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8.7 Single electron effect and quantum confinement

In the end of the chapter, we will have a look on single electron effect and quantum confinement to zero-dimensional

system in quantum dots.

8.7.1 Single electron effect

In the transport through quantum dots the first importantce is on the single electron effect. The single electron effect

is in very short, the the electrostatic energy of an electrostatically isolated system changes with adding(extracting) an

electron, and when this increase is larger than the thermal fluctuation, the tunneling of the electron is prohibited. This

effect is called Coulomb blockade. The electrostatic energy of a quantum dot is described with a capacitance C of the

dot and the electrostatic energy of charging by a single electron is Ec = e2/2C, which is finite and even can be large for

small C. As a first approximation we separates the electronic states into two: states inside the dot and those outside the

dot. Hence the number of electrons in the dot takes an integer (descrete value). There are two possible simplest transport

processes of single electrons from a source to a drain: the dot catches an electron from the source then releases one to the

drain, and conversely the dot releases one to the drain first, then catches one from the source.

Let us take the simplest constant interaction model, in which any pair of electrons in the dot has the same (constant)

Coulomb interaction energy U . Then the total Coulomb energy in the dot with N electrons is

EcN =NC2U =
N(N − 1)U

2
=
U(N − 1/2)2

2
− U

8
. (8.59)

The variation in the Coulomb energy with the transition N → N + 1 is

∆E+(N) = (N − 1)U. (8.60)
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Fig. 8.26 (a) Schematic diagram of chemical potentials in the constant interaction model, in which the chemical
potentials are descrete with the same distance U (the amplitude of two-electron interaction). At zero-bias, when none
of the descrete chemical potentials meets the Fermi level EF in the source and drain, a finite energy is required for an
electron to tunnel, which prohibits the tunneling (Coulomb blockade). (b) When the origin of the descrete chemical
potentials is shifted by the gate voltage Vg and one of them hits EF, the tunneling thus the electric conduction becomes
possible. (c) When Vg is swept, a repetition of processes (a) and (b) results in the series of sharp peaks with a regular
interval in the quantum dot conductance G (Coulomb oscillation).
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If we ignore other kinds of energy,∆E+(N) should be the electrochemical potential ofN -th electron and from Eq./ (8.60)

we see that the electrochemical potentials are ordered with the same distance being proportional to N .

8.7.2 Coulomb oscillation, Coulomb diamond

Let us write the electrochemical potential of the dot with N -electrons µN , and let N0 be the electron number when

the dot is in equilibrium with the electrodes, then µN0 < EF < µN0+1. When µN0 is equal to EF (Fermi energy in the

electrodes), electrons can go into or out from the dot with tunneling from the electrodes, then at zero source-drain voltage

(Vsd = 0) the electric conductance (G(0)) takes a finite value. When µN0
does not hit EF, the tunnleing of an electron

between the electrodes and the dot requires a finite energy and is prohibited (Coulomb blockade). As in Fig. 8.26(a),

(b), that condition of finite G(0) appears with a constant interval. Hence G(0) forms regular peaks for a sweep of Vg as

shown in Fig. 8.26(c), which is called Coulomb oscillation.

The constant interaction model can also be described as a simple circuit model illustrated in Fig. 8.27(a). Here the

charge of an electron is −e.

Q1 +Q2 = −eN, Q1 = CVd, Q2 = Cg(Vd − Vg), (8.61)

and the charging energy is

E =
1

2
CV 2

d +
1

2
Cg(Vd − Vg)

2, (8.62)

in which the second term is the integral of the work done by the power source connected to the gate electrode from

voltage 0 to Vg. When we thermodynamically treat the problem whether the process proceeds or not under the condition

that some system outside automatically provides energy, we need to consider enthalpy, which in the case of the pressure

of atomosphere, written as H = U − PV . Here PV , the product of pressure and volume, corresponds to the automatic

energy supply corresponding to the second term in Eq. (8.62). Then from (8.61) and (8.62),

H(N,Vg) =
(Ne− CgVg)

2

2(C + Cg)
. (8.63)

If we plot this as a function of Vg, as shown in Fig. 8.27(b), parabollas are lined up corresponding to N and the Coulomb

peaks appear at the crossing points of the prabollas.

Next we consider the case that the gate voltage is fixed, the drain is grounded, and the source voltage is swept. The

simplest model for such situation is shown in Fig. 8.28. At the positions of Coulomb peaks, the topmost chemical

potential of the dot hits the Fermi level in the source and drain electrodes. The number of electrons differs by 1 at (a)

and at (c). When Vg is at (b), the current is blocked at zero bias. Then if we increase the source voltage (decrease EF in

the source), and the chemical potential position used for the conduction at (a) goes in between the Fermi levels of source

Vg
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Fig. 8.27 (a) Simple model of the sin-
gle electron charging in a quantum dot
described with a self capacitance C and
a gate capacitance Cg. (b) Enthalpy
H(N,Vg]) calculated in the model as a
function of Vg.
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and drain, a finite conductance appears. Then a conduction appears outside the yellow parallelogram, inside which the

conduction is Coulomb blocked. The parallelogram is called Coulomb diamond *1.

