial slope keeping the band gaps. This approximation is based on the effetive mass

approximation.

Prof. Akiyama also gave an explanation on whether this approximation is appliable or not to the heterojuntion

problem and if it is, how. Generally there is an abrupt variation in the lattie periodi funtion u

nk

(r) and diret

appliation is questionable. Even if we sueed in renormalizing the effet into a step funtion potential, that should have

a disontinuous hange and requires summation over a wide range of k to obtain an envelope funtion and replaement

of u

nk

with u

n0

also beomes a problem. I'll skip the disussion but to summarise, whether we an apply the effetive

mass approximation to a heterojuntion depends on the ombination of materials whih ompose the juntion. In the

ase of GaAs/Al

x

Ga

1�x

As, it is established that the step funtion potential and ontinuous envelope funtion and the

derivative over the juntion interfae is a good approximation. In general ombination, the simplest approximation

that ontinuous and differentiable envelope funtion does not hold but with some additional rule, similar treatment is

available.

In summary, the model in whih band gaps and effetive masses are spei� to materials and �rigid� to interfaes,

is mostly adopted in treatments of heterojuntions. In real many eletron systems, we onsider envelope funtions

(effetive mass approximation) as one-eletron funtions to form Slater determinant.
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Figure 3.1: A simple model of heterojuntion (Anderson's rule). (a) Energies required for extration of an eletron from

the Fermi energy to the vauum level (workfuntionW

j

). (b) Band alignment assuming �xed eletron af�nity �

A;B

. ()

In equilibrium, E

F

should be onstant throughout the juntion and aordingly juntion potential, in other words band

bending appears.

1

In solid state physis, the term �rigid band model� is mostly used in the mixing of energy of bands in the formation of alloys. The present usage

is rather minor.
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Figure 3.2: Three types of heterojuntions. (a) type I. Ordinary alignment. The potential is lower in the narrower

side both for eletrons (ondution band) and holes (valene band). (b) type II. Staggered alignment. At one side,

the potential for eletrons is lower while that for holes is higher. () type III. Gap disappearane (semi-metal). The

ondution band in one side is onneted to the valene band in the other side. The bandgap disappears onsequently.

What we should onsider next, in this model, is to �nd appropriate values for�E



and�E

v

for a given ombination

of semiondutors. Knowing band gaps E

gA

and E

gB

respetively for semiondutors A and B, we put

E

gB

�E

gA

= �E



+�E

v

:

Therefore another ondition gives the values. An attempt to give the ondition from experimental data phenomenolog-

ially was made by R. L. Anderson in the age they did not know the band struture even in the bulk. The method is

illustration in Fig.3.1and alled Anderson's rule. To extrat an eletron at the ondution ban bottom into vauum needs

eletron af�nity �

A

for A, �

B

for B. These quantities an be measured e.g. with photoeletron spetrosopy. Then

assuming the vauum level is ommon for A and B,

�E



= �

B

� �

A

:

With the positions of E

F

, we an draw the band diagram as in Fig.3.1() from the ondition that E

F

should be �at

throughout the juntion.

Many experimental results support the step funtion potential model with �xed�E



,�E

v

sometimes with additional

rules for envelope funtion onnetion. However, appropriate values for�E



et. found in experiments are signi�antly

shifted fromAnderson's rule. FollowingAnderson's rule, various onventionalmethods like ommon anion rule, surfae

states rule et. have been proposed though still there is no easy-going method with high auray for interfaes, whih

break the translational symmetry. That is we still need to adopt large sale �rst priniple alulations to obtain reliable

values for band disontinuities. Later we will see some examples of the determination in experiments.

3.1.3 Types of heterojuntions

Band alignment of heterojuntions an be lassi�ed into three types illustrated in Fig.3.2. One of the representative om-

binations GaAs-Al

x

Ga

1�x

As has the alignment of type-I (Fig.3.2(a)). A GaAs layer sandwihed by two Al

x

Ga

1�x

As

layers thus works as a quantum well both for eletrons and holes. On the other hand, GaSb and narrow gap InAs form a

juntion of type-III in Fig.3.2(), in whih the ondution band of InAs and the valene band of GaSb overlap and the

energy gap is �shorted� at the interfae. If we adopt a mixed rystal Al

x

Ga

1�x

Sb instead of GaSb and make the gap

larger, the valene band top lowers and at x =**, the top rosses that in the InAs and type-II interfae is realized.

3.2 Formation of heterojuntions

3.2.1 Epitaxial growth

Most popular method to form heterojuntions of semiondutors is epitaxial growth already presented in the leture by

Prof. Akiyama. Epitaxial growth methods an be lassi�ed into liquid-phase epitaxy, vapour-phase epitaxy, and vauum

deposition. In liquid-phase epitaxy, preipitation onto rystal substrates from melts of ingredients is used. The growths

our in states lose to equilibrium and high quality rystals an be obtained while it is hard to obtain sharp interfaes.

When one needs sharp interfaes and preise ontrol of layer thiknesses, usually the latter two methods of epitaxy are

adopted.
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Figure 3.3: Plots of the lattie onstants

and the energy gaps of II-VI, III-V om-

pound semiondutors and IV elemental

semiondutors. The lines onneting

the points indiate possible mixed rys-

tals. Vertial gray bands indiate possible

groups of lattie mathed heterostruture

growth.

Figure 3.4: Coneptual illustration of van der

Waals heterostruture, whih is produed by

staking various two-dimensional materials.

An important point in the formation of heterojuntion is the lattie mathing in lattie onstants and rystal systems.

In Fig.3.3, we plot representative ompound semiondutors and elemental semiondutors on the plane of lattie on-

stant and energy gap. Most of the plotted semiondutors have a ommon rystal system, FCC bravais lattie. Vertial

gray bands indiate possible groups of lattie mathed heterostruture growth though these ombinations are not always

available in pratial growths. Besides these semiondutors, heterojuntions of GaN family are important for industrial

demands. They usually have Wurtzite struture (hexagonal lose-paked, HCP) and need high temperature treatments,

the heterostrutures thus are mostly omposed within nitride families.

