
Lecture note on Physics of Semiconductors (13)
7th July (2021) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

Chapter 7 The Quantum Hall effect

In many cases, transport in higer dimensions can be understood as that in networks of one-dimensional quantum wires.

On the other hand in the case of Landau quantization, mixing of two-dimensional freedoms is important and it is easier

to treat the system as continuous two-dimensional space (see Sec.[?] for discrete treatment)..

10.1 Two-dimensional electrons under magnetic field

Let us write the Hamiltonian as

H =
m

2
v2 =

(pc + eA)2

2m
≡ π2

2m
=
π2
x + π2

y

2m
. (10.1)

π ≡ pc + eA, (10.2)

where π is dynamical momentum, corresponding to real space velocity as v = π/m∗. π has commutation relations

among themselves and with space coordinates as

[πα, β] = −iℏδαβ , (α, β = x, y), [πx, πy] = −iℏ
2

l2
. (10.3)

We see that x and y components of the momentum do not commute. The fact corresponds to the classical circulating

orbits, which mix up the x and y coordinates, in other words they are no longer independent. l is called magnetic length
defined as

l ≡
√

ℏ
eB

=

√
1

2

√
ϕ0
πB

, (10.4)

which is 1/
√
2 times the radius of circle for single flux quantum (ϕ0 ≡ h/e). l is also called minimum Landau radius.

The factor 1/
√
2 corresponds to the zero-point energy term ℏωc/2 in Eq. (10.9), which we will see later.

We define the operator R̂ of guiding center coordinate (X,Y ) as

r̂ = R̂+
l2

ℏ
(πy,−πx), (10.5)

where r̂ is the real space operator of electrons. The second term in the right hand side is from the classical solution (not

in this note). From the commutation relation between πx and πy , we get

[X,Y ] = il2. (10.6)

The Hamiltonian does not depend on (X,Y ), thus (X,Y ) is a constant of motion while from the commutation relation

in (10.6), there is an uncertainty between X and Y . Now we see that as a set of canonically conjugate variables of the

system we can take R, π other than (r,pc).
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10.1.1 Landau quantization

As in (10.1), the Hamiltonian is quadratic for π and in the form of harmonic oscillator *1, by introducing down/up

operators as

a =
l√
2ℏ

(πx − iπy), a† =
l√
2ℏ

(πx + iπy), (10.7)

it can be written as

[a, a†] = 1, H = ℏωc

(
a†a+

1

2

)
. (10.8)

This is in the harmonic form and the engenenergies are given as

En = ℏωc

(
n+

1

2

)
(n = 0, 1, 2, · · · ). (10.9)

This is interpreted as the discretization of (angular) momentum with quantum confinement by magnetic field. Such

quantization of orbitals by magnetic field is called Landau quantization.

10.1.2 Guiding center

Because R commutes with Hamiltonian (10.1), the eigenenergies in Eq. (10.9) do not depend on R, thus they are de-

generate as the degree of freedom in R. Two dimensional systems under perpendicular uniform magnetic field still keeps

spatial translational symmetry. In the set of eigenfunctions which have the guiding center as an index, the translational

symmetry is kept through the freedom in R. The Landau levels have large degeneracy and the basis can be taken in

various form. The uncommutability between the components of R brings large variaty in the outlooks of the basis.

Let us find the basis that diagonalizes X . For that Landau gauge A = (0, Bx, 0) is convenient. Form Eq. (10.1),

Schrödinger equation is given by

H ψ =
(pc + eA)2

2m
ψ =

−1

2m

[
ℏ2∂2

∂x2
−
(
−iℏ∂
∂y

+ eBx

)2
]
ψ(r)

=
1

2m

[
−ℏ2∇2 − 2iℏeBx

∂

∂y
+ e2B2x2

]
ψ(r) = Eψ(r). (10.10)
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Fig. 10.1 (a) Gray scale plots of probability
densities |ψnk(r)|2 in eigenstates (10.12) with
three values of n, which diagonalize X . The
unit of length is lB , the width along x is about√
2n+ 1lB . (b) The same for the basis, which di-

agonalizes X2 + Y 2 (not mentioned in the text).
In the case ofN = 0, the distribution is around the
circle with the radius |

√
2|mj |lB at the origin.

*1 It is written as a sum of π2
x and π2

y . πx and πy are canonically conjugate operators.
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This Hamiltonian does not contain operator y and y-dependent part of the wavefunction should be a plane wave. Thus

we substitute variable separable form ψ(r) = u(x) exp(iky) into the above equation to obtain[
− ℏ2

2m

d2

dx2
+

(eB)2

2m

(
x+

ℏ
eB

k

)2
]
u(x) =

[
− ℏ2

2m

d2

dx2
+
mω2

c

2
(x+ l2k)2

]
u(x) = Eu(x). (10.11)

This is an equation of a one-dimensional harmonic oscillator that has the center at x = −l2k. The eigenvalues are given

in Eq. (10.9), and the eigenfunctions are written as

ψnk(r) ∝ Hn

(
x− xk
l

)
exp

(
− (x− xk)

2

2l2

)
exp(iky) (xk ≡ −l2k), (10.12)

where Hn is n-th order Hermite polynomial. In each of these states, X is fixed as X = xk = −l2k = −l2py/ℏ while

it is a plane wave on y spreading over whole space, namely Y is fully uncertain. In the states given by Eq. (10.12), the

energy does not depend on k. Though the states are extended along y, hence the group velocity is zero (∂E/∂k = 0).

On the other hand ∂X/∂k is not zero, then if some x-dependent potential is added to the system, the states gain a finite

group velocity and motions along y.

