Final report problems for ‘“Semiconductors”

Problem setting: 14/07/2021 HiE 2021 £ 7 H 14 H
Solution submission deadline: 16/08/2021 fRZ#HEHIRE 2021 £ 8 A 16 H

I General notes / —fgHIE=E

Choose three of eight problems and answer them. The difficulties of the problems are not equal. Some of them are
easy, some not. But not tough anyway. You can choose the problems according to your interests and motivation.

The text part in the answer should be typed in English or Japanese. I hope you could avoid handwriting but if you have
no way but to do so, the handwriting should be as clear as possible. The scoring does not depend on the language. It
doesn’t matter if you are good at grammar, vocabulary, or sentences, but if I cannot catch the meaning, the scoring will
get deducted regardless of English or Japanese. The answer sheet should be in small-sized PDF format, which can be

appropriately displayed by Adobe Reader. The file of the answer should be submitted through ITC-LSM.
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FR1 Bipolar transistor

Let us consider a pn-junction of Si at the temperature 300 K. In the p-layer the acceptor (boron, B) concentration is

102! m—3 and in the n-layer the donor (phosphorous, P) concentration is 102° m~3. The doping profile is abrupt.

(1) Obtain the built-in potential.
(2) Calculate the depletion layer widths for p- and n-layers at reverse bias voltage —5 V.

(3) Calculate the differential capacitance at reverse bias voltage —5 V for the area | mmx 1 mm.

Let us put another p-layer and make a pnp transistor (gedankenexperiment). Assume the followings: the hole diffusion
length in the base is 10 pum; the electron diffusion length in the emitter is also 10 pm; the diffusion coefficients of minority

carriers in the emitter and the base are the same (D, = Dy).

(4) Calculate hpg for base widths 0.5 ym and 0.1 gum. (Ignore depletion layer widths, other non-ideal factors. Calcu-

late under the simplest approximation.)

To solve this problem use the discussions in 6A.1 (typos are corrected in July version).

FR2 SdH oscillation

Figure FR2.1 shows the Shubnikov-de Haas oscillation and the quantum Hall effect in two-dimensional electrons.
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(1) Calculate the electron concentration from the low (<0.5 T) field data.
(2) Something happened around 0.65 T. What is it?
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FR3 Double barrier diode

Consider a double barrier resonant diode with GaAs as the well material and Aly 4Gag gAs as the barrier material. Lets
adopt F,=1.424 eV for GaAs and E,=1.424 + 1.2652 + 0.265z2 (eV) for Al,Ga;_,As and AE. : AE, =6:4. The
electron effective mass in GaAs is 0.067m and ignore the change in AlzGa; _,As. Consider n-type electrodes (note that

in the lecture we considered p-type).

(1) Obtain the transfer matrix of Snm thickness GaAs- Aly 4Gag gAs.
(2) Calculate the transmission probability of resonant diode with two Snm barriers and a Snm well region as a function

of incident energy (from O to the top of the barrier with an appropriate interval) and plot in a figure.

FR4 Triangular potential

Let us consider the rectangular potential illustrate in Fig.FR4.1.

(1) First consider the most coarse approximation. Choosing a kinetic energy E determines the effective potential with
E/a. Now let us approximate the potential with a rectangular potential of width F/a, bottom V(0), infinite barrier
height. Let m* be the effective mass and obtain the eigen energies from lower level with index n = 1,2, - - -

(2) Compare the above result with more accurate one on Airy functions.
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(3) Also try comparison with Wenzel-Kramers-Brillouin (WKB) approximation for wavefunction penetration into the

barrier.

For the solution of triangular potential problem, see Appendix FRA.
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FR5 Edge mode transport

In Fig.FR5.1 the green region indicates 2DEG, 1 to 6 are the electric contacts, the yellow regions are metallic gates.
The structure has a quantum point contact in the middle. In the integer quantum Hall state with filling factor v, the sample
has v edge modes at sample-vacuum eeges. With applying gate voltage, we can tune the number of modes which transmit

through the QPC, to x. Other modes are completely reflected by the QPC. The current is through 1 and 4.

(1) Obtain the longitudinal resistance Ry,, which is measured from the voltage between 2 and 3 Vo3 or 6 and 5 V5.