The color plot in Fig. 8.29 shows an example of measured Coulomb diamonds. The sizes of the diamonds are not the

same mostly because of the quantum confinement effect explained in the next section. There also should be the variation

in the dot size by Vg and the variation in the effective capacitance. Various other effects should affect the sizes of the

diamonds and conversely from the size we can know various physical propaties of the dot[2].

We see some line structures outside the diamonds, which come from the quantum confinement and the level descrete-

ness (next section). There are also vague tile-like structures outside the diamond, which is called Coulomb staircase and

due to the increase in the number of possible chemical potential levels. In the experiment, we also see that the vertical

boundaries have a bit slanted. This is due to the capacitance between the source electrode and the dot. The capacitance

mediates some of the electric force lines from the source to the dot.

Vg

Vsd

(a)

(b)

(c)

(d)

(e)

Fig. 8.28 Simple description of Coulomb diamonds. In
the present case the bias voltage is applied to the source
electrode (the drain is grounded). Yellow colored region is
a Coulomb diamond (Coulomb blocked region). (a), (c) At
zero-bias condiction, electric conduction occurs with tun-
ing the dot chemical potential through the gate voltage. In
(b), the system is out of the above resonance condition and
the conduction is Coulomb blocked. At finite bias voltages
on the source, the conduction appears, in (d) with the use of
the chemical potential position that used in (a), vice versa
in (e). Finally, the conduction is prohibited in the yellow
colored region.
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Fig. 8.29 Coulomb diamond structure appeared in the transport through a quantum dot made from 2DEG at a het-
erointerface. The abscissa is the gate voltage Vg. The upper panel shows the zero-bias conductance, which shows
Coulomb oscillation. In the lower, the conductance is color plotted on the plane of Vg-Vsd. Clear diamond structures
are observed. The parallel lines outside the diamonds are from the conduction through excited states in the dot.

*1 The parallelogram becomes a diamond for symmetric configuration of voltage sources.
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Fig. 8.30 Coulomg oscillation in a vertical type quantum dot. (a) Dot current as a function of the gate voltage. There
is no Coulomb peak for further negative Vg than the region indicated as N = 0. The inset illustrates the sample
structure. (b) Distances between the Coulomb peaks as a function of the electron number. The data are from [5].

8.7.3 Quantum confinement

Next we consider the case we cannot ignore the descreteness of the orbital energy due to quantum confinement. We

number the orbital energy levels from the ground state (different numbers are assigned to all the degenerate states). Let

the energy of i-th state be ϵi. We also ignore the terms that do not have relation with N . Then enthalpy H is

H(N) =
(Ne− CgVg)

2

2Cs
+ ϵN . (8.64)

The crossing points are obtained as

∆H(N,N + 1) = H(N + 1)−H(N) =
e

Cs

{(
N +

1

2

)
e− CgVg

}
+∆ϵN ∆ϵN ≡ ϵN+1 − ϵN

VgX(N,N + 1) =
1

Cg

{(
N +

1

2

)
e+

Cs

e
∆ϵN

}
, (8.65)

which has a shift from the Coulomb peak position ∆ϵN as in Eq. (??). From the shift we can get the energy spectrum in

the quantum dots. This method is called addition energy spectroscopy. Because in the case of degeneracy, ∆ϵN = 0 and

from the position of Kramers degeneracy, we can perform quantitative spectroscopy with this as a standard.

Let us have a look on a famous example, in which the researchers realized a two-dimensional harmonic potential. In

this experiment, a two-dimensional quantum well was inserted into barrier layers and metallic doped “electrode” layers

(source and drain) were placed at the top and the bottom of a cylindrical specimen (vertical type quantum dot). The

confinement along vertical direction is strong and we only consider the ground state for this direction. Figure 8.30(a)

shows the Coulomb oscillation and there is no peak in the left side (negative Vg) of a small peak at about −1.6 V, which

fact indicates that the dot is empty in this region. Then we can assign N = 0 to this region and then we can also assign

the other number of electrons to blockade regions.

We review two-dimensional harmonic oscillator shortly. The two dimensional coorinate is take to xy. The in plane

confinement potential V (x, y) and the descrete eigenenergies can be written with the parameter ω0 representing the

strength of the potential as

V (x, y) =
mω2

0

2
(x2 + y2), Enh

= ℏω(nh + 1) (nh = 0, 1, 2, · · · ), (8.66)
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which have an equidistance. Bound eigenstates of an isotropic potential can be indexed by the quantum number of angular

momentum l and the radial quantum number nr. In the above case nh = 2nr + |l|. The number of possible combinations

(nr, l) is nh + 1, then with spin degeneracy, Enh
has 2(nh + 1) fold degeneracy.