Figure 10.1(a) shows gray scale plots of probability density in Eq. (10.12). We see they are uniform along y while

one-dimensional harmonic oscillators along x. We are not showing the functional form here but the eigenstates can be

chosen so as to diagonalize X2 + Y 2. In this case, as shown in Fig. 10.1(b), the probability densities are localized both

for x and y. The reason why their outlooks are so different in spite of the fact that they have the same eigenenergy, is of

course it has large degeneracy and also the degeneracy comes from the freedom in R, which is the freedom in the real

space.

10.2 Integer quantum Hall effect

10.2.1 Shubnikov de Haas (SdH) oscillation

Let us consider the process of increasing magnetic field applied perpendicular to a two-dimensional electron system.

With Landau quantization (10.9), the energy levels are as in Fig. 10.2, spead radially from the origin (Landau fan, fan

diagram). How the electrons occupy those Landau levels when the system is connected to particle reservoirs as in

transport experiments? The external particle reserviors make the Fermi level EF constant but if we impose this condition,

the origin in Fig. 10.2 should shift with magnetic field. The origin in Fig. 10.2 is defined as the zero-point of kinetic

energy in xy-plane, namely energy levels quantized along z-axis. In the simple approximation in Sec. 7.3, the position

of EF is determined to screen the electrostatic potential formed by ionized potential with arial density Ndep. Then

with variation in the density of states for kinetic freedom in xy plane, the distribution of occupied states also varies to

compensate the potential from the impurities. This leads to the shifts in self-consistent potential and the position of the

lowest level (origin). If we look the Landau fan from the coordinate in which the origin is fixed, EF varies with magnetic

field. Below, we adopt this coordinate (constant 2DEG arial density ns).

Let us find the arial density of states per single Ladau level nL. For that we count the number of possible wavefunctions

in Eq. (10.12) in the area ofWx×Wy in xy-plane. The function in Eq. (10.12) is a plane wave along y and the “distance”

of the states in k-space in 2π/Wy . On the other hand, the section 0 ≤ X ≤ Wx corresponds to −Wx/l
2
B ≤ k ≤ 0 in

k-space for the wavefunctions. Hence the number of of states in the area S =WxWy is

Wx/l
2
B

2π/Wy
=

S

2πl2B
∴ nL =

1

2πl2B
=
eB

h
=
B

ϕ0
, (10.13)

that is the number of quantum flux in the flux density. The number of Landau levels occupied by electrons is

ν =
ϕ0ns
B

, (10.14)
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Fig. 10.2 Landau levels in (10.9) as a function of mag-
netic field. The broken line indicates the potision of EF in
this frame under the condition of constant ns. E(0)

F is for
zero magnetic field.

which is called filling factor
At absolute zero, electrons occupy Landau levels from the lowest one and EF is locked to the highest occupied Landau

level. With increasing magnetic field, the changes of “topmost occupied level” take place at the points ν hit integers,

where EF shifts from E = ℏωc(ν + 1/2) to ℏωc(ν − 1/2). To summarize, in Fig. 10.2, EF oscillates as indicated by

broken line. This oscillation and the resultant oscillation in the electric resistance is called Shubnikov-de Haas (SdH)

oscillation.

10.2.2 Localization of wavefuntion

I believe there is no rigorous proof but it is widely believed that in two-dimensional systems with some potential disor-

der, time-reversal symmetry, no spin-orbit interaction, all the particle states (wavefunctions) localize spatially (Anderson

localization). Magnetic field breaks the time reversal smmetry and the Anderson localization is simultaneously broken.

However, with further increase in magnetic field, the cyclotron radius becomes shorter than the characteristic length of

the potential disorder, localization appears due to a bit different mechanism.

E

(a) (b)

Peak

Bottom

localized

delicalized

Fig. 10.3 (a) Schematic diagram showing how the Landau level wavefunction is localized by the impurity potential
in a strong magnetic field. Wavefunctions in the form of Fig. 10.1(a) are bound on equipotential lines of disordered
potential. The lines that depict drifting while rotating are classical orbits. (b) Landau level energies are broadened
by disordered potential and localized as shadowed. Delocalized states exist around the centers of Landau “bands,”
corresponding to the concave-convex transition equipotential lines.
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Fig. 10.4 Example of integer quantum Hall ef-
fect. 2DEG at an AlGaAs/GaAs interface is fab-
ricated into the shape of Hall bar shown in the in-
set. A current is applied to the long thick line (x-
direction), ρxx is obtained from the voltage be-
tween two probes placed along x while ρxy is ob-
tained from the probes placed face to face along
y.

Such behavior is illustrated in Fig. 10.3(a). Electric field applied to electons in cyclotron motion causes movement

perpenducular to the field. In nonuniform potential as shown in the figure, such movement of electrons results in a

rounding motion bound on an equipotential line. Then the state as a whole is spatially localized. Such spatial confinement

leads to broadening of Landau levels as we have seen in Fock-Darwin state. Then the delta-function density of states

of original Ladau level gets broadening as illustrated in Fig. 10.3(b). On the other hand, there are a small number of

equipotential lines that do not make a closed loop between potential peaks and dips as in Fig. 10.3(a). Such a state on

non-closed equipotential line should be extended and it is known that each broadened Landau “band” has a single such

extended state at the center. This is also illustrated in Fig. 10.3(b).

10.2.3 Characteristics of integer quantum Hall effect

In Fig. 10.4 we show an example of measured integer quantum Hall effect (IQHE). Increasing magnetic field perpen-

dicular to two-dimensional plane, the Hall resistance ρxy deviates from classical linear dependence on magnetic flux

density B (Eq. (5.15)) and a clear staircase structure emerges. In the IQHE, the heights of the plateaus are exactly

ρxy =
h

e2
1

n
=

1

n
(RK) ≈

2.5812× 104

n
(Ω), (n = 1, 2, . . . ). (10.15)

As can be guessed in Fig. 10.4, in the plateau regions simultaneously ρxx = 0, that is, finite current flows without

longitudinal voltage. The current here is, like superconductivity, a kind of supercurrent without energy dissipation.

