Physics of Semiconductors

Shingo Katsumoto
Department of Physics and Insttute for Solid State Physics

Outline today

The Kondo effect in quantum dots
Quantum Hall effects
Integer quantum Hall effect
Edge mode explanation
Topological aspect
Edge-Bulk correspondence
Fractional quantum Hall effect

The Kondo effect

$\psi_{\mathrm{A}}:\left|\psi_{\mathrm{A}} \uparrow\right\rangle|d \downarrow\rangle$

$$
\psi_{\mathrm{B}}: \frac{1}{\sqrt{2}}\left(\left|\psi_{\mathrm{B}} \uparrow\right\rangle|d \downarrow\rangle-\left|\psi_{\mathrm{B}} \downarrow\right\rangle|d \uparrow\rangle\right)
$$

$$
\frac{1}{\sqrt{2}}(|s \uparrow\rangle|d \downarrow\rangle-|s \downarrow\rangle|d \uparrow\rangle)
$$

log
T

Kondo singlet

Kondo state: $\underline{\psi}=\left\{\sum_{k}\left[\Gamma_{k}^{\alpha} a_{k \downarrow}{ }^{\dagger} \alpha+\Gamma_{k}^{\beta} a_{k \dagger}^{\dagger} \beta\right]\right.$

$$
\begin{aligned}
& +\sum_{k_{1} k_{2} k_{3}}\left[\Gamma_{k_{1} k_{2} k_{3}}{ }^{\alpha \dagger} a_{k_{1} \downarrow}^{\dagger} a_{k_{2} \downarrow}^{\dagger} a_{k_{3} \downarrow} \alpha+\Gamma_{k_{1} k_{2} k_{3}}{ }^{\beta} a_{k_{1} \uparrow}{ }^{\dagger} a_{k_{2} \dagger}^{\dagger} a_{k_{3} \dagger} \beta\right. \\
& +\Gamma_{k_{1} k_{2} k_{3}}{ }^{\alpha} a_{k_{1} \downarrow}{ }^{\dagger} a_{k_{2} \dagger}{ }^{\dagger} a_{k_{3} \uparrow} \alpha+\Gamma_{\left.k_{1} k_{2} k_{3}{ }^{\beta \downarrow} a_{k_{1} \uparrow}{ }^{\dagger} a_{k_{2 \downarrow}}{ }^{\dagger} a_{k_{3} \downarrow} \beta\right]}
\end{aligned}
$$

Yosida's variational ground state

Fermi sea state

Many body resonance multiple scattering with many electrons of the same energy (Fermi energy) with quantum entanglement in spin

Spatially localized state, energy level is the same as the Fermi energy

Kondo effect in a quantum dot system
G even

phase
0

W. G. van der Wiel et al.

Science 289, 2105 (2000).

Ch. 6 Quantum Hall Effects

Integer Quantum Hall Effect

Birthday of quantum Hall effect

5.2.1980 BIRTHDAY OF QHE
 (at 2 a.m.)

Resistance at $\mathrm{B}=0$
Resistance at $\mathrm{B}=19.8 \mathrm{~T}$
Hallresistance

Klaus von Klitzing

Discovery of quantum Hall effect

Klaus von Klitzing

Shinji Kawaji

Phys. Rev. Lett. 45, 494 (1980)

Yasuhiro Iye

Standard of resistance

IQHE and Landau quantization

DOS \longrightarrow

From Wikipedia

Two dimensional electrons under magnetic field

 Lorentz force $\quad m^{*} \ddot{\boldsymbol{r}}=-e \boldsymbol{v} \times \boldsymbol{B}$$\odot \boldsymbol{B}$

$\boldsymbol{r}=\boldsymbol{R}+r_{0}\left(\cos \omega_{\mathrm{c}} t, \sin \omega_{\mathrm{c}} t\right)$
$\omega_{\mathrm{c}} \equiv \frac{e B}{m^{*}}, r_{0} \equiv \frac{v_{0}}{\omega_{c}} \quad$ Cyclotron frequency, radius
\boldsymbol{R} : Guiding center

$$
m^{*} \ddot{\boldsymbol{r}}=-e(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})
$$

