
Final report problems for “Semiconductors”

Problem setting: 14/07/2021 出題 2021年 7月 14日

Solution submission deadline: 16/08/2021 解答提出期限 2021年 8月 16日

General notes / 一般的注意

Choose three of eight problems and answer them. The difficulties of the problems are not equal. Some of them are

easy, some not. But not tough anyway. You can choose the problems according to your interests and motivation.

The text part in the answer should be typed in English or Japanese. I hope you could avoid handwriting but if you have

no way but to do so, the handwriting should be as clear as possible. The scoring does not depend on the language. It

doesn’t matter if you are good at grammar, vocabulary, or sentences, but if I cannot catch the meaning, the scoring will

get deducted regardless of English or Japanese. The answer sheet should be in small-sized PDF format, which can be

appropriately displayed by Adobe Reader. The file of the answer should be submitted through ITC-LSM.

8問のうち 3問を選んで答えてください．問題はとても簡単なものからそうでもないものまでありますが，いずれ

にしても大して難しくありません．あなたの興味と意欲に応じて選んでください．

解答のテキスト部分は極力手書きでないようにお願いします．英語，日本語のどちらでも良く，採点は言語に依存

しません．文法や語法，文章の上手下手は問題にしませんが，意味が取れない場合は，英語日本語にかかわらず，減

点します．解答は，ファイルサイズのできるだけ小さな Adobe Readerできちんと表示できる PDFファイルにまと

め，ITC-LSMを通して提出してください．

FR1 Bipolar transistor

Let us consider a pn-junction of Si at the temperature 300 K. In the p-layer the acceptor (boron, B) concentration is

1021 m−3 and in the n-layer the donor (phosphorous, P) concentration is 1020 m−3. The doping profile is abrupt.

(1) Obtain the built-in potential.

(2) Calculate the depletion layer widths for p- and n-layers at reverse bias voltage −5 V.

(3) Calculate the differential capacitance at reverse bias voltage −5 V for the area 1 mm×1 mm.

Let us put another p-layer and make a pnp transistor (gedankenexperiment). Assume the followings: the hole diffusion

length in the base is 10 µm; the electron diffusion length in the emitter is also 10 µm; the diffusion coefficients of minority

carriers in the emitter and the base are the same (De = Dh).

(4) Calculate hFE for base widths 0.5 µm and 0.1 µm. (Ignore depletion layer widths, other non-ideal factors. Calcu-

late under the simplest approximation.)

To solve this problem use the discussions in 6A.1 (typos are corrected in July version).

FR2 SdH oscillation

Figure FR2.1 shows the Shubnikov-de Haas oscillation and the quantum Hall effect in two-dimensional electrons.
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(1) Calculate the electron concentration from the low (<0.5 T) field data.

(2) Something happened around 0.65 T. What is it?
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Fig. FR2.1 SdH oscillation in a
2DEG at an AlGaAs/GaAs inter-
face (red line). Blue line is the
Hall resistivity. T =30 mK.

FR3 Double barrier diode

Consider a double barrier resonant diode with GaAs as the well material and Al0.4Ga0.6As as the barrier material. Lets

adopt Eg=1.424 eV for GaAs and Eg=1.424 + 1.265x + 0.265x2 (eV) for AlxGa1−xAs and ∆Ec : ∆Ev =6:4. The

electron effective mass in GaAs is 0.067m0 and ignore the change in AlxGa1−xAs. Consider n-type electrodes (note that

in the lecture we considered p-type).

(1) Obtain the transfer matrix of 5nm thickness GaAs- Al0.4Ga0.6As.

(2) Calculate the transmission probability of resonant diode with two 5nm barriers and a 5nm well region as a function

of incident energy (from 0 to the top of the barrier with an appropriate interval) and plot in a figure.

FR4 Triangular potential

Let us consider the rectangular potential illustrate in Fig.FR4.1.

(1) First consider the most coarse approximation. Choosing a kinetic energy E determines the effective potential with

E/a. Now let us approximate the potential with a rectangular potential of width E/a, bottom V(0), infinite barrier

height. Let m∗ be the effective mass and obtain the eigen energies from lower level with index n = 1, 2, · · ·
(2) Compare the above result with more accurate one on Airy functions.
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(3) Also try comparison with Wenzel-Kramers-Brillouin (WKB) approximation for wavefunction penetration into the

barrier.

For the solution of triangular potential problem, see Appendix FRA.

Fig. FR4.1 Schematic diagram of a triangular potential.

FR5 Edge mode transport

In Fig.FR5.1 the green region indicates 2DEG, 1 to 6 are the electric contacts, the yellow regions are metallic gates.

The structure has a quantum point contact in the middle. In the integer quantum Hall state with filling factor ν, the sample

has ν edge modes at sample-vacuum eeges. With applying gate voltage, we can tune the number of modes which transmit

through the QPC, to χ. Other modes are completely reflected by the QPC. The current is through 1 and 4.

(1) Obtain the longitudinal resistance RL, which is measured from the voltage between 2 and 3 V23 or 6 and 5 V65.

(2) Obtain the Hall resistance RH, measured from V26 or V35.