10.2.4 Explanation based on edge mode transport

Comparing the experiment shown in Fig. 10.4 and the localization/delocalization diagram in Fig. 10.3(b), we see that

the supercurrent which causes ρxx = 0 flows and ρxy is quantized when EF does not exist in the regions of delocalized

states. To put this the other way around, ρxy is in a transient region between quantized plateaus when EF exists in

the retions of delocalization. Namely the quantization and supercurrent take place when two-dimensional electrons are

insulating in the bulk.
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Fig. 10.5 Two-dimensional electrons under
strong magnetic field are confined by “gutter-
like” potential V (x). The effective potential in-
cluding the effect of magnetic field is expressed
as U(x) (sum of V (x) and magnetic confinement
potential). Formation of edge states is indicated
by broken lines. The lower panel illustrates clas-
sical skipping orbits.

The “edge state model” explains the phenomenon based on edge mode transport. A sample with a finite width as

illustrated in Fig. 10.4 inevitably has edge states*2. To model that, we consider a two-dimensional electron gas confined

in x-direction by a well-like potential V (x) with width W , spreading over y. In this model the current is applied in

y-direction (for convenience the coordinate is rotated by π/2).

V (x) is added to Eq. (10.10) for the wave equation. Figure 10.5 illustrates the situation, in which the gutter-like

potential and the harmonic potential by magnetic field co-exist. V (x) = 0 deep inside the bulk and ordinary Landau

quantization takes place while in the vicinity of edges, V (x) makes the effective harmonic potential narrower, i.e. effec-

tive ωc larger, hence Landau levels go up with approaching the edges. The increase of n-th Landau level begins where

X-coordinate of guiding center is in the width of wavefunction
√
2n+ 1lB/2 to the edge. In the region of such level

increase,
⟨vy⟩ = dE/ℏdk = −(l2B/ℏ)dE/dX (10.16)

becomes finite, giving spatial motion to Landau quantized electrons. Such mobile states correspond to classical skipping

orbits, which consist of cyclotron motions and collisions to an edge as illustrated in the lower panel of Fig. 10.5. They

are called edge states. In the edge states the direction of electron motion is determined by the sign of magnetic field.

Normalizing the edge mode wavefunction in the length Ly along y, the current brought by the mode is j = (e/Ly)⟨vy⟩.
A single mode at one-side edge is occupied up to the electrochemical potential µ. We take a base energy E0 lower than µ

and higher than the bulk Landau level with the same Landau index as the edge mode. The current brought by the electrons

occupying the states from E0 to µ in this edge state is obtained from (10.13) and (10.16) as

J =

∫ Xµ

X0

LydX

2πl2B

e

Ly
⟨vy⟩ =

e

h

∫
dX

dE

dX
=
e

h
(µ− E0). (10.17)

AB

-W/2 W/2

m

m
A

A

B

B XX X

Fig. 10.6 Schematic drawing of a Lan-
dau level with edge modes. Finite net
current is flowing perpendicular to the
figure (y-direction) and consequently fi-
nite gradient in x-direction is given (ex-
aggerated).

*2 There is no edge state along the current if the two edges are connected. Such a structure in a plane is called “Corbino disk.”
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When EF is in regions of localization, in equilibrium the chemical potential is uniform over the sample and the edges

opposite to each other have counter-flowing currents with the same amount, the bulk states are localized and the net

current is zero (circular equilibrium current is flowing at the edge). Now we apply the boundary condition that the net

current Jy flows along y. As in Fig. 10.6, Jy is the difference between currents JA and JB at edges A and B respectively.

Hence from Eq. (10.17), there should be a difference between µA and µB, which leads to the Hall voltage. Then

σxy =
Jy
Vx

=
e(JA − JB)

µA − µB
=
e2

h
. (10.18)

This is the conductivity for single Landau level, and for ν levels σxy is ν times of this value, thus the IQHE is explained.

The above derivation is the same as that of the Landauer formula other than crossing of x and y. The quantization is

not so pricise for QPC conductance while surprizingly high precision is achieved for IQHD because of the chirality and

the geometrical effect in the edge modes. In the case of QPC, conductance channels with opposite direction are spatially

overlapped and backscattering of electrons can easily occurs. On the other hand in the case of IQHE, there is a macro-

scopic spatial distance between counter-flowing edge states and the probability of backscattering is astronomically low,

and the transmission coefficient is exactly one. Therefore, the quantization of IQHE should be inaccurate if the sample

width is narrowed and scattering between the edge states is likely to occur, which has been confirmed by experiments.

In the above simple model, we ignore the Hall electric field inside the sample. dE/dX caused by the Hall electric field

leads to finite bulk current though they cancel each other, does not contribute to Jy and the above discussion still holds.

10.3 Explanation based on topological invariant

We continue theoretica explanation for IQHE. In this section, we need to introduce several new concepts. Below we

continue along Ref. [4].

10.3.1 Bloch electrons in magnetic field

We expand the concept of Bloch electron to two-dimensional electrons in magnetic field. This way of treatment is close

to tight-binding model while that in Sec. 10.1 is based on two-dimensional free electron. In a two-dimensional square

lattice, we write the translational operator by lattice vector R as TR.

TRf(r) = f(r +R).

By expanding f(r) with plane wave eikr, from TRe
ikr = eik(r+R) = eikReikr, TR is written as

TR = exp

(
i

ℏ
R · p

)
. (10.19)

TR commutes with H0 (lattice Hamiltonian for zero magnetic field) and the Bloch states are defined as the eigenstates

that diagonalize the two operators simultaneously.