Even with onsiderable lattie mismath, a mis�t-disloation free growth to a ertain �lm thikness is possible. An

estimation of the thikness given as a balane point of the strain energy onentrated on disloations and that within

whole grown �lm, is alled Matthews' ritial thikness[2℄. Beause atual rystal growths are arried out under

some non-equilibrium ondition, the total free energy not neessarily takes the minimum, the proess is generally non-

adiabati. Hene the Matthews' thikness is just a rough estimation. In many ases we need to keep substrate tempera-

tures high enough during growths and the differene in oef�ients of thermal expansion in the two materials sometimes

auses disloations or strains. Many points should be taken into aount in atual growths[3℄.
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3.2.2 van der Waals heterostruture

Reently van der Waals heterostruture, whih is formed in ompletely different way, is olleting attentions[4℄. That is

a mehanial staking of two-dimensional materials like graphene as shown in Fig.3.4 (graphene will be introdued later

as a two-dimensional eletron system without heterointerfae). Sometimes epitaxial growth like CVD is adopted but

in many ases mehanial staking of exfoliated two dimensional materials reates high-quality heterostruture, whih

implies possible ompletely new formation method of heterostruture.

3.3 Qauntum well

A region with lower potential sandwihed with two heterojuntions to higher potential materials is quantum well.

The readers should be familiar with it sine introdution of elementary quantum mehanis. In other words, however,

the semiondutor heterojuntion tehnology has made the quantum well as a real substane from just an exerise for

students.

3.3.1 Disrete quantum levels in a quantum well

Let the well width be L, the barrier height V

0

. In x � �L=2, L=2 � x (outside the well) Shrödinger equation is

�

�

~

2

d

2

2mdx

2

+ V

0

�

 = E : (3.7)

Let us put � �

p

2mjE � V

0

j=~ and let C

1;2

,D

1;2

be onstants spei� to the regions, the solution outside the well an

be written as

 (x) =

(

C

1

exp(i�x) + C

2

exp(�i�x) E � V

0

;

D

1

exp(�x) +D

2

exp(��x) E < V

0

:

(3.8)

In the ase of E < V

0

, the wavefuntion should be loalized around the well and zero for x! �1, then

L=2 < xでD

+

1

= 0; x < �L=2でD

�

2

= 0:

Supersript � distinguish the regions positive/negative of x. Inside the well, letting C

1

, C

2

be onstants, we write the

wavefuntion with plane waves as

 = C

1

exp(ikx) + C

2

exp(�ikx); k �

p

2mE

~

; (3.9)

where for simpliity, we assume the effetivemassm is ommon for inside and outside the well. The boundary ondition

at x = �L=2 where the potential is disontinuous is now applied. Continuity and differentiability at the potential

boundary x = 0 require

Continuity

(

C

1

exp(ikL=2) + C

2

exp(�ikL=2) = D

+

2

exp(��L=2);

C

1

exp(�ikL=2) + C

2

exp(ikL=2) = D

�

1

exp(��L=2);

Differentiability

(

ikC

1

exp(ikL=2)� ikC

2

exp(�ikL=2) = ��D

+

2

exp(��L=2);

ikC

1

exp(�ikL=2)� ikC

2

exp(ikL=2) = �D

�

1

exp(��L=2);

respetively. Erasing the onstants the following ondition is obtained.

exp(2ikL) =

�

�� ik

�+ ik

�

2

= exp

�

�4i artan

k

�

�

;

) kL = �2 artan

k

p

�

2

0

� k

2

+ n�; �

2

0

�

2mV

0

~

2

; n = 1; 2; � � � : (3.10)

Let us take kL as a positive value without loosing generality beause the solutions ontain �k equivalently, and we

restrit the value of artan(x) between 0 and �=2. As shown in Fig.3.5(a), the rossing points of the urves and the

line, �2 artan(k=

p

�

2

0

� k

2

) + n� and kL give the values of k, whih satisfy (3.10). As easily guessed from the

analogy with the ase of in�nite barriers, even numbers of n orrespond to odd parity wavefuntions, while odd numbers

orrespond to even parities.

In Fig.3.5(b), we show the form of wavefuntions for the bound states in the ase of l = 8.
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Figure 3.5: (a) A plot for graphial solutions of k whih satisfy eq.(3.10). The rossing points of the funtions

�2 artan(k=�) + n� and kL give the solutions of (3.10). (b) Bound eigenstates for n = 1; 2; 3 under the ondi-

tion l = 8. The baselines for the wavefuntions are the eigenenergiesE

1;2;3

measured with V

0

(for l = 8 there are only

three bound state solutions, whih is different from the situation in the left �gure).

3.3.2 Optial absorption in quantum wells

In spite of the priniple of �not going into opto-material siene� in this leture, we would like to have a short look at

optial absorption in quantum wells. As usual we take z-axis vertial to the well plane. We write the envelope funtions

for eletrons and holes as �

e

(z) and �

h

(z) respetively and then approximate the total wavefuntion as

 

e

(r) = �

e

(z) exp(ik

xy

� r

xy

)u



(r);

 

h

(r) = �

h

(z) exp(ik

xy

� r

xy

)u

v

(r):

)

(3.11)

u



, u

v

are lattie periodi parts of the Bloh eigenfuntion with k = 0. Diret type inter-band optial absorption

probabilities are proportional to

hu



(r)jrju

v

(r)i

Z

1

�1

dz�

e

(z)

�

�

h

(z): (3.12)

In the ase of in�nite height barriers, the envelope funtions are written as sin(n�z=L), os(l�z=L) (n = 2; 4; � � � ,

l = 1; 3; � � � ) and the latter integration over z in (3.12) is �nite only between eletron envelope funtion and hole

envelope funtion with the same quantum index (n or l in this ase). For �nite heights, this orthogonality breaks leaving

parity seletion rule but still elements between different quantum indies are small and we only onsider the transition

between the states with the same index. The energy assoiated with the transition is

E = E

g

+�E

(eh)

n

+

~

2

2�

k

2

xy

; (3.13)

where�E

(eh)

n

is the sum of the energies for eletron and hole in n-th energy levels, 1=� = 1=m

�

e

+1=m

�

h

is the redued

mass. The last term for two-dimensional kineti energy indiates that there should be ontinuous absorption spetrum

above�E

(eh)

n

orresponding to the two-dimensional density of states.

From E = (~

2

=2m

�

)k

2

and n = �k

2

=(2�)

2

= (E=4�)(2m

�

=~

2

), the two-dimensional density of states an be

written as

dn

dE

=

m

�

2�~

2

H(E) (H(x) : Heaviside funtion): (3.14)

This is onstant for energy and with (3.13), we expet a stairase like optial absorption spetrum.

Formaion of exitons appears in optial absorption as peaks at energies lower than the fundamental absorption edge.