As a simplest analysis of the data in Fig. 8.30(a), the peak intervals are plotted versus the number of electrons N in

Fig. 8.30(b). Clear peaks are observed at N = 2, 6, 12. This reflects the fact that the bound states in two dimensional

harmonic potential take shell structures at
∑nh

j=0 2(nh + 1) = (nh + 1)(nh + 2). In the simplest model, the shift of

Coulomb peaks should correspond to ℏω0, hence the peak height in Fig. 8.30(a) should be common. In the experimental

data, however, there is a strong tendency that the peak interval decrease with the number of electrons. The tendency is

considered to be mainly due to the increase in the effective capacitances. We also see small peak structures at the middle

of the clear peaks N = (nh + 2)2 (4,9). This comes from Hund’s rule, which tells that the states should be occupied

by electrons as to maximize the total spin due to the exchange energy. With quantum dots we can perform experiments

knowing the number of electrons and informaiton on potential, quantum dots are sometimes called as “artificial atoms.”

Let us see the effect of magnetic field vertical to the 2d-plane. Here we ignore the Zeeman effect. The effect of

magnetic field on the orbitals appears in two terms in Hamiltonian. First is the inner product of angular momengum l

and the field flux density vector. Second is the confinement into two-dimensional harmonic potential due to the cyclotron

motion. The second effect modifies the effective confinement potential as

Veff(x, y) =
mΩ2

2
(x2 + y2), Ω ≡

√
ω2
0 + (ωc/2)2, (8.67)

where ωc = eB/m is the cyclotron frequency for magnetic flux density B. Then the energy corresponds to (nr, l) is

E(nr, l) = ℏΩ(2nr + |l|+ 1) + ℏωcl/2. (8.68)

For general finite fields the orbital degeneracy is lifted by the angular momentum. The eigenstates with energies in (8.68)

are called Fock-Darwin states. The energies in Eq. (8.68) vary with magnetic field as plotted in Fig. 8.31(a). We write
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Fig. 8.31 (a) Energy levels of Fock-Darwin states (from the ground state to 10th excited state at zero field) as a func-
tion of magnetic field. They converge into Landau levels at high fields. Line colors are assigned from corresponding
Landau levels. Thick red line is the trace of ground state for electron number N = 12. (b) Coulomb peak positions of
the quantum dot in Fig. 8.30 versus vertial magnetic field. Black dots are calculated from Eq. (8.69), which represents
the position of last crossing point for fixed N . The potential parameter ω is determined from the peaks N = 3 ∼ 6.
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nL ≡ nr + (|l| + l)/2 and take the limit B → ∞, to obtain E(nr, l) → ℏωc(nL + 1/2). That is, they converge into

Landau quantized levels.

As shown in Fig. 8.31(a), the levels depend on magnetic field with many crossings. The ground state of electrons with a

fixed number is given by packing electrons from lower levels. The line of topmost level accommodating electrons should

have kinks at such crossings. In Fig. 8.31(a), one of such a line is indicated as a thick red line for N = 12. The series

of kinks ends up at the field where all the electrons are accomodated into the states corresponding to the lowest Landau

level. The last crossing is between the line going to the lowest Landau level for N and the line for (nr, l) = (0, 1).

Because of the spin degeneracy (ignoring Zeeman splitting), the former is given as (nr, l) = (0,−int(N/2)) (int(x) is

the largest integer smaller than or equal to x). This condition is given as

2ℏΩ+ ℏωc/2 = ℏΩ(int(N/2) + 1)− ℏωcint(N/2)/2

∴
(ωc

ω

)2

= int(N/2)− 2 +
1

int(N/2)
. (8.69)

In the first approximation the Coulomb peak distance is constant and ignoring the last term for large N , the last crossing

points depends on magnetic field prabolically. Actually such behavior is observed in Fig. 8.31(b). If we determine ω to

fit Eq. (8.69) to kinks of N = 3 ∼ 6, and put dots to the predicted end points of kinks, they agree nicely with the data up

to N = 14.

8.8 Quantum dots and quantum circuits

Quantum dots (QDs) can be connected with quantum wires to form quantum circuits. A QD affects the circuit con-

ductance though the transmission probability and the phase shift as characteristics of resonant scattering. Here the effect

of single electron charging is only on the positions of chemical potentials for resonant scatterings. Hence in the simplest

approximation, QDs are treated simple resonators and we do not consider the single electron effect explicitly.

8.8.1 Quantum dot and scattering experiment

Transport in mesoscopic systems can be viewed as scattering experiments in solids. We can see that clearly in quantum

circuits with QDs.
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For example, in the scattering of electrons with an atom, the Fano

resonance occurs as the interference between the incident wave with

continuous energies and the wave scattered by discrete atomic lev-

els. And the same effect is observe in circuits with QDs. In the Fano

effect, the scattered wave gets rapid phase shift by π over the reso-

nance position and the interference results in distorted lineshape in

the resonance. There the energy dependence of transmission coeffi-

cient is given as

T (ϵ̃) ∝ (ϵ̃+ q)2

ϵ̃2 + 1
, ϵ̃ ≡ E − E0

Γ
. (8.70)

Here q is called Fano parameter, which determines the lineshape as

in the left figure. The larger absolute value in q results in the larger

asymmetry and q = 0 gives a symmetric dip (anti-resonance).