We then proceed to treat a system under a uniform magnetic field.

H =
1

2m
(p+ eA)2 + V (r). (10.20)

The lattice potential V (r) is invariant for the operation of TR though the vector potential A is not. Generally

A(r) = A(r +R) +∇g(r).
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The loss of translational symmetry due to the cyclotron motion, which does not conserve momentum. Now we consider

modification of the translation operator. We define magnetic translation operator by replacing p with p + eA in

Eq. (10.19). Under symmetric gage A = B × r/2, the magnetic translation operator TBR is given by

TBR ≡ exp

{
i

ℏ
R ·

[
p+

e

2
(r ×B)

]}
= TR exp

[
ie

ℏ
(B ×R) · r

2

]
. (10.21)

TBR commutes with H , and there exists a basis which diagonalizes the two operators simultaneously. Care should

be taken that the magnetic translational operators do not commute each other generally just like the guiding center

coordinates of Landau levels do not. The commutation relation can be represented as a phase factor in

TBRaTBRb = exp(2πiϕ)TBRbTBRa, ϕ =
eB

h
ab, (10.22)

where a and b are the lengths of unit vectors. Hence ϕ is the magnetic flux piercing a unit cell in the unit of flux quantum

h/e. When ϕ is a rational number p/q, commutable set of magnetic translational opertors can be prepared as a lattice

limits translational vectors into discrete lattice vectors. To have simpler view, we consider a magnetic unit cell, which

is defined from magnetic unit vectors qa, b corresponding to original unit vectors a, b. A magnetic lattice vector R′ is

expressed as
R′ = n(qa) +mb. (10.23)

Then the flux piercing the magnetic unit cell is p (integer) times a flux quantum and the magnetic translational operators

TBR′ commute each other.

Now we take ψ as a common eigenstate of H and TBR′ . Let Tqa and Tb (we do not write BR′ for simplicity) be

elements of the set of TBR′ , then the eigenvalues are written as

Tqaψ = eik1qaψ, (10.24a)

Tbψ = eik2bψ, (10.24b)

where k1, k2 are generalized crystal momenta. In reduced zone representation, k1, k2 can be limited in the first magnetic
Brillouin zone 0 ≤ k1 < 2π/qa, 0 ≤ k2 < 2π/b. The magnetic eigenstates is written in the Bloch form

ψnk(r) = eikrunk(r), (10.25)

where n is a band index, k is a generalized momentum. The conditions for unk(r) are as follows.

unk(x+ qa, y) = exp
(
i
πpy

b

)
unk(x, y), (10.26a)

unk(x, y + b) = exp

(
−iπpx

qa

)
unk(x, y). (10.26b)

Then if we write unk(r) in the amplitude-phase factor form as unk(r) = |unk(r)| exp[iθk(r)],

p (integer) = − 1

2π

∮
dl · ∂θk(r)

∂l
, (10.27)

where the integral route is taken counter clock direction along the edge of magnetic unit cell.

10.3.2 Hall conductivity from linear response theory

In the k·p perturbation for the band calculation, by renormalizing the plane wave part of wavefunction into the Hamil-

tonian we obtain the equation for the lattice periodic part unk(r). We can go the same way for the tight-binding model

in strong magnetic field. Operation of the Hamiltonian in (10.20) on the magnetic Bloch function in (10.25) can be

calculated from peikr = eikr(ℏk + p) as

(p+ eA)2eikrunk(r) = eikr(ℏk + p+ eA)2unk(r).
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We can rewrite the Schrödinger equation as

Hkunk(r) = Enkunk(r), Hk =
1

2m
(−iℏ∇+ ℏk + eA)2 + V (r). (10.28)

Now we utilize Kubo formula for Hall conductivity in (9B.3). We take the basis as magnetic Bloch funtions and state

indices are taken as (n,k). Velocity operator v can be written as v = (−iℏ∇ + eA)/m, and for the integration in the

numerator we write the matrix element of the operator by using braket representation unk(r) → |n,k⟩ as

⟨n,k|v|m,k′⟩ = δkk′

∫ qa

0

dx

∫ b

0

dyu∗nkvumk′ ≡ δkk′⟨n|m⟩. (10.29)

From the periodicity in k space, the integration just on the magnetic unit cell is enough. The normalization should be∫ qa

0

dx

∫ b

0

dy|unk(r)|2 = 1.

By using k-dependent Hamiltonian in (10.28), we can write down the matrix elements as

⟨n|vx|m⟩ = 1

ℏ

⟨
n

∣∣∣∣∂Hk

∂kx

∣∣∣∣m⟩ , (10.30a)

⟨n|vy|m⟩ = 1

ℏ

⟨
n

∣∣∣∣∂Hk

∂ky

∣∣∣∣m⟩ , (10.30b)

where k = (kx, ky). These are further calculated as⟨
n

∣∣∣∣∂Hk

∂kj

∣∣∣∣m⟩ = (Em − En)

⟨
n

∣∣∣∣∂um∂kj

⟩
= −(Em − En)

⟨
∂un
∂kj

∣∣∣∣m⟩ , j = x, y. (10.31)

Substtuting the above to the Kubo formula (9B.3) to obtain

σxy = −ie
2

ℏ
∑
k

∑
n

f(Enk)
∑

m(̸=n)

[
⟨nk|∂Hk/∂kx|mk⟩⟨mk|∂Hk/∂ky|nk⟩

(Enk − Emk)2
− c.c.