Fig. FR5.1 Illustration of the sample with two edge
modes (ν = 2). Yellow regions around the center are
Schottky-type split gates.

FR-3



FR6 Quantum Hall conductivity puzzle(?)

Consider a 2DEG under IQHE with ν =1. The edge modes can bring finite current without energy dissipation and the

resistance is zero. The conductance of one-dimensional edge mode is then the inverse of the resistance and infinity. Let

us write the quantum resistance h/e2 as Rq.

Two dimensional resistivity tensor under the condition is

ρ =

(
0 Rq

−Rq 0

)
.

Then the two dimensional conductivity tensor defined by the inverse of resistivity tensor

σ = ρ−1 =
1

R2
q

(
0 −Rq

Rq 0

)
.

That is σxx = 0! Does the calculation contain an error? If it does, what is the error? Or can you solve the puzzle?

FR7 Absorption coefficient of a nanowire

For a bulk (three-dimensional) semiconductor crystal, the frequency-dependence of the absorption coefficient α(ω) is

given by
α(ω) ∝ (ℏω − Eg)

1/2 (ℏω ≥ Eg)

as in Eq. (4.68). With a similar analysis to that used in deriving the above relation, find the frequency dependence of the

absorption coefficient for an infinitesimally thin semiconducting “nanowire.” The answer should be in the form

α(ω) ∝ (ℏω − Eg)
γ (ℏω > Eg).

And for the answer, it is enough just to obtain the exponent γ.

FR8 Basics in band theory

(1) Show that tight-binding approximation to the simple cubit lattice gives the dispersion as

En(k) = En − αn − 2t
∑

j=x,y,x

cos kja. (FR8.1)

Apply the same to the body-centered cubic and the face-centered cubit structures.

(2) Wavefunctions at the top of valence band (Γ-point ) in sp3-bonding diamond structure semiconductors can be

written to the second order of k · p approximation as

Heavy hole band:
∣∣∣∣32 ,±1

2

⟩
=

1√
6

{
2|z⟩

(
α
β

)
− (|x⟩ ± i|y⟩)

(
β
α

)}
, (FR8.2)

Light hole band:
∣∣∣∣32 ± 3

2

⟩
=

1√
2
(|x⟩ ± i|y⟩)

(
α
β

)
, (FR8.3)

Spin split-off band:
∣∣∣∣12 ,±1

2

⟩
=

1√
3

{
|z⟩

(
α
β

)
+ (|x⟩+ i|y⟩)

(
β
α

)}
. (FR8.4)

where α and β are spin part of the wavefunction, and |x⟩, |y⟩，|z⟩ are just showing the symmetry along the axes.

The upper and lower rows for α and β correspond to the double sign ± or ∓.
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Show that these functions diagonalize the spin-orbit interaction

Hso =
Cso

r3
(l · σ), (FR8.5)

where l is the orbital angular momentum and σ is the vector of Pauli spin matrices.

Appendix FRA: Eigenstates in a triangular potential

Let us consider one dimensional triangular potential on x-axis. The time independent Schrödinger equation is written

as (
− ℏ2

2m

∂2

∂x2
+ V (x)

)
ψ = Eψ, V (x) =

{
ax (x > 0, a > 0)

∞ (x ≤ 0)
. (FRA.1)

With adopting the transformation of the variable

s =

(
2ma

ℏ2

)1/3 (
x− E

a

)
, (FRA.2)

the Schrödinger equation is transformed into
d2ψ

ds2
= sψ. (FRA.3)

The equation is now in the form of differential equation called Airy’s (or Stokes’) differential equation.

The solutions to (FRA.3) are called Airy functions and classified with the asymptotic behavior in s → ∞ into Ai for

ψ → 0 and Bi for ψ → ∞. Some representatives of them are plotted in Fig.??(b).

As basis for the bound state wavefuntions, we should adopt Ai, which are zero at infinity. The asymptotic form for

s→ ±∞ is given as

Ai(s) ∼ 1

2
√
πs1/4

exp

(
−2

3
s3/2

)
(s→ ∞) (FRA.4)

∼ 1√
π|s|1/4

cos

(
2

3
|s|3/2 − π

4

)
(s→ −∞). (FRA.5)
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Fig. FRA.1 (a) illustrates eigenenergies and eigenfunctions in a triangular potential for n = 1, 2, 3 from the ground
state. (b) Let ∆x be the intervals of zero points in Airy function. In this figure 1/∆x is plotted against the midpoints
between the zero points. The broken line is Airy function.
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In x < 0, V = ∞ and ψ = 0, the boundary condition at x = 0 is thus ψ(+0) = 0. Ai(s) has many zeros and the

boundary condition requires that one of which must fit to x = 0. Let us write such zero points as s1, s2, · · · sn, · · · in the

order of the absolute value of s, then the energy eigenvalue En is obtained from (FRA.2) as

En = −
(
ℏ2a2

2m

)1/3

sn. (FRA.6)

From the asymptotic form (FRA.5),

sn ∼ −
(
3π(4n− 1)

8

)2/3

(FRA.7)

is the asymptotic solution of sn for n→ ∞.
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