Here we do not go into the derivation of (8.70)[2]. Rather we modelize the circuit with S-matrices and obtain the

lineshape numerically. One-dimensional band of quantum wires are assigned to “continuum states” and quantum confined
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Fig. 8.32 (a) Upper: Double barrier model. Lower: Transmission coefficient (red) and phase shift (blue) of the
model in the upper panel. k corresponds to gate voltage. The reflaction coefficient of a barrier is 0.7. (b) Color
plot of conductance of the system shown in the right upper inset (AB ring+QD) versus plane of k (gate voltage) and
magnetic flux ϕ piercing the ring. The conductance is higher for black → red → yellow. In the AB ring model in
Fig.8.19(a), Sw is replaced with the S-matrix obtained in (a), and a finite transmission coefficient is introduced into
SAB. Reflection at the dot barrier is 0.7 and that in the reference arm is 0.82. (c) Transmission of (b) is plotted versus
k for ϕ/ϕ0 =0, 0.01, 0.19, 0.29, 0.38, 0.48 from down to up.

discrete states in a QD are assigned to “discrete states.” To have interference between incident wave and scattered wave,

the incident wave is devided into two, one of which goes through a QD and the ohter directly goes to the outlet. A QD is

formed as a one-dimensional double barrier structure. The model is described by S-matrices as in Fig. 8.32(a). That is,

the barrier and the dot S-matrices are

Sb =

(
cos θ i sin θ
i sin θ cos θ

)
, Sd =

(
0 eikd

eikd 0

)
. (8.71)

Here k is the wavenumber representing kinetic energy, which corresponds to a gate voltage. In this model, the transmis-

sion coefficient and the phase shift are calculated from the composite S-matrix as shown in Fig. 8.32(a), where π phase

shift at the resonance peak is clearly observed. This is common for resonance. Resonance is a response of system, in

which a pole exists in the region Re(z) < 0 on the complex z-plane. The angle from the pole to a point on the real axis

changes from −π to 0 with the movement of the point from −∞ to +∞.

As in Sec. 8.5.4, an S-matrix for two junctions with three channels is written as

St =

 0 −1/
√
2 −1/

√
2

−1/
√
2 1/2 −1/2

−1/
√
2 −1/2 1/2

 . (8.72)

Also for the AB phase, we insert an S-matrix

SAB =

(
0 eiθAB

e−iθAB 0

)
, θ ≡ 2π

ϕ

ϕ0
=
e

ℏ
ϕ (ϕ is flux through the ring.) (8.73)

to one of the parallel paths. And the QD represented in (8.71) is inserted into the other path. Though thus obtained ana-

lytical form of transmission coefficient is complicated, numerical calculations shows clear Fano effect as in Fig. 8.32(b),

(c). The direction of the lineshape distortion (parameter q in (8.70)) changes with the period ϕ0 as shown in (c). This

is natural consequence of the interference and evidences that the distortion comes from the rapid π change in the phase

shift appeared in Fig. 8.32(a).
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Fig. 8.33 (a) Color plot of conductance of an AB ring with a QD on one of the paths versus gate voltage and magnetic
field. (b) Scanning electron micrograph of the sample. The gates with × mark are not used. (c) Coulomb oscillations
at three representative magnetic fields[1]．

Figure 8.33 shows results of an experiment. The Fano lineshape and Fano parameter vary aginst the flux piercing the

AB ring as expected.

8.8.2 Qauntum dot and the Kondo effect

The Kondo effect in QDs originates from the indirectinteraction between electrons in electrodes via localized states.

We do not go into the details due to time limitation. In Appendix 8C, very short summary is given. At low temperatures

most of the freedoms die out and conductors are like empty cavities (electron “waveguides” are also cavities just like

microwave wavefuides). An exceptional case comes from the existence of energy-degenerated freedoms just at the

Fermi level. Fermi spheres themselves are such exceptions but if there exists another degenerated freedom exists and the

freedom has quantum entanglement with electrons at the Fermi level, the Kondo effect appears. The Kramers degeneracy

due to time-reversal symmetry, i.e. spin degeneracy is an easiest example of such degenerated freedom. Hence QDs with

odd number of electrons are convenient for the experiments because the topmost level is occupied by a single electron

and has spin 1/2.

The Kondo effect first appeared as increase of resistance in diluted magnetic alloys with decreasing temperature. Jun

Kondo gave theoretical solution to this problem and simultaneously found the divergence in the second order perturbation.