]

= −ie
2

ℏ
∑
k

∑
n

f(Enk)
∑

m(̸=n)

[⟨
∂un
∂kx

∣∣∣∣m⟩⟨m ∣∣∣∣∂un∂ky

⟩
−
⟨
∂un
∂ky

∣∣∣∣m⟩⟨m ∣∣∣∣∂un∂kx

⟩]

=
e2

h

2π

i

∑
k

∑
n

f(Enk)

[⟨
∂un
∂kx

∣∣∣∣ ∂un∂ky

⟩
−
⟨
∂un
∂ky

∣∣∣∣ ∂un∂kx

⟩]
. (10.32)

Now we define a vector field Ank with

Ank =

∫
d2ru∗nk∇kunk = ⟨unk|∇k|unk⟩. (10.33)

We assume T = 0 and that EF is in the localized region. Writing the summation on k as the form of integration, σxy is

given by

σxy =
e2

h

1

2πi

∑
En<EF

∫
MBZ

d2k[∇k ×Ank]kz
=
e2

h

1

2πi

∑
En<EF

∫
MBZ

d2k[rotkAnk]kz
. (10.34)

The integration is over the magnetic Brillouin zone.

Because at the edges of a magnetic Brillouin zone, kx = 0 and kx = 2π/qa, ky = 0 and ky = 2π/b are the same

points, topologically the zone is two-dimensional torus T 2 = S1 × S1. When Ank is single-valued on this torus, σxy
calculated from (10.34) is zero as known from the Stokes theorem. That is, for σxy ̸= 0, Ank should have non-trivial

topology. Here it is important that the magnetic Brillouin zone is a torus, which cannot be squeezed continuously to

single point. If such squeezing is possible, Ank defined on the manifold cannot have non-trivial topology.

To see the topology of Ank, we consider local gauge transformation. A solution of Schrödinger equation (10.28)

uk(r) can be transformed with an arbitrary continuous function f(k) to another solution

u′k(r) = exp[if(k)]uk(r). (10.35)
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Fig. 10.7 Illustration of phase of wavefunction when it has zero in
the magnetic Brillouin zone.

u and u′ are physically the same. From the definition in Eq. (10.33), this transformation corresponds to

A′
nk = Ank + i∇kf(k). (10.36)

To eliminate the above uncertainty originated from the gauge undertainty, we assume fixing the phase of unk(r) at one

point. With this, though, we cannot fix the entire phase over the whole magnetic Brillouin zone. We assume unk(r) is

zero at a point k0. As shown in Fig. 10.7, the magnetic Brillouin zone is devided into retion HI that contains k0 and

residual region HII. If HI contains a zero, the phase must “rotate” around the zero as in the figure. On the other hand

HII should be connected at the edges as a torus and the wavefunction should have different structure in phase. Hence we

need to take different gauges in the two regions.

For simplicity we consider the contribution of band n only and n can be omitted. The integrals in (10.34) are, by

applying Stokes’ theorem to the two regions, given by

I =
1

2πi

[∫
I

d2k[rotA]kz +

∫
II

d2k[rotA]kz

]
=

∮
∂H

(AII −AI) · dk
2πi

. (10.37)

The integral over circumference of region II cancels out due to the torus boundary condition (equivalent to “back and

forth” integration over a single line). On the boundary ∂H , with gauge transformation the relation of the wavefunction is

expressed as
uIk = uIIk e

iθ(k). (10.38)

From the definition (10.33), the integral should be

I =

∮
∂H

[
⟨uIIk |∇k|uIIk ⟩+ (i∇kθ)⟨uIIk |uIIk ⟩ − ⟨uIIk |∇k|uIIk ⟩

]
· dk
2πi

=
∆∂Hθ

2π
. (10.39)

The phase evolution over single circulation on the boundary ∆∂Hθ should be an integer times 2π and I is limited to an

integer. Let νC be that integer. And let nB be the number of bands lower or at the same level as EF, we find

σxy = nBνC
e2

h
, (10.40)

which tells that the Hall conductance should be an integer times e2/h. Equation (10.40) is called Thouless-Kohmoto-
Nightingale-Nijs (TKNN) formula[5]. νC is called Chern number and known to be 1 for the Landau bands. The above

gives the same result as Eq. (10.18).

Chern number is the number of anomalies in the phase of wavefunction, equivalently the number of zeros. It is a kind

of topological invariant. The origin of Chern number is in the topological property of energy bands. In order to turn a

torus into a sphere, we should once tear up the surface around the hole then sew the surfaces together and finally erase

the hole. Similarly to change the band structure into the one with different topology (Chern number), we need to crush

the band gap once. For this reason, the Hall conductance found in TKNN formula is stable and precise regardless of the

variety of sample properties.

Here Ak is a Berry connection, rotAk is a Berry curvature in Appendix 9A. We will revisit them in the section of

topological insulator.
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10.3.3 Laughlin’s gedankenexperiment

Robert Laughlin considered a sample in which a 2DEG is rolled into a cylinder with a radius of R and a circular

electrode is attached to the end of the cylinder (Fig. 10.8)[6]. The magnetic field is emitted outward from the core of the

cylinder and is applied perpendicularly to the 2DEG. x and y axes are taken as in the figure. There is no edge because

the current is applied along x and the sample is closed along y. Further, a thin, long solenoid is placed at the core and an

applied current creates a magnetic flux Φ through it. The flux does not touch the 2DEG directly but gives an AB phase

on orbits going around the cylinder. The vector potential for the perpendicular magnetic field and that for the field by the

solenoid are in Ladau gauge

A = (0, Bx), AΦ =

(
0,− Φ

2πR

)
. (10.41)

We write down the wavefunction in the form of Eq. (10.12). Because the system is circular in y-directoin, the wavefunc-

tion should go around the circle.