Suh peaks for exitons in quantum wells are illustrated in Fig.3.6(a). Only the ground states (n = 0) of the exitons
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Figure 3.6: (a) Illustration of theoretially proposed optial absorption spetrum, in whih both the oupling density of

states and the exiton density of states in the quantum well are taken into aount. The approximation that the transition

exists only between eletrons and holes with the same quantum index. In the valene band of f semiondutors we have

heavy and ligh holes and transitions with the two bands are onsidered in the �gure. (b) Optial absorption spetrum of

a AlAs/GaAs multiple (40 layers) quantum well with width 7.6 nm. The �nite barrier height auses transitions between

the levels with different quantum indies, whih appear in exiton peaks.

are onsidered. And oupling density of states between eletrons and holes with different subband quantum indies

is ignored assuming that the barrier is high enough. Figure 3.6(b) shows an experimental result on an AlGaAs/GaAs

multiple quantum well with width 7.6 nm. The lineshape of the absorption spetrum an be understood as an overlap

of stairase-like shape re�eting the two-dimensional density of states (3.14) and absorption by exitons indiated as

hh or lh. Beause the barrier height is �nite in the experiment, peaks due to the transition between states with different

quantum indies are also observed. The effet of low-dimensionality is observable in inreases of binding energy of

exitons, whih results in wider separation of exiton peaks from absorption edges and the peaks persist up to higher

temperatures.

Now we an see that the optial absorption spetra an provide experimental determination of band-disontinuities

�E



, �E

v

. In the ombination of GaAs-Al

x

Ga

1�x

As, reseahers ould not separate lh and hh peaks in very early

experiments presumably due to low quality of samples. The result one led them to a wrong onlusion of �E



:

�E

v

= 85 : 15 beause �E

v

should be too small to aomodate the lh level. After the revised experiments, it was

established that �E



: �E

v

= 57 : 43 is a good empirial law.

3.4 Quantum barrier

�Upside down� of a quantum well potential gives a quantum barrier potential. In the quantum well problem, the fous

was on the bound states inside the well while in quantum barriers we see harateristi tunneling phenomena in the

upside-down states of resonant sattering.

3.4.1 Transfer matrix

Let us onsider a region Q in a one-dimensional spae and as shown in Fig.3.8(a), and inoming wavefuntion A(k)

with wavenumber k from the left hand side (LHS), outgoing wavefuntion A

2

(k) to the right hand side (RHS), and

B

2

(k), B

1

(k) for the other way around. Here we take the momentum k to be ommon for the momentum onservation.

The suf�es 1 and 2 indiates the boundaries 1 and 2.

Let us take for an example that a retangular barrier with width L, and height V

0

. Let the wavefuntion inside the

barrier be V

i

(�) +W

i

(�). V , W orrespond to e

��x

, e

�x

respetively and from the Shrödinger equation, �V

i

=�x =

��V

i

, �W

i

=�x = �W

i

. The suf�x i indiates positions in real spae, just as above, putting 1 and 2 to the left and the

right edges of the barrier and

V

2

= V

1

e

��L

; W

2

=W

1

e

�L

:
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Figure 3.7: Sheme of T-matrix

Now the boundary ondition an be written as �A

1;2

=�x = ikA

1;2

, �B

1;2

=�x = �ikB

1;2

, hene,

A

1

+B

1

= V

1

+W

1

; A

2

+B

2

= e

��L

V

1

+ e

�L

W

1

; (3.15)

ik(A

1

�B

1

) = �(�V

1

�W

1

); ik(A

2

�B

2

) = �(�e

��L

V

1

+ e

�L

W

1

): (3.16)

For short expression, k, � for A � V are not shown.

First we erase V

1

,W

1

, then (A

2

; B

2

) and be expressed with (A

1

; B

1

). Beause of the linearity, the solution an be

written in a matrix form as

�

A

2

B

2

�

=

�

m

11

m

12

m

21

m

22

��

A

1

B

1

�

�M

T

�

A

1

B

1

�

: (3.17)

Then matrix fm

ij

g is obtained as

8

>

>

>

>

>

<

>

>

>

>

>

:

m

11

=

�

osh(�L) + i

k

2

� �

2

2k�

sinh(�L)

�

;

m

12

= �i

k

2

+ �

2

2k�

sinh(�L);

m

21

= m

�

12

; m

22

= m

�

11

:

(3.18)

Spei� form ofM

T

surely depends on shape of potential though the relation between input and output an always

be written in the matrix form as in (3.17) guaranteed by the linearity of Shrödinger equation. A matrix likeM

T

is alled

transfer matrix (T-matrix).

In Eq.(3.18),M

T

has the symmetry ofm

21

= m

�

12

,m

22

= m

�

11

, whih omes from the time-reversal symmetry and

the even symmetry in the potential shape.

Let B

2

= 0, and the ratio of transmission wave A

2

and re�etion wave B

1

to the inident wave A

1

an be given

from (3.17), (3.18) as

t �

A

2

A

1

=

jm

11

j

2

� jm

12

j

2

m

�

11

=

1

m

�

11

=

2ik�

(k

2

� �

2

) sinh(�L) + 2ik� osh(�L)

; (3.19)

r �

B

1

A

1

= �

m

21

m

22

=

(k

2

+ �

2

) sinh(�L)

(k

2

� �

2

) sinh(�L)� 2ik� osh(�L)

: (3.20)

t, r are alled imaginary transmission oef�ient and imaginary re�etion oef�ient respetively. They are related

to the transmission and re�etion oef�ients as

Transmission: T = jtj

2

; Re�etion: R = jrj

2

; jtj

2

+ jrj

2

= 1; (3.21)

and the T-matrixM

T

an be expressed with them as

M

T

=

�

1=t

�

�r

�

=t

�

�r=t 1=t

�

: (3.22)

3.4.2 Transmission through double-barrier struture

Let us onsider the transmission through the double barrier potential illustrated in Fig.3.8. Quantum well and quantum

barrier are upside down to eah other and the double barrier may have the position in between them. Let the boundaries
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Figure 3.8: Shemati illustration of double bar-

rier potential.

be 1�4 as in the �gure and the wavefuntions also as A

1�4

and B

1�4

. For the left barrier the setup is the same as that in

the previous setion and (3.18) is applable. Next in the well part between the barriers, a partile gains a kineti phase

fator exp(ikW ) during the traverse. Hene as T-matrix for this part we an adopt

M

W

=

�

exp(ikW ) 0

0 exp(�ikW )

�

: (3.23)

The right barrier is just the same as the left. The expression of T-matrix does not depend on loal oordinates andM

T

an be used as it it.