\boldsymbol{R} : Moves vertically to \boldsymbol{E} with constant velocity E / B

$$
\begin{aligned}
\mathscr{H} & =\frac{m}{2} \boldsymbol{v}^{2}=\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m} \quad \boldsymbol{B}=\operatorname{rot} \boldsymbol{A} \\
& \equiv \frac{\boldsymbol{\pi}^{2}}{2 m}=\frac{\pi_{x}^{2}+\pi_{y}^{2}}{2 m} \quad \boldsymbol{\pi} \equiv \boldsymbol{p}+e \boldsymbol{A}
\end{aligned}
$$

Landau quantization

$$
\begin{aligned}
& {\left[\pi_{\alpha}, \beta\right]=-i \hbar \delta_{\alpha \beta}(\alpha, \beta=x, y), \quad\left[\pi_{x}, \pi_{y}\right]=-i \frac{\hbar^{2}}{l^{2}}} \\
& l \equiv \sqrt{\frac{\hbar}{e B}}=\sqrt{\frac{1}{2}} \sqrt{\frac{\phi_{0}}{\pi B}} \quad \text { Magnetic length } \\
& \hat{\boldsymbol{r}}=\hat{\boldsymbol{R}}+\frac{l^{2}}{\hbar}\left(\pi_{y},-\pi_{x}\right) \quad \boldsymbol{R}=(X, Y) \quad[X, Y]=i l^{2} \\
& \quad a=\frac{l}{\sqrt{2} \hbar}\left(\pi_{x}-i \pi_{y}\right), \quad a^{\dagger}=\frac{l}{\sqrt{2} \hbar}\left(\pi_{x}+i \pi_{y}\right) \\
& {\left[a, a^{\dagger}\right]=1, \quad \mathscr{H}=\hbar \omega_{\mathrm{c}}\left(a^{\dagger} a+\frac{1}{2}\right) \quad E_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right) \quad(n=0,1,2, \cdots)}
\end{aligned}
$$

Landau quantization: Landau gauge

Diagonalize X : Landau gauge $\boldsymbol{A}=(0, B x)$

$$
\begin{gathered}
\mathscr{H} \psi=\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m} \psi=\frac{-1}{2 m}\left[\frac{\hbar^{2} \partial^{2}}{\partial x^{2}}-\left(-i \frac{\hbar \partial}{\partial y}+e B x\right)^{2}\right] \psi(\boldsymbol{r}) \\
=\frac{1}{2 m}\left[-\hbar^{2} \nabla^{2}-2 i \hbar e B x \frac{\partial}{\partial y}+e^{2} B^{2} x^{2}\right] \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
\end{gathered}
$$

$$
\begin{aligned}
& \psi(\boldsymbol{r})=u(x) \exp (i k y) \\
& {\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{(e B)^{2}}{2 m}\left(x+\frac{\hbar}{e B} k\right)^{2}\right] u(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{m \omega_{c}^{2}}{2}\left(x+l^{2} k\right)^{2}\right] u(x)=E u(x)}
\end{aligned}
$$

$$
\psi_{n k}(\boldsymbol{r}) \propto H_{n}\left(\frac{x-x_{k}}{l}\right) \exp \left(-\frac{\left(x-x_{k}\right)^{2}}{2 l^{2}}\right) \exp (i k y) \quad\left(x_{k} \equiv-l^{2} k\right)
$$

$$
X=x_{k}=-l^{2} k=-l^{2} p_{y} / \hbar \quad \frac{d E}{d k}=0 \quad \text { Group velocity }=0
$$

Landau quantization: forms of wavefunctions

Diagonalize X
\leftarrow Symmetric gauge $\boldsymbol{A}=\boldsymbol{B} \times \boldsymbol{r} / 2$

Shubnikov-de Haas oscillation

Number of states in $S=W_{x} \times W_{y}$

$$
0 \leq X \leq W_{x} \rightarrow-W_{x} l^{2} \leq k \leq 0
$$

"Distance" of k-values in y-direction: $2 \pi / W_{y} \quad \frac{W_{x} / l_{B}^{2}}{2 \pi / W_{y}}=\frac{S}{2 \pi l_{B}^{2}} \quad n_{\mathrm{L}}=\frac{1}{2 \pi l_{B}^{2}}=\frac{e B}{h}=\frac{B}{\phi_{0}}$ $\nu=\frac{\phi_{0} n_{s}}{B} \quad:$ Filling factor (number of Landau levels filled with electrons)

SdH oscillation (example)

$$
n=\frac{2}{\phi_{0} \Delta(1 / B)}=\frac{4.83 \times 10^{14}}{\Delta(1 / B)}\left(\mathrm{m}^{-2}\right)
$$

Localization/delocalization of wavefunctions

Numerical simulation $s=2$ for $N=0$

Aoki \& Ando, PRL 54, 831 (1985).