This Kondo problem became a big problem of physics beyond the frame of solid state physics. For the problem,

Anderson impurity model was proposed, renormalization group theory was developed. The renormalization group

theory was applied to quark confinement problem in particle physics and led to the concept of asymptotic freedom and

the establishment of quantum chromodynamics.

As shown in App. 8C, in very short, the Kondo effect in QDs is anomalous enhancement of tunneling probability

from Hamiltonian HT by many body resonance between degenerate freedom and the Fermi surface. In the case of

QDs, the process expressed by HT is the transmission of electrons through the QDs. That is, enhancement of HT

means enhancement of conductance. If we consider the anaoly with double barrier resoance, the Kondo many body

resonance anomalously enhances the conductance and even when the original conductance is very small due to the
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Fig. 8.34 (a) Illustration of electric conductance through a quantm dot as a function of temperature with the emer-
gence of the Kondo effect. Solid blue line is for odd number of electrons in the QD. In this case the Kondo effect
emerges and at high temperatures the conductance is enhanced in proportion to lnT as the temperature decreases,
whereas below TK the enhancement is saturated to reach the unitary limit 2e2/h. Green broken line is for even num-
ber of electrons and the conductance goes to zero with the Coulomb blockade. (b) The Kondo effect appeared in the
conduction experiment of a QD. The parameter is temperature and the arrows indicate the direction of lowering the
temperature, with which the conductance increases in the valleys with odd nubmer of electrons and decreases in those
with even number of electrons[6].

Coulomb blockade, the final transmission probability should be 1 (unitary). In this case, the conductance is, from the

Landauer formula, the universal value 2e2/h.

A characteristic feature of the Kondo effect is that it is always in resonance with the Fermi surface. Therefore roughly

speaking in the Coulomb valleys with odd number of electrons the conductance is 2e2/h and in those with even number of

electrons the conductance is zero. In Fig. 8.34, we show conceptual behavior and actual observation of QD conductance

around the temperature characteristic of the Kondo effect (Kondo temperature, TK).

Appendix 8C: The Kondo effect

We consider a QD with the impurity Anderson model, in which only one electrons exists in the dot (n = 1) as the

ground state. The dot has spin 1/2, can be viewed as a kind of magnetic impurity. We write the energy required to add an

electron as ∆E+, that required to extract one as ∆E−. Then

∆E+ = µ2 − µ = ϵ0 + U − µ, ∆E− = µ− µ1 = µ− ϵ0. (8C.1)

These energies give the state-allowance-times h/∆E± from the uncertainty relation for the excited states. There should

be, then, second order tunneling processes with HT by utilizing these excited states as the intermediate states. The

probabilities of such processes are
−γ∗LγR
∆E− ,

γ∗LγR
∆E+

. (8C.2)

Such tunnel processes of higher order is called co-tunneling. The Kondo effect can also be regarded as a phenomenon in

which the tunnel probability amplitude due to co-tunneling increases anomalously.

First, the Hamiltonian
H = Hleads +Hdot +HT (8C.3)
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is unitary-transformed as {
ckσ = (γ∗LcL,kσ + γ∗RcR,kσ)/γ

c̄kσ = (−γRcL,kσ + γLcR,kσ)/γ
, γ2 ≡ γ2L + γ2R (8C.4)

Then the tunnel Hamiltonian is transformed as

HT =
∑
k,σ

[(γLc
†
L,kσ + γRc

†
R,kσ)dσ + h.c.]

=
∑
k,σ

[γc†kσdσ + h.c.], (8C.5)

in which we can ignore c̄kσ because it has nothing to do with the coupling to the dot. This transformation renormalizes

the two electrodes model of QD into “a QD and a system with a Fermi surface” model. It formally equalizes a QD for

transport experiment with electrodes to a magnetic impurity in a metal *2．

The transformed Anderson impurity model Hamiltonian is written as

H =
∑
kσ

ϵkc
†
kσckσ +

∑
σ

ϵdd
†
σdσ +

∑
kσ

(γc†kσdσ + h.c.) + Ud†↑d↑d
†
↓d↓. (8C.6)

The condition for having single electron in the ground state of the dot is

ϵd < EF < ϵd + U. (8C.7)

Under the condition, we regard the interaction term (the third term with Vkd) of the conduction electron (s-electron) in

the electrode and the dot electron (d-electron) as a perturbation. The first order of perturbation does not exist because it

changes the number of d-electron, and the leading order is second. This means we need to consider co-tunneling process

as of the leading order.

There are following four perturbation processes on the state in which the d-electron has up-spin ↑. The contraint is that

only ↓-electron is allowed to enter the dot by Pauli principle. We write the unperturbed state as ψ↑.

1) k ↓→ d ↓→ k′ ↓
2) k ↓→ d ↓，d ↑→ k′ ↑ (down-spin electron goes into the dot then up-spin electron goes out)

k

k’

d

k

k’
d

k

k’

d

k’

d

k

k’

d

k’
d

1)

2)

3)

4)
Fig. 8C.1 2nd order possible tunneling processes
for the initial states of an up-spin electron inside the
dot These 1)∼4) correspond to 1)∼4) in Eq. (8C.8),
(8C.9) respectively.