Then the total T-matrix M

DW

of the double barrier struture is, as obvious from the de�nition, obtained as the

produt of all T-matries as

M

DW

=

�

m

11

m

12

m

21

m

22

��

e

ikW

0

0 e

�ikW

��

m

11

m

12

m

21

m

22

�

�

�

T

11

T

12

T

21

T

22

�

: (3.24)

The transmission oef�ient is, from (3.24),

T

11

= m

2

11

exp(ikW ) + jm

12

j

2

exp(�ikW ) (* m

12

= m

�

21

):

The interferene effet due to the double barrier struture appears in the seond term. Let the argument of m

11

be ',

and writingm

11

= jm

11

j exp(i') we get

T

11

T

�

11

= ((jm

11

j

2

e

2i'

e

ikW

+ jm

12

j

2

e

�ikW

)(jm

11

j

2

e

�2i'

e

�ikW

+ jm

12

j

2

e

ikW

)

= (jm

2

11

� jm

12

j

2

)

2

+ 2jm

11

j

2

jm

12

j

2

(1 + os(2('+ kW )))

= 1 + 4jm

11

j

2

jm

12

j

2

os

2

('+ kW ):

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

e= /E V0

T

e

T

l

(a) (b)

l=1

1.522.5
n=1

n=2

Figure 3.9: (a) Transmission oef�ient T alulated on (3.25) as a funtion of the energy of inoming wave for various

barrier widths. Well width - barrier width relation is �xed toW = 2L. (b) The same results are plotted in a gray sale

as a funtion of the inoming energy and the barrier width. White broken lines indiate the resonane ondition (3.26),

(3.27).

9-9



The the transmission oef�ient is obtained as

T =

1

jT

11

j

2

=

1

1 + 4jm

11

j

2

jm

12

j

2

os

2

('+ kW )

: (3.25)

The �nal form of transmission oef�ient is then in ombination obtained with (3.18).

Figure 3.9(a) shows thus alulated transmission oef�ient T for various barrier widths L as a funtion of energy

of inoming wave. The relation between the barrier width and the well width is �xed as W = 2L. Here L and E are

transfomed into dimensionless parameters l � (

p

2mV

0

=~)L and E は � � E=V

0

respetively. The points where the

transmission oef�ient hits 1 are due to resonant sattering and the ondition is written as

'+ kW =

�

n�

1

2

�

� (n = 1; 2; � � � ); (3.26)

from (3.25), where ' is witten from (3.18) as

' = artan

�

k

2

� �

2

2k�

tanh(�L)

�

; (3.27)

where we restrit the region to ��=2 < ' < �=2. With this, n should take a natural number.

In Fig.3.9(b), the same data are plotted in a gray sale versus a plane of energy and barrier width. White broken lines

indiate the resonant sattering ondition in the above equation. With inreasing l, the peaks beome sharper, whih

tendeny is due to the elongation of time for staying inside the well, that makes the life width determined from the

unertainty relation smaller. If we take the limit L ! 1 keepingW �nite, the system beomes a quantum well with a

�nite barrier height and the resonant sattering ondition approahes to that for bound eigenstates.

3.4.3 Transport of double barrier diode

Double barrier diode is a devie, whih realized the double barrier struture with hetero-inferfaes. Here we introdue

an experiment on suh a devie with GaAs-AlAs hetero-interfaes, p-type doped eletrodes. Hene the devie works

as a double barrier for holes. The band disontinuity is �E

v

=0.47 eV. There are two speies of holes at the top of

valene band in GaAs with effetive masses 0:51m

0

and 0:082m

0

, whih are alled �heavy� and �light� holes (hh and

lh) respetively. We ignore the mass differene in AlAs for simpliity (atually the differene is not small but does not

affet the result signi�antly). The potential prepared has, as shown in the upper panel of Fig.3.10(a), widths of 5nm

(a)

5nm

0.46

0.32
0.30

0.55eV

0.17
0.083
0.077
0.019

H5

L2
H4

H3
L1
H2
H1

GaAs GaAs

A
lA

s

A
lA

s

eVsd

eSouce

Drain

(b)

Figure 3.10: (a) Upper panel: Potential diagram of the double barrier

diode prepared for the present experiment. The energy base is taken to

the top of the valene band and the energy of holes is positive in this plot.

H1�H5,L1; L2 are the positions of resonant levels for heavy holes and

light holes respetively. Lower panel: Sanning transmission eletron

mirograph of the sample. Darker regions are AlAs. (b) Shemati

potential diagram for a soure-drain biased double barrier diode.
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Figure 3.11: Energy dependene of transmission oef�ient for

the double barrier struture with parameters given in the text and

with eq.(3.25). The peaks hit 1 atually but too narrow to be

sampled.

both for the barriers and the well. The barriers and the well parts do not have any doping. Figure 3.10(a) shows a

photograph of the sample ross setion taken by a sanning transmission eletron mirosope, STEM.

The transmission oef�ient T thus alulated with the above parameters and the struture shown in Fig.3.10 is

displayed as a funtion of energy in Fig.3.11. Beause the effetive masses of holes are omparatively heavy and the

barrier height is high, the transmission peaks are very sharp. We thus an see the behavior of tail only in the semi-log

plot. We see below the barrier threshold, 5 heavy hole resonane peaks and 2 light hole peaks. Figure 3.10(a) shows the

positions of resonane levels in the well numerially alulated from eq.(3.26).

In order to see the behavior of tunneling, usually soure-drain voltage V

sd

is applied as illustrated in Fig.3.10(b).

Inside the soure and the drain, highly onentrated holes sreen the eletri �eld and the applied voltage should mainly

onsumed aross the double barrier regions. In atual situation, however, the ontat resistanes also ause signi�ant

voltage drops.