(2) Obtain the Hall resistance Ry, measured from Vg or V5.
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Fig. FRS5.1 Illustration of the sample with two edge

| I I | modes (v = 2). Yellow regions around the center are

5 Schottky-type split gates.
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FR6 Quantum Hall conductivity puzzle(?)

Consider a 2DEG under IQHE with v =1. The edge modes can bring finite current without energy dissipation and the
resistance is zero. The conductance of one-dimensional edge mode is then the inverse of the resistance and infinity. Let
us write the quantum resistance h/e? as Ry.

Two dimensional resistivity tensor under the condition is

— 0 Rq
P=\-Ry o)

Then the two dimensional conductivity tensor defined by the inverse of resistivity tensor

1 /0 -R
c=pl=— q) .
P "R (Rq 0

That is o,, = 0! Does the calculation contain an error? If it does, what is the error? Or can you solve the puzzle?

FR7 Absorption coefficient of a nanowire

For a bulk (three-dimensional) semiconductor crystal, the frequency-dependence of the absorption coefficient «(w) is

given by
a(w) o (hw — Eg)V/2  (hw > Ey)

as in Eq. (4.68). With a similar analysis to that used in deriving the above relation, find the frequency dependence of the

absorption coefficient for an infinitesimally thin semiconducting “nanowire.” The answer should be in the form
a(w) x (hw — Eg)?  (fw > Ey).

And for the answer, it is enough just to obtain the exponent .

FR8 Basics in band theory

(1) Show that tight-binding approximation to the simple cubit lattice gives the dispersion as

En(k) = En — oy — 2t Z cos kja. (FRS.1)
Jj=z,y,x
Apply the same to the body-centered cubic and the face-centered cubit structures.
(2) Wavefunctions at the top of valence band (I'-point ) in sp3-bonding diamond structure semiconductors can be

written to the second order of k - p approximation as

Heavy hole band: ;’ ﬁ:;> = % { |2) (g) — (Jx) £ily)) (g) } ) (FR8.2)
Light hole band: g + ‘;’> = %(m +ily)) (g) : (FR8.3)
Spin split-off band: % ﬁ:;> = % {|z> (g) + (|l2) +ily)) (g) } . (FR8.4)

where « and 3 are spin part of the wavefunction, and |x), |y), |z) are just showing the symmetry along the axes.

The upper and lower rows for o and 3 correspond to the double sign =+ or F.
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Show that these functions diagonalize the spin-orbit interaction

C’SO

r3

Hy = —-2(1- o), (FR8.5)

where [ is the orbital angular momentum and o is the vector of Pauli spin matrices.

Appendix FRA: Eigenstates in a triangular potential

Let us consider one dimensional triangular potential on z-axis. The time independent Schrodinger equation is written
as
ar (x>0, a>0)

o (2<0) (FRA.1)

(“gmams + V@) 0= Bo. Vi) {

With adopting the transformation of the variable

1/3
5= (2;“) (x — f) , (FRA.2)

ey _

ds?

the Schrodinger equation is transformed into
s1. (FRA.3)

The equation is now in the form of differential equation called Airy’s (or Stokes’) differential equation.
The solutions to (FRA.3) are called Airy functions and classified with the asymptotic behavior in s — oo into Ai for
1) — 0 and Bi for 1y — co. Some representatives of them are plotted in Fig.??(b).

As basis for the bound state wavefuntions, we should adopt Ai, which are zero at infinity. The asymptotic form for

s — £oo0 is given as

. 1 2 39
1 2 3/2 m
~ NGEEG cos (3|S| - 4) (s = —00). (FRA.5)
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Fig. FRA.1 (a) illustrates eigenenergies and eigenfunctions in a triangular potential for n = 1, 2, 3 from the ground
state. (b) Let Az be the intervals of zero points in Airy function. In this figure 1/Ax is plotted against the midpoints
between the zero points. The broken line is Airy function.
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Inz < 0,V = oo and ¢ = 0, the boundary condition at x = 0 is thus ¥(+0) = 0. Ai(s) has many zeros and the
boundary condition requires that one of which must fit to = 0. Let us write such zero points as s1, S2, - - - Sy, - - - in the

order of the absolute value of s, then the energy eigenvalue E,, is obtained from (FRA.2) as

7202\ /3
E, = — ( 2“ ) S (FRA.6)
m
From the asymptotic form (FRA.5S),
B 2/3
o~ <37T(4gl)> (FRA.7)

is the asymptotic solution of s,, for n — oo.
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