Edge mode explanation of IQHE

Markus Büttiker
1950-2013

$$
\left\langle v_{y}\right\rangle=\frac{d E}{\hbar d k}=-\frac{l_{B}^{2}}{\hbar} \frac{d E}{d X}
$$

Current brought by a Landau edge mode

$$
\begin{aligned}
J & =\int_{X_{0}}^{X_{\mu}} \frac{L_{y} d X}{2 \pi l_{B}^{2}} \frac{e}{L_{y}}\left\langle v_{y}\right\rangle \\
& =\frac{e}{h} \int \mathrm{~d} X \frac{\mathrm{~d} E}{\mathrm{~d} X}=\frac{e}{h}\left(\mu-E_{0}\right)
\end{aligned}
$$

One dimensional system:
Landauer formula is applicable

$$
\sigma_{x y}=\frac{J_{y}}{V_{x}}=\frac{e\left(J_{\mathrm{A}}-J_{\mathrm{B}}\right)}{\mu_{\mathrm{A}}-\mu_{\mathrm{B}}}=\frac{e^{2}}{h}
$$

Chiral edge mode: No backscattering!

Explanation from topological aspect

Bloch electrons under magnetic field: tight binding model
Translational operator: $T_{\boldsymbol{R}} f(\boldsymbol{r})=\underset{(\boldsymbol{r}+\boldsymbol{R}), \quad T_{\boldsymbol{R}}=\exp \left(\frac{i}{\hbar} \boldsymbol{R} \cdot \boldsymbol{p}\right), ~\left(\hbar^{2} \nabla^{2}\right.}{ }$
Hamiltonian:

$$
\mathscr{H}_{0}=-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\boldsymbol{r})
$$

\rightarrow simultaneous diagonalization \rightarrow Bloch states

$$
\begin{aligned}
& \mathscr{H}=\frac{1}{2 m}(\boldsymbol{p}+e \boldsymbol{A})^{2}+V(\boldsymbol{r}) \\
& \qquad \boldsymbol{A}(\boldsymbol{r})=\boldsymbol{A}(\boldsymbol{r}+\boldsymbol{R})+\boldsymbol{\nabla} g(\boldsymbol{r}) \text { does not have translational symmetry }
\end{aligned}
$$

Magnetic translation operator

$$
\boldsymbol{p} \rightarrow \boldsymbol{p}+e \boldsymbol{A}
$$

Symmetric gauge $\boldsymbol{A}=\boldsymbol{B} \times \boldsymbol{r} / 2$

$$
\begin{gathered}
T_{B \boldsymbol{R}} \equiv \exp \left\{\frac{i}{\hbar} \boldsymbol{R} \cdot\left[\boldsymbol{p}+\frac{e}{2}(\boldsymbol{r} \times \boldsymbol{B})\right]\right\}=T_{\boldsymbol{R}} \exp \left[\frac{i e}{\hbar}(\boldsymbol{B} \times \boldsymbol{R}) \cdot \frac{\boldsymbol{r}}{2}\right] \\
{\left[\mathscr{H}, T_{B \boldsymbol{R}}\right]=0}
\end{gathered}
$$

Magnetic Brillouin zone

However

$$
T_{B \boldsymbol{R} a} T_{B \boldsymbol{R} b}=\exp (2 \pi i \phi) T_{B \boldsymbol{R} b} T_{B \boldsymbol{R} a}, \quad \phi=\frac{e B}{h} a b
$$

$\phi=p / q$: rational number
Magnetic unit cell: unit vectors ($\boldsymbol{a}, \boldsymbol{b}$) \rightarrow magnetic unit vectors ($q \boldsymbol{a}, \boldsymbol{b}$)
Lattice vector: $R^{\prime}=n(q \boldsymbol{a})+m \boldsymbol{b} \quad T_{B R}$: elements commute ψ : simultaneously diagonalizes \mathcal{H} and $T_{B R}$,

Magnetic Brillouin zone: $0 \leq k_{1}<2 \pi / q a, 0 \leq k_{2}<2 \pi / b$

$$
T_{q \boldsymbol{a}+\boldsymbol{b}} \psi=\exp \left[i\left(k_{x} q a+k_{y} b\right)\right] \psi
$$