We ignore the distortion of the originally retangular-shaped potential due to the applied eletri �eld. Then, as in

the illustration, the energy of an injeted hole is in aordane with the resonant level when the applied voltage reahes

twie of it. The transmission oef�ient takes a peak at that time, that is the amount of holes passing through the barriers

within a unit time, namely the urrent should take a peak (see Appendix E for more realisti urrent lineshape).
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Figure 3.12: (a) Current-voltage harateristis of the double barrier diode introdued in Fig.3.10. Resonant levels

orresponding to the peaks are indiated by the arrows. The inset indiates peak positions of energy levels on the voltage

axis. (b) Emphasis is on the peak positions with differentiating the urrent with the voltage and the absolute value being

plotted in semi-log sale. The inset is enlargement around the origin.
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Figure 3.13: One dimensional retangular potential (

Kronig-Penny type potential)

A measured urrent-voltage urve in a double barrier diode (the one in Fig.3.10) is shown in Fig.3.12(a). Several

urrent peaks appear versus the voltage. To larify the peak positions the absolute value of voltage-derivative the urrent

with a onstant bias C is plotted in a semi-log sale in Fig.3.12(b)

2

.

3.4.4 Superlattie

The next step, in the ourse of quantum mehanis, we have double quantum well, whih is very important as a qubit.

We skip it, to my regret, for the shortage of time. I would like to remind you we have letures on �nano-quantum

information� in the applied physis department (but in Japanese). Here I would like to give a short introdution of

heterojuntion superlattie, whih was proposed by Leo Esaki and Raphael Tsu and has provided rih physis. The

basi idea of heterojuntion superlattie is realization of Kronig-Penny type potential, illustrated in Fig.3.13. This, in

a sense, reovers spatial translational symmetry of the lattie lost by the introdution of the interfae but in a different

manner.

Let us express a Kronig-Penny type potential as V

KP

(x) and write down the Shrödinger equation as

�

�

~

2

d

2

2mdx

2

+ V

KP

(x)

�

 (x) = E (x); V

KP

(x) = V

KP

(x+ d): (3.28)

Aording to Bloh theorem, we write the eigenstate wavefuntion as a produt of a plane wave and a lattie periodi

funtion with d = L+W as the lattie onstant.

 

K

(x) = u

K

(x)e

iKx

; u

K

(x+ d) = u

K

(x); K �

�s

Nd

: (3.29)

s takes an integer from�N + 1 to N � 1. The transfer matrixM

d

orresponding to the unit ell of the system is

M

d

=

�

e

ikW

0

0 e

�ikW

��

m

11

m

12

m

21

m

22

�

=

�

m

11

e

ikW

m

12

e

ikW

m

21

e

�ikW

m

22

e

�ikW

�

: (3.30)

As before, we write the input/output in the left hand side of i-th ell as (a

i

; b

i

), then from (3.29),

�

a

i+1

b

i+1

�

=M

d

�

a

i

b

i

�

= e

iKd

�

a

i

b

i

�

(3.31)

should hold, that is, this is a problem of engenvalue e

iKd

of matrixM

d

. From the unitarity ofM

d

, or from �reversed�

equation of (3.31), the two eigenvalues e

�iKd

are obtained. We re-use fm

ij

g in (3.18) to get to the equations

e

iKd

+ e

�iKd

= 2 osKd = TrM

d

= 2Re(e

�ikW

m

�

11

); (3.32)

os [K(L+W )℄ = osh(�L) os(kW )�

k

2

� �

2

2k�

sinh(�L) sin(kW ): (3.33)

By use of ' in (3.27), expression

os(Kd) = jm

11

j os(kW + ') =

1

jtj

os(kW + ') (3.34)

is available.

Transforming the Kronig-Pennypotential to a series of Æ-funtion potentials an be attainedwith taking limitsL! 0,

W ! d, V

0

!1(V

0

L = C(onstant) to obtain the ondition

os(Kd) = os(kd) +

mC

~

2

k

sin(kd): (3.35)
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Figure 3.14: RHS of (3.35) as a funtion of kd.

Here mdC=~

2

is taken to be 13. The gray belts

indiate �allowed bands�.

Figure 3.14 shows the RHS as a funtion of kd. The solution K for (3.35) exists for the RHS to be in [�1;+1℄

orresponding to the gray bands namely the energy bands.

Let us simplify the energy dispersion relation of a single band as

E(K) =

E

nw

2

(1� osKd): (3.36)

The group veloity and the effetive mass are

v

g

(K) =

E

nw

d

2~

sinKd; m

�

(K) =

~

2

E

nw

d

2

seKd: (3.37)

The equation of motion of an eletron in a periodi potential under a uniform eletri �eld E

m

is written as

m

�

dv

dt

= ~

dK

dt

= F = eE

m

: (3.38)

We see an effetive mass in a periodi potential an be negative.

An aeleration aording to (3.38) results in K = eE

m

t=~. Now we put a wave paket with zero-veloiy at the

origin x = 0, and observe the time evolution. From (3.37),

v

g

(t) =

E

nw

d

2~

sin

�

eE

m

d

~

t

�

; x(t) =

E

nw

2eE

m

�

1� os

�

eE

m

d

~

t

��

: (3.39)

The result indiates that in spite of the onstant aeleration, the wave paket osillates in spae. The phenomenon is

alled Bloh osillation, an observation of whih in an atual lattie is almost impossible due to various sattering. In a

superlattie, however, the super-period devides the large original band into �mini-bands� and the aeleration to the top

of a mini-band before sattering. The Blok osillation was thus observed in superlatties in optial measurements.

3.5 Modulation doping and two-dimensional eletrons

The most popuar arti�ial struture made with heterojuntions is the two-dimensional eletrons with modulation doped

heterojuntions (two-dimensional eletron gas, 2DEG). As is illustrated in Fig.3.15, in a single heterojuntion, doping

is given just in the wider band region. Now let us see what happens here for n-type doping.

Let us take the z-axis vertial to the surfae and the hetero-interfae plane as in the �gure. In a �rigid band�model, the

ondution band disontinuity�E



emerges and the arriers re-distribute. Let us take the plain ase of the ombination

of Al

x

Ga

1�x

As and GaAs. Then we an adopt the approximation that the envelope funtion in the effetive mass

approximation as the eletron wavefuntion itself, and eletron-eletron interation an be treated within the Hartree

approximation

3

. Then, the Poission-Shrödinger equation inluding the eletrostati potential formed by ionized donor,

the band disontinuity and the 2DEG itself should be solved self-onsistently for obtaining quantilzed energy levels and

wavefuntion (envelope funtion) along the diretion perpendiular to the 2DEG plane.

2

This transformation is just for the larity in sight.