*2 There is a difference in the physical meaning. In the case of magnetic impurities, c†
k′σckσ means impurity scattering. In the case of QDs,

on the other hand, it represents transmission and reflection via co-tunneling. Another difference is that in the case of impurities, k should be
three dimensional vectors. This can be, however, transformed to one-dimensional problem with partial wave expansion of scattered wave, and
mathematical equivalence is kept. This method is used to find the exact solution based on the Bethe ansatz.
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3) d ↑→ k′ ↑，k ↑→ d ↑ (up-spin electron goes out then up-spin electron goes into the dot)

4) d ↑→ k′ ↑, k ↓→ d ↓ (up-spin electron goes out then down-spin electron goes into the dot)

Effective Hamiltonians for these processes are

1) → − γ2

∆E+
c†k′↓d↓d

†
↓ck↓, 2) → − γ2

∆E+
c†k′↑d↑d

†
↓ck↓, (8C.8)

3) → γ2

∆E− d
†
↑ck↑c

†
k′↑d

†
↑, 4) → γ2

∆E− d
†
↓ck↓c

†
k′↑d↑. (8C.9)

Just same as above, four perturbation processes exist for the case that ψ↓ is the initial state. The effective Hamiltonians

for these processes are obtained by the replacement ↑↓→↓↑. These terms are summed up to be

∑
kσ

γ2

∆E− d
†
σdσ +

∑
kk′σ

γ2

∆E+
c†k′σckσ

+
∑
kk′

γ2
(

1

∆E+
+

1

∆E−

)
(c†k′↑ck↑d

†
↑d↑ + c†k′↓ck↓d

†
↓d↓ + c†k′↑ck↓d

†
↓d↑ + c†k′↓ck↑d

†
↑d↓).

(8C.10)

The first term represents process 3) for the case of k = k′. Because k is outside the Fermi surface, at low temperature

under Fermi degeneracy condition, we assume ckc
†
k = 1, c†kck = 0. The second term is for process 1). To obtain this

term we use the fact that from d↓ψ↑ = 0, we can write d↓d
†
↓ = 1, d†↓d↓ = 0. The residual part of process 3) and those of

2) and 4) are expressed in the third term.

Here we transform the above to

c†k′↑ck↑d
†
↑d↑ + c†k′↓ck↓d

†
↓d↓ =

1

2
(c†k′↑ck↑ − c†k′↓ck↓)(d

†
↑d↑ − d†↓d↓) +

1

2
(c†k′↑ck↑ + c†k′↓ck↓)(d

†
↑d↑ + d†↓d↓).

Because the spin operator of the dot Ŝ is expressed as

Ŝz =
1

2
(d†↑d↑ − d†↓d↓), Ŝ+ = d†↑d↓, Ŝ− = d†↓d↑,

the summation of the second and the third term in (8C.10) is rewritten to the summation of the following two Hamiltonians

(Hd,Hsd):

Hd =
∑
kk′σ

γ2
[

1

∆E+
− 1

2

(
1

∆E+
+

1

∆E−

)]
c†k′σckσ, (8C.11)

Hsd =
∑
kk′

γ2
[

1

∆E+
+

1

∆E−

] [
Ŝ+c

†
k′↓ck↑ + Ŝ−c

†
k′↑ck↓ +Ŝz(c

†
k′↑ck↑ − c†k′↓ck↓)

]
. (8C.12)

Let us define J as

J = γ2
(

1

∆E+
+

1

∆E−

)
, (8C.13)

then

Hd =
∑
kk′

(
−J
2

)
c†k′σckσ (8C.14)

is ordinary potential scattering, which does not depend on spin. On the other hand,

Hsd = J
∑
kk′

[
Ŝ+c

†
k′↓ck↑ + Ŝ−c

†
k′↑ck↓ +Ŝz(c

†
k′↑ck↑ − c†k′↓ck↓)

]
= J

∑
j

[
(Ŝx + iŜy)(ŝxj − iŝyj) + (Ŝx − iŜy)(ŝxj + iŝyj) + 2ŝzjŜz

]
= 2J

∑
j

ŝj · Ŝ

(8C.15)

is expressing the exchange interaction between spin of conduction electrons sj and spin on the dot. This is often called

sd-Hamiltonian, which originally expresses interaction between electron spin (s) and localized spin (in many cases, in
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k
k’

d d

HT

Fig. 8C.2 Diagram representing electron scattering k → k′ by a dot
in the first order of HT . The time flows from the left to the right. d

represents the dot and the up/down arrows indicate spins.

d-orbital, then d-spin) in diluted magnetic impurity system. Now with unitary transformation in (8C.4), we can also apply

the sd-Hamiltonian to QD-electrode systems.