Magnetic Bloch function: $\quad \psi_{n \boldsymbol{k}}(\boldsymbol{r})=e^{i \boldsymbol{k} r} u_{n \boldsymbol{k}}(\boldsymbol{r})$

Magnetic Bloch function

$$
\begin{aligned}
& u_{n \boldsymbol{k}}(x+q a, y)=\exp \left(i \frac{\pi p y}{b}\right) u_{n \boldsymbol{k}}(x, y) \\
& u_{n \boldsymbol{k}}(x, y+b)=\exp \left(-i \frac{\pi p x}{q a}\right) u_{n \boldsymbol{k}}(x, y) \\
& u_{n \boldsymbol{k}}(\boldsymbol{r})=\left|u_{n \boldsymbol{k}(\boldsymbol{r})}\right| \exp \left[i \theta_{\boldsymbol{k}}(\boldsymbol{r})\right] \quad p=-\frac{1}{2 \pi} \oint d \boldsymbol{l} \cdot \frac{\partial \theta_{\boldsymbol{k}}(\boldsymbol{r})}{\partial \boldsymbol{l}}
\end{aligned}
$$

Remember k.p approximation $\boldsymbol{p} e^{i \boldsymbol{k r}}=e^{i \boldsymbol{k} \boldsymbol{r}}(\hbar \boldsymbol{k}+\boldsymbol{p})$

$$
(\boldsymbol{p}+e \boldsymbol{A})^{2} e^{i \boldsymbol{k} \boldsymbol{r}} u_{n \boldsymbol{k}}(\boldsymbol{r})=e^{i \boldsymbol{k} \boldsymbol{r}}(\hbar \boldsymbol{k}+\boldsymbol{p}+e \boldsymbol{A})^{2} u_{n \boldsymbol{k}}(\boldsymbol{r})
$$

Schrodinger-like equation for $u_{n k}(\boldsymbol{r})$

$$
\mathscr{H}_{\boldsymbol{k}} u_{n \boldsymbol{k}}(\boldsymbol{r})=E_{n \boldsymbol{k}} u_{n \boldsymbol{k}}(\boldsymbol{r}), \quad \mathscr{H}_{\boldsymbol{k}}=\frac{1}{2 m}(-i \hbar \boldsymbol{\nabla}+\hbar \boldsymbol{k}+e \boldsymbol{A})^{2}+V(\boldsymbol{r})
$$

Kubo formula for $\sigma_{x y}$

Electric field along y-axis: E

Unperturbed state $\longleftarrow \sum_{\beta \neq \alpha} E_{\alpha}-E_{\beta}$

$$
\begin{gathered}
j_{x}=\frac{1}{L^{2}} \sum_{\alpha} f\left(E_{\alpha^{\prime}}\right)\left\langle\alpha^{\prime}\right| \hat{j}_{x}\left|\alpha^{\prime}\right\rangle=\frac{1}{L^{2}} \sum_{\alpha} f\left(E_{\alpha}\right) \sum_{\beta \neq \alpha} \frac{\langle\alpha|\left(-e v_{x}\right)|\beta\rangle\langle\beta| e E y|\alpha\rangle}{E_{\alpha}-E_{\beta}}+\text { c.c. } \\
\langle\beta| v_{y}|\alpha\rangle=\langle\beta| \dot{y}|\alpha\rangle=-\frac{i}{\hbar}\langle\beta|[y, \mathscr{H}]|\alpha\rangle=-\frac{i}{\hbar}\left(E_{\alpha}-E_{\beta}\right)\langle\beta| y|\alpha\rangle
\end{gathered}
$$

$$
\sigma_{x y}=\frac{j_{x}}{E}=\frac{e^{2} \hbar}{i L^{2}} \sum_{\alpha} f\left(E_{\alpha}\right) \sum_{\beta} \frac{\langle\alpha| v_{x}|\beta\rangle\langle\beta| v_{y}|\alpha\rangle}{\left(E_{\alpha}-E_{\beta}\right)^{2}}+\text { c.c. }
$$

Magnetic Bloch function (II)