3

Even within the mean �eld theory, the interation term ontains the Fok term (exhange), but the ontribution was alulated to be small.
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Figure 3.15: Shemati ross setional view of two-dimensional eletrons at a modulation doped Al

x

Ga

1�x

As/GaAs

heterointerfae.

z-axis is taken to be perpendiular to the heterointerfae plane. As in Fig.3.15, the surfae Shottky barrier reates a

surfae depletion layer. Let the harge at the surfae be�Q and the eletri �eld from the harge should be ompensated

with that from harges at ionized donors (in the �gure Si) +Q in the amount and sreened from inside. Let us write the

number of all the residual ionized donors per unit area (integrated along z-axis) as N

ddep

. The eletrostati potential

from the harges is, far inside the lattie from the doping region, V

D

(z) = (4�e

2

=��

0

)N

dep

z. Between the doped

region and the hetero-interfae, a non-doped region alled �spaer � is often plaes. The spaer spatially separates the

2DEG and the ionized impurities, dereases sattering probabilities of two-dimensional eletrons, resulting in very high

mobility of eletrons. A too thik spaer, however, lifts up the band depletes the well and throws out the 2DEG.

Let us adopt a variable separation type expression for 2DEG wavefuntion,	(r) =  (x; y)�(z). �(z) is the envelope

funtion along z-axis. The areal onentration n

2d

is the funtion of disretized energy level E

z

, whih is in other

words the kineti energy along z-axis for �(z). The areal harge density at position z

0

is then �en

2d

j�(z

0

)j

2

, the sheet

harge of whih reates the eletri �eld �(4�e

2

=��

0

)n

2d

j�(z

0

)j

2

jz � z

0

j as alulated from the Gauss theorem. In the

Hartree-only mean �eld approximation, the potential should inlude these terms. The potential reated by the 2DEG

itself is

V

2d

(z) = �

4�e

2

��

0

n

2d

(E

z

)

Z

1

��

j�(z

0

)j

2

jz � z

0

jdz

0

:

Here the integral ut-off � should be taken longer enough than the penetration depth of �(z) in to AlGaAs barrier. We

write a step potential with disontinuity�E



just at the interfae as V

h

(z). Now the total potential an be written as

V (z) = V

h

(z) +

4�e

2

��

0

�

N

dep

z � n

2d

(E

z

)

Z

1

��

jz � z

0

jj�(z

0

)j

2

dz

0

�

: (3.40)

Shrödinger equation for �(z)

�

�

~

2

2m

�

(z)

�

2

�z

2

+ V (z)

�

�(z) = E

z

�(z) (3.41)

should be solved self-onsistently to obtain (onsistent) �(z). The effetive masses m

�

are different in the two speies

of semiondutors and the boundary ondition should be

�(0)

(A)

= �(0)

(B)

;

1

m

�

A

d�

(A)

dz

�

�

�

�

=

1

m

�

B

d�

(B)

dz

�

�

�

�

: (3.42)

In the Poisson-Shrödinger proedure, one should solve the equations from (3.40) to (3.42) onsistently. The above

only treats the Hartree term. In general, the Fok term, or the orrelation effet is also important in mean �eld theory.

However, it is known that the orrelation effet does not affet �(z) or E

z

so muh and here we ignore it for simpliity.

It is omparatively easy to solve Poisson-Shrödinger equation numerially for a simple band with small spin-orbit

interation, like the ondution band in GaAs. For more ompliated ases, e.g., multiple valleys, strong spin-orbit

interation, et., the sale of numerial alulation inreases. If one needs to expand the alulation to other quantities

with obtained �(z) for suh a ase, approximate formulas with simple mathematial forms are onvenient. For example,

in Fang-Howard approximation, the formula

�(z) =

r

b

2

2

z exp

�

�

bz

2

�

(3.43)
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Figure 3.16: (a) Two-dimensional rystal struture in graphene. Carbon atoms form a two-dimensional honeyomb

lattie. This an be also viewed as a superposition of two fae-entered retangular latties (A position atoms and B

position atoms). (b) Reiproal lattie of the lattie in (a). b

1

and b

2

are reiproal lattie vetors orresponding to a

1

and a

2

respetively. �-point is the enter of �rst Brillouin zone and symmetri points K-point and M-point are also

indiated in the �gure.

is used as the trial funtion with b as a parameter for variational alulation. The result of the variational alulation is

given as

b

3

=

48�me

2

��

0

~

2

�

11

32

n

2d

+N

d

�

: (3.44)

In this approximation, penetration of wavefuntion into the barrier (spaer) is ignored. Another approximation form

whih takes suh penetration into aount is given in, e.g. ref.[6℄.

3.6 A two-dimensional material: band struture of graphene

Another way to form two-dimensional eletron system, is the utilization of two-dimensional materials, in whih the

atoms aligned on two-dimensional planes. Graphene is a representative two-dimensional material, in whih in-plane

atomi onnetion is on sp

2

�-bonding and a kind of three-way standoff appears in the struture resulting in so-alled

Dira point.

As shown in Fig.3.16(a), single layer graphene rystal is a two-dimensional honeyomb lattie of arbon. The

diamond shown in the �gure is a unit ell and unit lattie vetors and reiproal vetors are

a

1

=

�
p

3a=2

a=2

�

; a

2

=

�

0

a

�

; b

1

=

�

4�=

p

3a

0

�

; b

2

=

�

�2�=

p

3a

2�=a

�

: (3.45)

Below we alulate eletroni states of graphene under simplest tight binding model. It is a oarse approximation,

whih annot be ompared with experiments quantitatively. It may be a help, however, to understand why Dira points

are plaed at the Fermi energy in graphene. Carbon is a group IV element and the outermost eletrons are in 2s, 2p

x

,

2p

y

, 2p

z

. From the view of hemial bonds, as an be guessed from the lattie struture, taking linear ombinations of

these orbitals, they are divided into � eletrons in sp

2

hybrid orbitals and � eletrons. � eletrons are in ovalent bonds

and the energy band plaes at a low position forming the honeyomb lattie. Hene the Fermi level is determined by �

eletrons. Let us onsider, then, the �-eletrons on a honeyomb lattie and write down Shrödinger equation.

From

 =H  ; (3.46)

we divide the wavefuntion to those on site A and B as shown in Fig.3.16(a) and apply tight-binding approximation.

9-15



÷
ø

ö
ç
è

æ
0,

3

a

÷
ø

ö
ç
è

æ
-

2
,

32

aa

÷
ø

ö
ç
è

æ
--

2
,

32

aa

x

y

d1

d2

d3

Figure 3.17: Three vetors representing the nearest neighbour oupling of

a arbon atom.