Then as transmission Hamiltonian HT we ignore potential scattering Hd and take only Hsd. Then with adding the

electorons in electrodes, the effective Hamiltonian

Heff =
∑
kσ

ϵkc
†
kσckσ + J

∑
kk′

[
Ŝ+c

†
k′↓ck↑ + Ŝ−c

†
k′↑ck↓ +Ŝz(c

†
k′↑ck↑ − c†k′↓ck↓)

]
. (8C.16)

is obtaiend (Schrieffer-Wolff transformation).

Kondo calculated the scattering amplitude by the effective Hamiltonian (8C.16) to the second order in Born approxi-

mation. That is, he treated J in (8C.16) as the parameter of perturbation and calculated up to the quadratic term of J (the

forth term of γ). The operator of transition between the left and right electrodes is given as

T̂ = HT +HT
1

ϵ−H0 + iδ
HT + · · · . (8C.17)

The tunnel probability of L→ R is formally written as

ΓL→R = 2
∑
k,k′

2π

ℏ

∣∣∣⟨Rk′|T̂ |Lk⟩∣∣∣2 δ(ϵRk′ − ϵLk)f(ϵLk − µL)[1− f(ϵRk′ − µR)]. (8C.18)

Let us treat the scattering |k ↑⟩ → |k′ ↑⟩. Perturbation to the first order of J is expressed in the diagram shown in

Fig. 8C.2 and calculated as
⟨d ↑; k′ ↑ |T̂ (1)|d ↑; k ↑⟩ = J/2. (8C.19)

The conduction process HT requires two consecutive tunnelings and this corresponds to the second order of γ (J is thus

proportional to γ2), and co-tunneling process in (8C.2).

There are three types of processes in the second order of J ⟨d ↑; k′ ↑ |T̂ (2)|d ↑; k ↑⟩ as shown in Fig. 8C.3 and

Fig. 8C.4. The first and second processes are not associated with spin flip and they are distinguished as electron process

(Fig. 8C.3(a)) and electron-hole pair process (Fig. 8C.3(b)) for the intermediate propagation process *3．The contribution

of these two terms is calculated as∑
q

(
J

2

)2
1

ϵ− ϵq + iδ
[1− f(ϵq)] +

∑
q

(
J

2

)2 −1

ϵ− (2ϵ− ϵq) + iδ
f(ϵq)

=
∑
q

(
J

2

)2
1

ϵ− ϵq + iδ

=

(
J

2

)2 ∫ D

−D

dϵ′ν
1

ϵ− ϵ′ + iδ
ν : Density of states

=

(
J

2

)2

ν

[
ln

∣∣∣∣D + ϵ

D − ϵ

∣∣∣∣− iπ

]
. (8C.20)

*3 Here “hole” state refers to Fermi liquid lacking single electron. This is largely different from the “hole” state defined as the state created by
extracting an electron from valence band (Sec. 3.1.2).
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k k’

d d

q

d d

k k’

q
HT HT

HT HT

(a) (b)

Fig. 8C.3 Non spin-flip
processes for 2nd order
of HT . (a) Process with
electron excitation as the
intermediate state. (b) In
the intermedate state of this
process, an electron-hole
pair propagates. The hole is
annihilated by recombination
with an electron in the
electrode.

k k’

d d

q

d d

k k’

q??

HT HT

(a) (b)

Fig. 8C.4 Processes with
spin flipped intermediate
stats in the second order
of HT . (a) Process with
electron excitation as the
intermediate state. This
process is absent due to
the angular momentum
conservation. (b) In the
intermedate state of this
process, an electron-hole pair
propagates.

The result does not show any anomaly as a consequence of electron-hole symmetry. Here as for the electronic states in

metal, we have adopted a rough (or abstract) approximation that a band spread over [−D,D] on energy with a uniform

density of states ν. Such a “toy” model is often good to see the essence of phenomenon.

In the processes shown in Fig. 8C.4, spin flips occur in the intermediate states. However in (a), the dot spin should be

3/2 for the conservation of angular momentum, and this process is prohibited. In (b), an electron-hole pair propagates in

the intermediate state and the contribution is calculated as∑
q

J2 1

ϵ− ϵq + iδ
f(ϵq) = J2ν

∫ D

−D

1

ϵ− ϵ′ + iδ
f(ϵ′)dϵ

≈

{
−J2ν ln |ϵ|/D |ϵ| ≫ kBT,

−J2ν ln kBT/D |ϵ| ≪ kBT.
(8C.21)

This term diverges logarithmically with temperature lowering or smaller ϵ. This is the anomalous term found by Kondo.