The current in y-direction is

jy =
1

Lx

∂Et

∂Φ
. (10.42)

Et is the total energy on the cylinder per the normalization length Lx
*3. The vector potential in Landau gauge is

a = (0, Bx − Φ/Ly, 0). We take the unperturbed Hamiltonian H0 as the one of 2DEG under magnetic field. Then the

effect of solenoid flux is taken into account by the transformation

ky → ky −
2π

Ly

Φ

ϕ0
,

(
ϕ0 ≡ h

e

)
(10.43)

in the Hamiltonian. This transformation corresponds to the variation in X-coordinate of the guiding center as

X → X +

(
Φ

ϕ0

)
Lx

Nϕ
. (10.44)

Then the variation in penetration magnetic flux Φ → Φ +∆Φ appears as that in X ∆X = (Lx/Nϕ)∆Φ/ϕ0. If ∆Φ is

an integer (q) times ϕ0, then ∆X = qLx/Nϕ = 2qπl2B/Ly , which is q times the distance in x between the eigenstates.

Namely the states shift to q-th next eigenstates and the variation in Φ is absorbed into the phase of wavefunction. When

x

yF F+DF

B

V V(a) (b)

R

Fig. 10.8 (a) Rolled up two-dimensional system used in Laughlin’s gedankenexperiment. The magnetic field B is
emitted outward from the core of the cylinder and is applied perpendicularly to the 2DEG. A thin, long solenoid is
running at the core of the cylinder giving an AB phase. The electric field is applied in x-direction. (b) Schematic
drawing of the variation in wavefunction when the flux by the solenoid is increased from Φ to ∆Φ.

*3 Here we prove the equation simply as follows. Let L be the inductance of the cylinder. A state with current J has the magnetic energy
EH = L J2/2 = Φ2/2L , which means ∂EH/∂Φ = Φ/L = J . Let Lx be the normalization length. From J = Lxjy we reach the
equation.
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N Landau levels are completely occupied, that is ν = N , and there is an electric field ofE in x, the variation of∆Φ = ϕ0

causes a variation in the energy of ∆E = −eE∆XNe (Ne = νNϕ = NNϕ).

Here we assume as follows. In the quantum Hall state, the current does not depend on the boundary condition in

y-direction. In other words the current does not depend on the absolute value of Φ. Then we replace the derivative in

(10.42) with the finite differece to find

jy =
1

Lx

∂Et

∂Φ
=

1

Lx

∆Et

∆Φ
=

1

Lx

(
−eE Lx

Nϕ

)
Ne

ϕ0
= N

e2

h
E. (10.45)

That is the Hall conductance σxy = jy/Ex is quantized as an integer times e2/h. Because e2/h is the conductance for

single band, this is an indirect proof that the Chern number of single Landau level is one.

Appendix 9A: The Berry phase

A common classic example of the Berry phase is the parallel displacement of a vec-

tor on a sphere as shown on the left. When the vector is translated in three-dimensional

space on an appropriate trajectory and return to the original point, the vector does not

change. However if we apply a constraint that the vector should be in-plane during the

“parallel displacement” (or the vector should be in the tangent plane of the sphere),

then as in the left figure, the direction of the vector generally changes when the vector

origin comes back to the starting point. The angle between the starting vector and the

returning vector corresponds to the Berry phase.

Let α be the angle of variation in the direction of the vector, C be the tranjectory,

then α can be expressed as a line integral on C of a vector A. This A is called Berry
connection (Berry connection depends on the constraints on the vector movement). From Stokes’ theorem α can also be

written as the integration over an area S rimmed by C as

α =

∮
C

A · ds =

∫
S

rotA · dσ,

where rotA is called Berry curvature.

Let us go to quantum mechanics. We consider a time-dependent Hamiltonian H(t) and write the eigenvalue equation

as
H(t)|n(t)⟩ = En(t)|n(t)⟩. (9A.1)

Taking time-derivatibe and operating the eigenfunction ⟨k| from left we get

⟨k(t)|∂|n(t)⟩/∂t ≡ ⟨k(t)|ṅ(t)⟩ = 1

En(t)− Ek(t)

⟨
k(t)

∣∣∣∣∂H∂t
∣∣∣∣n(t)⟩ . (9A.2)

∴ ⟨ṅ|n⟩+ ⟨n|ṅ⟩ = 0 ∴ Re(⟨n|ṅ⟩) = 0. (9A.3)

Let ψ(t) be a solution of the Schrödinger equation composed of H(t). ψ(t) is expanded by |n(t)⟩ as

|ψ(t)⟩ =
∑
n

cn(t)|n(t)⟩ exp
(
− i

ℏ

∫ t

0

E′
n(t

′)dt′
)
, (E′

n(t) ≡ En(t)− ℏηn(t), ηn(t) = i⟨n|ṅ⟩). (9A.4)

Substituting this into the Schrödinger equation we find

∑
n

iℏ
(
ċn|n⟩+ cn|ṅ⟩ −

i

ℏ
E′

ncn|n⟩
)
exp

[
− i

ℏ

∫ t

0

E′
n(t

′)dt′
]
=
∑
n

cnH|n⟩ exp
[
− i

ℏ

∫ t

0

E′
n(t

′)dt′
]
. (9A.5)
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Operating ⟨k| from the left, from Eq. (9A.2) we obtain

dck
dt

=
∑
n ̸=k

⟨k|∂H/∂t|n⟩
Ek − En

exp

[
i

ℏ

∫ t

0

(E′
k(t

′)− E′
n(t

′))dt′
]
cn. (9A.6)

We consider variation of H(t) slow enough for the variation of the wavefunction to be adiabatic. We take the starting

point of the wavefunction ψ(0) = |m(0)⟩ and the adiabatic change means |ψ(t)⟩ = |m(t)⟩ with no mixing of other

eigenstates. Let us express the time evolution of H as that in a set of parameters {Ri(t)}, which can be written in the

vector form R(t). We consider a loop trajectory in R-space starting R(0) at t = 0 and coming back to R(0) at time T .