That is

 = �

A

 

A

+ �

B

 

B

; (3.47)

 

A

=

X

j2A

exp(ikr

j

)�(r � r

j

); (3.48a)

 

B

=

X

j2B

exp(ikr

j

)�(r � r

j

); (3.48b)

where �(r) is an atomi wavefuntion of �-eletron, r

j

is a lattie point. We prepare wavefuntions on partial latties,

Hamiltonians for partial latties and between the latties as

H

AA

= h 

A

jH j 

A

i; H

BB

= h 

B

jH j 

B

i; H

AB

= H

�

BA

= h 

A

jH j 

B

i: (3.49)

The total number of atoms in the system is taken as 2N , that is

h 

A

j 

A

i = h 

B

j 

B

i = N: (3.50)

In the tight binding model (h 

A

j 

B

i = 0), eq.(3.47) is substituted into (3.46) and the ondition for the existene of

non-trivial solution of (�

A

; �

B

) leads to the seular equation

�

�

�

�

H

AA

�NE H

AB

H

BA

H

BB

�NE

�

�

�

�

= 0: (3.51)

Then we obtain

E = (2N)

�1

�

H

AA

+H

BB

�

p

(H

AA

�H

BB

)

2

+ 4jH

AB

j

2

�

� h

AA

� jh

AB

j; (3.52)

where we have used the symmetryH

AA

= H

BB

, and the small letter quantities are atomi ones obtained by multiplying

(2N)

�1

.

Now for

H

AB

=

X

l2A;j2B

exp [ik(r

j

� r

l

)℄ h�(r � r

l

)jH j�(r � r

j

)i

r

; (3.53)

we apply further approximation that the integral h�(r � r

l

)jH j�(r � r

j

)i

r

is non-zero only for the nearest neighbour.

For alulation of a single term, we pik up the atom labeled A in Fig.3.16(a), and the vetors to the nearest neighbour

1, 2, 3 asd

i

(i = 1; 2; 3). As we an see in the �gure,

k � d

1

=

k

x

a

p

3

; k � d

2

=

�

�

k

x

2

p

3

+

k

y

2

�

a; k � d

3

=

�

�

k

x

2

p

3

�

k

y

2

�

a; (3.54)

where a = ja

1

j = ja

2

j. And the terms h�(r � r

l

)jH j�(r � r

j

)i

r

should be the same for the symmetry and we write

the value as �. Then we obtain

h

AB

=

0

�

3

X

j=1

exp(ik � d

j

)

1

A

�: (3.55)
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Figure 3.18: Left panel: Three dimensional wireframe plot of energy

band in graphene (3.56). The dispersion around the Dira points are

displayed. Upper and lower energy parts are ut off for onveniene.

Upper panel : Illustration of Dira orn.

We obtain the next expression for the eigenenergy with substituting eqs.(3.54), (3.55) into (3.52).

E = h

AA

� �

s

1 + 4 os

p

3k

x

a

2

os

k

y

a

2

+ 4 os

2

k

y

a

2

: (3.56)

The seond term is the perturbation from resonant integral between neighboring atoms. It vanishes at K-point in the

reiproal lattie, i.e.,

(k

x

; k

y

) =

�

0;�

4�

3a

�

;

�

2�

p

3a

;�

2�

3a

�

;

�

�

2�

p

3a

;�

2�

3a

�

: (3.57)

Fixing k

y

to k

y

= 4�=3a, and around k

x

= 0(a K-point), (3.56) gives

E

�

k

x

;

4�

3a

�

� h

AA

+

p

3�a

2

jk

x

j: (3.58)

Namely, the upper band at a K-point shows linear dispersions whih form a downward usp at zero energy. In the lower

again linear dispersions form an upward usp, hene resulting in so alled Dira point at the K-point, whih does not

have energy gap nor effetive mass.

The details in (3.56) annot be ompared with a realisti band struture, but just like osine band in one-dimensional

tight-binding model, we an easily have insight into, e.g., why Dira points appear at K-points. It is apparent that the

three fold symmetry of the resonant integral in (3.55) is the origin of the Dira points. The symmetry does not hange

with the auray of the approximation and we an onlude that the Dira points exist at K-points in real graphenes. It

is also an interesting example that suh a symmetry auses degeneray in energy levels.
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Appendix D: Exitons in low dimensional systems

An exiton is a bound state of a hole and an eletron reated by photon irradiation. Exitons have great effets on optial

absorption and emission. An exiton is more stable than a free eletron-hole pair by the binding energy, has a longer

lifetime, hene the absorption oef�ient is larger than that of the band-edge. There are many types of exitons and here

we onsider Wannier-type free exitons, whih have muh larger spatial size than the lattie onstant. Wannier-type

free exiton an be treated as a single-body problem within a simple approximation. Let the effetive binding potential

be V (r) = a=jr � r

0

j. Bounded energy levels E

n

(n = 1; 2; � � � ) are hydrogen-atom like with the effetive Rydberg

onstant R

�

. Namely they are written as E

n

= �R

�

=n

2

. In quantum on�ned strutures, when the on�nement length

is shorter than the effetive Bohr radius a

�

B

, the dimension for exitons are also lowered.

Let us treat it as a problem of a hydrogen atom then we treat Shrödinger equation with a Coulomb-type entral fore

potential V



(r),

�

�

~

2

2m

�

r

2

+ V



(r)

�

 (r) = E (r); (D.1)

in lower dimensions. Herem

�

is the eletron-hole redued mass. And we need to hange the potential form as

V

2d



(r) = �

e

2

4���

0

jrj

; V

1d



(r) = �

e

2

4���

0

(jzj+ 0:3r

0

)

; (D.2)

partiularly for one-dimensional (along z-axis) systems. This is beause simple transformation of eq.(D.1) into one-

dimension auses anomalous behavior inluding divergene of binding energy. The potential form in eq.(D.2) is given

as an empirial formula whih well �ts to a pratial numerial alulation on on�nement into a �nite width quantum

wire (a ylinder with radius r

0

). Below, we rapidly see the solutions, whih are nothing but hydrogen atom solutions.

Under variable separation hypothesis, the solutions for eq.(D.1) an be written in the forms

 

3d

= �

l

e

��=2

R(�)Y

l;m

(�; ');  

2d

= �

jmj

e

��=2

R(�)e

im'

;  

1d

= R(�): (D.3)

� and � are dimensionless variables, whih orrespond to radial variable and z variable respetively. The de�nitions are

� = �r; � = �(jzj+ 0:3r

0

); � =

p

�8m

�

E

~

: (D.4)

R(�), R(�) are the solutions of the following equations.