And various phenomena originate from this anomaly are called the Kondo effect.
Let us consider the origin of this term. In the case of non-spin-flip processes, the anomalous terms cancel each other

due to the electron-hole symmetry. That is, if we look electrons or holes separately the anomaly exists regardless of

spin-flip and the origin is the existence of Fermi surface, which represents huge asymmetry. At absolute zero, states

inside a Fermi sphere are fully occupied while those above the Fermi surface are completely empty with almost infinite

degeneracy. In the processes without spin flip, the electron-hole symmetry perfectly cancels this huge asymmetry. On the

other hand in the processes with spin flip, conservation of spin angular momentum prohibits electron propagation process

in the intermediate state *4, and the asymmetry at the Fermi surface appears as the anomaly.

Because the perturbation leads to the divergence, the perturbative treatment itself is in failure for the condiitons close

*4 Mathematically this comes from non-commutativity of Ŝ+ and Ŝ− (the commutation relation yields Ŝz), hence one can say that this is due to a
quantum mechanical effect.
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to the divergence. Treatment of this problem thus requires various methods other than simple perturbation. In order for

handling this Kondo problem, a number of methods including renormalization group, have been developed. Here we do

not go into the detail of such methods. Instead we have a look on the results at lowest temperatures obtained from years

of research.

In sd Hamiltonian (8C.15), there is antiferromagnetic interaction between the dot spin and the conduction electron

spin. That is, the dot spin attracts electrons with anti-parallel spins and repels those with parallel spins through exchange
interaction arises from co-tunneling. As a result, seen from a distance, a cloud of spin polarization of conduction

electrons appears to cling to the dot spin. The Kondo problem indicates the anomalous enhancement of the above effect.

The cloud like state of spin polarization created as above is called Kondo cloud. On the other hand, the spin polarization

surrounding the dot spin reaches complete screening of the dot spin, further polarization stops. This is called unitary
limit.

This phenomenon can be viewed as many-body resoance. A representative of single-body resonance (resonace that

comes from potential) is the resonant tunneling through double barrier structures. In the double barrier structure, no

matter how high the barrier height is and how small the tunnel probability is, where the energy of the incident wave is

in resonance, the reflected and transmitted waves are infinite sum up of coherent reflection and transmission by the two

barriers. And finally the reflections cancel each other out, the total transmittance is 1. This resonance energies are close

to the bound state energies of an imaginary quantum well composed by making the barrier thicknesses infinite. When the

barrier thickneeses are finite, resonance makes average staying time anomalously long and the modes are called quasi-

bound states. Even if an electron enters the quasi-bound state, it eventually leaks to the outside, so it is in a resonance

state with the free electrons in the electrodes. When the Fermi level hits resonance, the transmission probability reaches

a peak value. An example is shown in Fig. 8C.5.

The Kondo effect has many common features with double barrier phenomenon. While single-body resonance is based

on infinite number of reflections, the Kondo resonance occurs as a result of infinite degeneracy at Fermi surface. In

potential resonance, orbital effect results in non-uniform probability distribution. In the case of the Kondo effect, the

force works among spins and no charge inhomogeneity appears. Instead, localized spin polarization occurs as Kondo

cloud. The biggest difference is that the Kondo cloud is always in resonance with Fermi surface.

Electrons stay in quasi-bound states for finite times. Let τa be the average staying time and the resonance has lifetime

broeadning h/τa(= ℏΓ, Γ is tunneling frequency). Does the Kondo cloud have width? If it does, how large is that?

When the thermal broadening of Fermi surface is larger than the resonance width, the temperature dependence of the

contribution of resonance to conduction should be weak. On the contrary, when the thermal width is narrower than

the resonance width, the temperature dependence also disappears. The energy scale representing resonance width is, in

temperature unit, called Kondo temperature, for which symbol TK is often used.

a bE

x

V0

E/V0

T

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 8C.5 Left: Schematics of dou-
ble barrier potential. Vertical axis is
energy, horizontal axis is space co-
ordinate. Broken lines indicate the
positions of quasi-bound state ener-
gies, i.e. positions of resonant tun-
neling. Real wavelengths of incident
waves are much longer than the il-
lustration. Right: Example of trans-
mission probability under condition
of k0 ≡

√
2mV0/ℏ and k0b=5.0.

Solid line is for k0a=0.5 and broken
line is for k0a=2.0.
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For correct estimation of Kondo temperature, perturbation in (8C.21) is not enough and the effect of higher order terms

should be taken into account in some way. Though, roughly speaking, TK can be estimated as the temperature-dependent

term in (8C.21) is comparable with J at high temperature side. That is, from

−J2ν ln kBTK/D ∼ J,

TK is given as
kBTK ∼ De−Jν .

In the above rough estimation, with increasing the anti-ferromagnetic coupling strength J , TK dcreases exponentially.

Larger J corresponds to higher barriers in double barrier, narrower lifetime width with decreasing tunneling probability.

The same for the density of states ν. On the other hand, widening of band D makes resonance wider, TK higher. Actually

in the present simple model, J andD are not independent. But with ignoring that, widening of the resonance by increasing

D is interpreted as the increase of contribution from deeper inside the Fermi sphere.
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