|ψ(t) = |m(R(t))⟩ exp
[
− i

ℏ

∫ t

0

E′
m(t′)dt′

]
= |m(R(t))⟩ exp

[
− i

ℏ

∫ t

0

Em(t′)dt′
]
eiγm(t), (9A.7)

where γm(t) =

∫ t

0

ηm(t′)dt′ = i

∫ t

0

⟨m(R(t′))|ṁ(R(t′))⟩dt′. (9A.8)

As known from (9A.3), γm is a real number. For a loop trajectory, with variable transformation t→ R,

γm(T ) = i

∫ T

0

⟨m(R(t))|∇Rm(R(t))⟩ · Ṙ(t)dt = i

∮
C

⟨m(R(t))|∇Rm(R(t))⟩ · dR(t))⟩dR = γm(C). (9A.9)

∇R is the gradient operator in R-space. Below we omit the subscript R. The above equation means with a loop variation

of Hamiltonian associated with adiabatic transition of the state, Berry phase γm(C) is added to the wavefunction. Further

by using Stokes’ theorem,

γm(C) = −Im

∮
c

⟨m(R)|∇m(R)⟩ · dR = −Im

∫
S

[∇× ⟨m(R)|∇m(R)⟩] · dS (9A.10)

is obtained.

Appendix 9B: Kubo formula for Hall conductivity

The bf Kubo formula is the ultimate form of linear response theory developed from the first half to the middle of the

20th century. There are various mathematically equivalent expressions in the Kubo formula, but here we introduce what

is called Nakano-Kubo formula. We consider a two-dimensonal electrons under perturbation eEy of electric field E in

y-direction. First order perturbed states |α′⟩ are written by unperturbed eigenstates |α⟩ as

|α′⟩ = |α⟩+
∑
β ̸=α

⟨β|eEy|α⟩
Eα − Eβ

|β⟩. (9B.1)

To consider the Hall conductance we need to sum up the contributions from each |α′⟩ to the current along x-direction.

Then the current density in x-direction to the first order of perturbation is written as

jx =
1

L2

∑
α

f(Eα′)⟨α′|ĵx|α′⟩ = 1

L2

∑
α

f(Eα)
∑
β ̸=α

⟨α|(−evx)|β⟩⟨β|eEy|α⟩
Eα − Eβ

+ c.c., (9B.2)

where f(E) is the Fermi distribution function, L2 is the area of normalization. Because the perturbation term is odd

function, there is no first order energy correcltion, and Eα′ = Eα. From

⟨β|vy|α⟩ = ⟨β|ẏ|α⟩ = − i

ℏ
⟨β|[y,H ]|α⟩ = − i

ℏ
(Eα − Eβ)⟨β|y|α⟩,

this ⟨β|y|α⟩ is substituted into Eq. 9B.2 to obtain

σxy =
jx
E

=
e2ℏ
iL2

∑
α

f(Eα)
∑
β

⟨α|vx|β⟩⟨β|vy|α⟩
(Eα − Eβ)2

+ c.c.. (9B.3)
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Appendix 9C: Fractional quantum Hall effects

In the quantum Hall effect, various novel phenomena and ideas have been found. Among them we have a very short

look at the fractional quantum Hall effect.

9C.1 Experiment on fractional quantum Hall effects

Fractional Quantum Hall Effect (FQHE) was found in transport experiment in a high-mobility 2DEG. In IQHE, the

Hall conductance plateaus appear at σxy = nGq (n is an integer) while in FQHE the conductance plateaus appear at

σxy = fGq, f =
m

n
(n : odd integer, m : integer). (9C.1)

Figure 9C.1 shows a representative mesurement of FQHE. The result contains IQHE though the widths of the plateaus

are not prominent and rather the behavior is on the classical line. And at the positions in (9C.1), narrow plateaus are

observed. On the other hand, the behavior of ρxx against the magnetic field is dramatic. Even for narrow plateaus at

positions (9C.1), ρxx goes to zero or becomes very small. Hence fine and steep oscillation is observed. Even in the high

magnetic field region where no IQHE is observed (filling factor ν < 1), fine oscillation is observed. In particular an

oscillation symmetric to ν = 1/2 is observed.

FQHE is very sensitive to the electron mobility, cannot be observed in low mobility samples. In comparison with IQHE,

FQHE is observed at lower temperatures with activation energy of a few K. Generally FQHE is easier to be observed at

higher magnetic field.

Before going into the physics, we have a short look at the mutual electron interaction and the localization. As we

saw in Sec. 10.2.2, when a 2DEG is under a strong magnetic field, the electrons at the Fermi level are in the edge mode

at the equipotential lines of impurity potential. The localized state are the states going around the closed equipotential

lines. The electron-electron interaction gives some fluctuation to the impurity potential and there is a possibility to lift

the localization.

Fig. 9C.1 Representative ex-
ample of FQHE measurement.
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9C.2 Laughlin state

It has been clarified by long-term researches that the electronic states causing FQHE is a kind of electron liquid, in

which the electron mutual interaction is dominating the many-body state. The Laughlin state, in spite of its simpleness,

has been proven to be a good approximation to such electron liquids. This is a big event in many-body physics since the

BCS theory.

We again consider a two-dimensional electron system on xy plane in the magnetic field of flux density B. Here for

convenience we take the symmetric gauge A = (−By/2, Bx/2). xy-plane can be expressed as a complex plane. The

spatial length is measured by the magnetic length. That is, a point on the 2DEG plane can be represented as a complex

number z = (x− iy)/l. The Hamiltonian with the electron-electron interaction is written as

H =
∑
j

[
1

2m
(−iℏ∇+ eA)2 + V (z)

]
+
∑
j<k

e2

|zj − zk|
. (9C.2)

First we make a many-body wavefunction from single-body wavefunctions at the lowest Landau level without potential

and the Coulomb interaction. Then the detail of the many-body wavefunction is determined to minimize the electron

interaction energy. The wavefunction which diagonalizes X2 + Y 2, thus the angualr momentum is written as

ϕ(z) = p(z) exp

(
−|z|2

l2

)
, (9C.3)

where p(z) is a polynomial of z. Let Ne be the number of electrons and the many-body wavefunction can be written as

ψ(z1, · · · , zNe) = f(z1, · · · , zNe) exp

(
−
∑
i

|zi|2

4

)
, (9C.4)

where a polynomial f should be anti-symmetric for the exchange in (1, · · · , Ne) due to the Pauli principle.