Velocity operator: $\boldsymbol{v}=(-i \hbar \boldsymbol{\nabla}+e \boldsymbol{A}) / m$

$$
u_{n \boldsymbol{k}}(\boldsymbol{r}) \rightarrow|n, \boldsymbol{k}\rangle
$$

$\langle n, \boldsymbol{k}| \boldsymbol{v}\left|m, \boldsymbol{k}^{\prime}\right\rangle=\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \int_{0}^{q a} d x \int_{0}^{b} d y u_{n \boldsymbol{k}}^{*} \boldsymbol{v} u_{m \boldsymbol{k}^{\prime}} \equiv \delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}}\langle n| \boldsymbol{v}|m\rangle$
Normalization: $\quad \int_{0}^{q a} d x \int_{0}^{b} d y\left|u_{n \boldsymbol{k}}(\boldsymbol{r})\right|^{2}=1$
$\langle n| v_{x}|m\rangle=\frac{1}{\hbar}\langle n| \frac{\partial \mathscr{H}_{\boldsymbol{k}}}{\partial k_{x}}|m\rangle, \quad\langle n| v_{y}|m\rangle=\frac{1}{\hbar}\langle n| \frac{\partial \mathscr{H}_{\boldsymbol{k}}}{\partial k_{y}}|m\rangle$.
$\langle n| \frac{\partial \mathscr{H}_{\boldsymbol{k}}}{\partial k_{j}}|m\rangle=\left(E_{m}-E_{n}\right)\left\langle n \left\lvert\, \frac{\partial u_{m}}{\partial k_{j}}\right.\right\rangle=-\left(E_{m}-E_{n}\right)\left\langle\left.\frac{\partial u_{n}}{\partial k_{j}} \right\rvert\, m\right\rangle$,

$$
j=x . y
$$

$$
\begin{aligned}
\sigma_{x y} & =-i \frac{e^{2}}{\hbar} \sum_{\boldsymbol{k}} \sum_{n} f\left(E_{n \boldsymbol{k}}\right) \sum_{m(\neq n)}\left[\frac{\langle n \boldsymbol{k}| \partial \mathscr{H}_{\boldsymbol{k}} / \partial k_{x}|m \boldsymbol{k}\rangle\langle m \boldsymbol{k}| \partial \mathscr{H}_{\boldsymbol{k}} / \partial k_{y}|n \boldsymbol{k}\rangle}{\left(E_{n \boldsymbol{k}}-E_{m \boldsymbol{k}}\right)^{2}}-\text { c.c. }\right] \\
& =-i \frac{e^{2}}{\hbar} \sum_{\boldsymbol{k}} \sum_{n} f\left(E_{n \boldsymbol{k}}\right) \sum_{m(\neq n)}\left[\left\langle\left.\frac{\partial u_{n}}{\partial k_{x}} \right\rvert\, m\right\rangle\left\langle m \left\lvert\, \frac{\partial u_{n}}{\partial k_{y}}\right.\right\rangle-\left\langle\left.\frac{\partial u_{n}}{\partial k_{y}} \right\rvert\, m\right\rangle\left\langle m \left\lvert\, \frac{\partial u_{n}}{\partial k_{x}}\right.\right\rangle\right] \\
& =\frac{e^{2}}{h} \frac{2 \pi}{i} \sum_{\boldsymbol{k}} \sum_{n} f\left(E_{n \boldsymbol{k}}\right)\left[\left\langle\left.\frac{\partial u_{n}}{\partial k_{x}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{y}}\right\rangle-\left\langle\left.\frac{\partial u_{n}}{\partial k_{y}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{x}}\right\rangle\right] .
\end{aligned}
$$

Vector field: $\boldsymbol{A}_{n \boldsymbol{k}}=\int d^{2} \boldsymbol{r} u_{n \boldsymbol{k}}^{*} \boldsymbol{\nabla}_{\boldsymbol{k}} u_{n \boldsymbol{k}}=\left\langle u_{n \boldsymbol{k}}\right| \boldsymbol{\nabla}_{\boldsymbol{k}}\left|u_{n \boldsymbol{k}}\right\rangle$
$\sigma_{x y}=\frac{e^{2}}{h} \frac{1}{2 \pi i} \sum_{E_{n}<E_{\mathrm{F}}} \int_{\mathrm{MBZ}} d^{2} k\left[\boldsymbol{\nabla}_{\boldsymbol{k}} \times \boldsymbol{A}_{n \boldsymbol{k}}\right]_{k_{z}}=\frac{e^{2}}{h} \frac{1}{2 \pi i} \sum_{E_{n}<E_{\mathrm{F}}} \int_{\mathrm{MBZ}} d^{2} k\left[\operatorname{rot}_{\boldsymbol{k}} \boldsymbol{A}_{n \boldsymbol{k}}\right]_{k_{z}}$