8

>

>

>

<

>

>

>

:

�

�

�

2

��

2

+ (p+ 1� �)

�

��

+ q

�

R(�) = 0 : 3-, 2-dimensional;

�

�

2

��

2

+

�

��

+

�

�

�

R(�) = 0; � �

e

2

4��

0

~

r

�

m

�

2E

: 1-dimensional;

(D.5)

where p, q are

p =

(

2l+ 1 (3-dimensional)

2jmj (2-dimensional)

; q =

(

�� l � 1 (3-dimensional)

�� jmj � 1=2 (2-dimensional)

; (D.6)

where l is angular momentum quantum number andm is magneti quantum number.

For three and two dimensional systems, R(�) in eq.(D.5) is expanded as follows.

R(�) =

X

�

�

�

�

�

; �

�+1

= �

�

� � q

(� + 1)(� + p+ 1)

: (D.7)

For this R(�) to be �nite, this expansion should stop at a �nite number, whih ondition requires �

max

= q. The main

quantum number q then is de�ned as follows.

n � � = �

max

+ l + 1 (3-dimensional); n � ��

1

2

= �

max

+ jmj (2-dimensional): (D.8)

The exiton energy levels for three- and two-dimensional systems an be expressed as follows.

E

3d

bn

= �

E

0

n

2

n = 1; 2; � � � ; (D.9)

E

2d

bn

= �

E

0

(n+ 1=2)

2

n = 0; 1; � � � : (D.10)
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Here the energy unit E

0

is

E

0

=

e

2

8���

0

a

�

0

; a

�

0

=

4���

0

~

2

m

�

e

2

; (D.11)

where a

�

0

is the effetive Bohr radius. From eq.(D.8), we see that n = 0 is available for two-dimensional systems and the

ground bound state energy is �4E

0

. This means the binding energy is four times larger than that in three-dimensional

systems where the ground state energy is �E

0

. In the proess of an exiton formation, spatial on�nement inreases the

kineti energy due to the unertainty in momentum. In three-dimensional systems, the enhanement ours for all three

dimensions while in two dimensional systems, the on�nement along the diretion perpendiular to the plane has already

been inluded into the shift of band edge and the binding energy is measured from the edge. Hene it is qualitatively

easily understood that the exiton binding energy beomes larger with lowering the system dimension.

Generally radial wavefuntion is expressed with Laguerre bi-polynomial and exponential funtions. In three di-

mensional systems, 1s wavefuntion is written as  

3d

1s

/ exp(�r=a

�

0

). Similarly let  

2d

1s

/ exp(�r=a

�2d

0

), (D.5)

へ l = m = 0 and substitution into Shrödinger equation gives a

�2d

0

= a

�

0

=2. The spatial size of exitons in two-

dimensional systems is half of that in three-dimensional systems in aordane with inrement in the binding energy.

Appendix E: Current-voltage harateristis in double barrier resonant tun-

neling devie

Autual eletri transport in a resonant diode is affeted by various fators but in reality, it is reommended that alu-

lation of the transmission oef�ieny in a simple model and taking other effets into aount in the next step. Let us

�rst deompose the enery of inoming eletrons into omponent perpendiular to the barrier E

z

and that parallel to the

barrier E

k

. We ignore anisotropy of the effetive mass. The urrent �ows from the left eletrode to the right one an be

written with the group veloity v

gz

= �E=~�k

z

along z-axis as

J

L!R

= e

X

k

v

gz

f

L

(1� f

R

)T

=

2e

(2�)

3

~

Z Z

d

(2)

k

k

dk

z

�

�E

z

�k

z

�

f

L

(1� f

R

)T

=

em

2�

2

~

3

Z

1

0

Z

1

0

dE

z

dE

k

f

L

(E)(1� f

R

(E))T (E

z

): (E.1)

Here we assume the dispersion of eletrons an be desribedwith a simple parabolli bandwith no anomaly. T (E

z

) is the

transmission oef�ient of the barrier at energyE

z

(the notation is a bit hanged to avoid onfusion with temperature.)

The total urrent �ow J is obtained subtrating the ounter �ow from the above J

L!R

and given as

J = (J

L!R

� J

R!L

) =

Z

1

0

dE

z

T (E

z

)S(E

z

) (E.2)

S(E

z

) =

em

2�

2

~

3

Z

1

0

ff

L

(E)� f

R

(E)g dE

k

: (E.3)

S(E

z

) is alled supply funtion. We adopt a Fermi-Dira distribution for f and obtain S with writing � = (k

B

T )

�1

as

S =

�

emk

B

T

2�

2

~

3

�

ln

�

1 + exp�(E

F

�E

z

)

1 + exp�(E

F

�E

z

� eV )

�

: (E.4)

When the system is Fermi-degenerated

S(E

z

) =

(

(em=2�

2

~

3

)(E

F

�E

z

) (E

F

� V � E

z

� E

F

)

(em=2�

2

~

3

)eV (0 � E

z

� E

F

� eV )

; (E.5)

that is a trapezoidal funtion. From the above we an alulate J for the ase eV < E

F

as

J =

em

2�

2

~

3

"

eV

Z

E

F

�eV

0

dE

z

T (E

z

) +

Z

E

F

E

F

�eV

dE

z

(E

F

�E

z

)T (E

z

)

#

: (E.6)

Though for detailed omparison with experiments, there are many other fators to be aounted, here we shift to a

rough approximation. S has a trapezoidal form as shown in Fig.3.19, and the form is transformed into a triangle when
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Figure 3.19: Left panel: Shemati illustration of a supply funiton for a Fermi-degenerated system. The upper shows a

shemati example of transimission oef�ient T whih has a peak at E

r

� eV=2. Right panel: Shemati drawing of

urrent-voltage harateristis expeted from the left supply funtion and transmission oef�ient.

eV exeedsE

F

. For simpliity, we use this form to onsider the I-V harateristis. The zero energy is now taken to the

band edge of soure eletrode and let the resonant energy level in the well beE

r

then T has a peak at E

r

�eV=2. Hene

resonant tunneling urrent appears with the threshold voltage around E

r

� eV=2 � E

F

as illustrated in the right panel

of Fig.3.19 and rapidly goes down to zero at E

r

� eV=2 � 0. Atual urrent ontains thermal exitation, inoherent

tunneling, et. and very roughly the lineshape skethed as the broken line is expeted.
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