The general form of the terms in f is (coefficient)×
∏

i z
mi
i . This mathematical form indicates that in the state this

term represents, the i-th electron is occupying the state with angular momentummiℏ. Hence the total angular momentum

M̂ in this term is
∑

imiℏ, and M̂ commutes with H . Because M̂ represents a conserved quantity, it is desirable to take

ψ as to diagonalize H and M̂ simultaneously. For that f should be a homogeneous polynomial.

Further, to make the interaction energy smaller, we consider two-body correlation. The distance between two electrons

i and j is |zi − zj |. Then we try a functional form that f is given by a product of functions g that only depend on zi − zj ,

that is
f(zi, · · · , zNe

) =
∏
i>j

g(zi − zj). (9C.5)

From the anti-symmetric property of f , g(z) = zq and q should be an odd number. The above consideration is summa-

rized into

ψq(z1, · · · , zNe
) =

∏
i>j

(zi − zj)
q exp

(
−
∑
i

|zi|2

4

)
, (9C.6)

which is called Laughlin state.

It has been clarified that various ground states exist in a two-dimensional electron system under a strong magnetic field

due to strong electron-electron correlation. The Laughlin state is proposed to explain FQHE. As we can guess from the

functional form, it is composed to electron interaction energy. It is known that it is close to the exact solution in the finite

system obtained by using the exact diagonalization.
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9C.3 Filling factor of Laughlin states

In the Laughlin state (9C.6), let us consider the polynomial in front of the exponential. The electron coordinate zi has

a maximum power of M = (Ne − 1). This term of maximum power represents the state, in which the electron indexed

i has the maximum angular momentum Mℏ. The orbit of this state spreads by l on the circle with a radius
√
2Ml. The

area corresponding to Ne Landau levels is 2πl2Ne and the filling factor of the state represented by the term is

ν =
2πl2Ne

π × 2Ml2
=
Ne

M
=

Ne

(Ne − 1)q
≈ 1

q
. (9C.7)

Among many terms in the polynomial, the ones with largest orbital radius are that gives the largest angular momentum

to single electron. Hence the filling factor of this term becomes the filling factor of ψq itself. In other words, the filling

factor determines q of the corresponding Laughlin state.

9C.4 Excited states

Next we consider the excitation from Laughlin state (9C.6). For that we write the state with increased angular momen-

tum by one for each electron as
∏

i ziψq .

∏
i

ziψq =
∏
i

zi
∑

Am1,m2,···z
m1
1 zm2

2 · · · zmNe

Ne
exp

−
∑
j

|zj |2

4

 (9C.8)

=
∑

Am1,m2,···z
m1+1
1 zm2+1

2 · · · zmNe+1
Ne

exp

−
∑
j

|zj |2

4

 . (9C.9)

The operation of taking the product with
∏

i zi increases the angular momentum of each electron and at the same time

introduces a zero at the origin *4. Around the zero, the amplitude of the wavefunction is small with the scale of l and the

negative charge density decreases, which can be viewed as a positive charge around the zero. This can be treated as a

quasiparticle.

We first take the product with
∏

k(zk − z0)
q , which introduces q quasiparticles at a point z0. Now we put an electron

with spatial size of l at z0. Then the wavefunction is

∏
k

(zk − z0)
q
∏
i<j

(zi − zj)
q exp

(
−
∑
l

|zl|2

4
− |z0|2

4

)
. (9C.10)

This is nothing but a uniform Laughlin state with the electron number increased by one. The above operation means q

quasiparticles with a positive charge and an electron with the charge −e are canceled out. This indicates we can cosider

that the charge of a quasiparticle is e/q.

9C.5 Composite fermion picture

In a Laughlin state (ν = 1/q), the electrons avoid each other and if we keep our eyes on a single electron, it looks as

if a single electron is in a uniform magnetic field. In the ν = 1 Landau level, single a quantum flux Φ0 is going through

the area of a single electron. In the case of Laughlin state the number of quantum magnetic flux per an electron is q. Let

us consider such an electron as a “particle” with an even number (2k) of quantum flux. Such a particle obeys, if one goes

back to Laughlin wavefunction, the Fermi statistices, hence they are called composite fermion (CF)[8]. The magnetic

field such CFs feels is that of q − 2k times quantum flux.

*4 With
∏

i(zi − z0) zero can be introduced any point z0.
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That is, the field of q − 2k = 1 can be seen as IQHE state of n = 1 for CFs, where n is the filling factor of CFs.

Similarly in the case of 1/(q− 2k) = n > 1, IQHE of CFs appears for integer n. Because they express extended state of

CFs, the electron wavefunction is also extended. There, the filling factor ν of the electrons is

ν =
1

q
=

1

2k + 1/n
=

n

2kn+ 1
. (9C.11)

For k = 1, this gives an FQHE series of 2/5, 3/7, 4/9, · · · , which is comparatively easy to be observed. Taking these

states as the starting states, we can explain the next generation of FQH states. The above indicates that the FQHE of

electron can be interpreted as IQHE of CFs. ρxx looks symmetric to ν = 1/2 and the oscillation can be interpreted as

SdH oscillation of CFs.
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