Existence of zero or anomaly
$\underset{2 \pi / a}{\text { Magnetic Brillouin zone }} \quad I=\frac{1}{2 \pi i}\left[\int_{\mathrm{I}} d^{2} k[\operatorname{rot} \boldsymbol{A}]_{k_{z}}+\int_{\mathrm{II}} d^{2} k[\operatorname{rot} \boldsymbol{A}]_{k_{z}}\right]=\oint_{\partial H}\left(\boldsymbol{A}^{\mathrm{II}}-\boldsymbol{A}^{\mathrm{I}}\right) \cdot \frac{d \boldsymbol{k}}{2 \pi i}$

$$
\begin{gathered}
I=\oint_{\partial H}\left[\left\langle u_{\boldsymbol{k}}^{\mathrm{II}}\right| \nabla_{\boldsymbol{k}}\left|u_{\boldsymbol{k}}^{\mathrm{II}}\right\rangle+\left(i \boldsymbol{\nabla}_{\boldsymbol{k}} \theta\right)\left\langle u_{\boldsymbol{k}}^{\mathrm{II}} \mid u_{\boldsymbol{k}}^{\mathrm{II}}\right\rangle-\left\langle u_{\boldsymbol{k}}^{\mathrm{II}}\right| \nabla_{\boldsymbol{k}}\left|u_{\boldsymbol{k}}^{\mathrm{II}}\right\rangle\right] \cdot \frac{d \boldsymbol{k}}{2 \pi i} \\
=\frac{\Delta_{\partial H} \theta}{2 \pi}=\nu_{\mathrm{C}} \quad: \text { Chern number (integer) } \\
\text { Topological invariant }
\end{gathered}
$$

$$
\sigma_{x y}=n_{B} \nu_{\mathrm{C}} \frac{e^{2}}{h}
$$

Thouless-Kohmoto-Nightingale-den Nijs (TKNN)
Formula

Laughlin's discussion

R. Laughlin, Phys. Rev. B 23, 5632 (1981).

Robert Laughlin

Landau gauge $\quad \boldsymbol{A}=\left(0, B x-\Phi / L_{y}\right)=\left(0, B\left(x-\Phi / L_{y} B\right)\right)$
Magnetic flux $\Phi: X$ shift $\quad X \rightarrow X+\frac{\Phi}{L_{y} B}: \frac{\Phi}{\phi_{0}} \frac{L_{x}}{N_{\mathrm{L}}}\left(N_{\mathrm{L}} \equiv n_{\mathrm{L}} L_{x} L_{y}\right)$

$$
\begin{aligned}
j_{y} & =\frac{J_{y}}{L_{x}}=\frac{1}{L_{x}} \frac{\partial E_{L_{x}}}{\partial \Phi}\left(c f . E=\frac{L}{2} J^{2}, \Phi=L J\right) \\
& =\frac{1}{L_{x}} \frac{\Delta E_{L_{x}}}{\Delta \Phi}=\frac{1}{L_{x}}\left(-e \mathcal{E}_{x} \frac{L_{x}}{N_{\mathrm{L}}}\right) \frac{N_{e}}{\phi_{0}}=\nu \frac{e^{2}}{h} \mathcal{E}_{x}
\end{aligned}
$$

Chern number $=1$

Bulk-Edge correspondence

(b)

(c)

(d) Quantum Hall State

(e)

Hasan \& Kane, Rev. Mod. Phys. 82, 3045 (2010).
Transition between bands with different Chern number only can attained through energy gap collapse.

Fractional quantum Hall effect

Exercise E-7-4

Consider electrons in graphene under magnetic field. Let us treat the motion semi-classically.
Cyclotron frequency expression $\omega_{\mathrm{c}}=\frac{e B}{m} \quad$ cannot be applied due to $m=0$. Instead use the relation $E=p c$.
(1) Express the cyclotron radius with momentum and e and B.
(2) A circular motion of electron gives kinetic phase and AB phase to the electron. Replace the momentum in (1) with $\hbar k$ and express the total phase acquired by the electron within a circular motion with the flux through the cyclotron circle and the flux quantum.
(3) The acquired phase should be integer times 2π. Obtain the expression for cyclotron radius and energy.

