
Lecture note on Physics of Semiconductors (4)
25th April (2021) Shingo Katsumoto, Institute for Solid State Physics, University of Tokyo

3.3.1 Degenerate semiconductors

So far we treat the impurity states in semiconductors as isolated. In such cases, as shown in Fig.3.2, charge carriers

disappear at low temperatures, the conductivity is lost, and the system is insulating. Now we consider doping to higher

impurity densities, where the average distance between the dopants is similar to or less than the spatial size of the

wavefunctions. Then the overlapping of wavefunctions enables tunneling between the impurity sites. Such tunnleings

may form a kind of conducting network in the crystal and with further increasing the impurity concentration finally

spreads the network over the whole crystal, which now has a finite conductance at the lowest temperature, thus is a metal.

This problem – metal-insulator transitions, MIT – has been one of the most important problems in condensed matter

physics, and huge amount of efforts have been devoted for years. The field of MIT extends over various phenomena in

condensed matter physics, far beyond the doped semiconductors. We have not reached the final answer through great

amount of knowledges have been accumulated. There are so many textbooks, very few of which are listed in references

([1]∼[5]).

In the above we have defined the MIT as the spatial size of the wavefunctions at the Fermi level. The phenomenon is

observed in the energy space as follows. With overlapping of neighboring wavefunctions, as we have seen in the tight

binding model (regular, coherent case), the energy levels broadened and a band is formed, which we call an impurity
band. Even under the formation of impurity band, in which the density of states is continuous, the wavefunction at the

Fermi level is not necessarily spread over the entire crystal. It was first pointed out by Anderson that the electrons in a

potential with a certain degree of disorder are spatially localized. This is called Anderson localization. Hence, some

lower part of the impurity band is usually localized and the boundary is called a mobility edge.

It is well known that as shown in Fig. 3.6, in many matrix crystals and species of dopants, an empirical relation,

n1/3c a∗B = 0.26 (3.32)
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Fig. 3.6 Experimental values for the critical con-
centrations of the MIT and the effective Bohr
radiuses for various matrix semiconductors and
dopants (the element symbols put after the colons).
The data are plotted in log scale. The unit for nc is
cm−3. The line indicates the empirical relation in
eq.(3.32). The data are taken from P. Edwards and
M. Sienko, Phys. Rev. B 17, 2575 (1978).
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holds between the critical impurity concentration nc for the MIT and the effective Bohr radius a∗B. This criterion is

natural from the view of impurity band formation and there are many trials to derive it from more rigorous theoretical

background.

The largest difficulty in solving this problem lies in the treatment of disorder, which makes it impossible to utilize the

coherence of the scattering from the crystal lattice. In the band theory, the coherence brings about great simplicity. In the

case of MIT in disordered systems, one should directly treat the disorder itself.

Though the final answer has not been found, or it is not even known whether there is such one or not, many new

physical idea have been developed, which have greatly expanded our knowledges on random systems. The concepts have

been applied various fields such as organic semiconductors. We do not go into this problem further due to the space-time

limitations.

The MIT in ordered systems is also an important and difficult problem, particularly in so called strongly correlated

systems. Here I just list a review paper[6], which was published a quarter century ago. I will not go into this problem in

this lecture.

There are a number of devices which utilize such degenerate semiconductors. A representative is the Esaki diode

(tunnel diode), which first attracted attensions as a device for fast switching and actually was used in counter circuits in

the experiments of high energy physics. Recently, the Esaki diode is also used in the interfacial connection of multiple

junction solar cells. In many of ordinary solar cells, highly-doped degenerate semiconductors are used as the upper

layers of the junctions. The high level doping is also used in the IMPATT diodes for high-frequency use, and p-i-n type

photo-diode, etc.

3.3.2 Excitons

Here we introduce the concept of exciton, which is a bit tail subject as “carrier statistics” but we can view

it as an application of the effective mass approximation. Exciton has long been the central theme of optical

properties[7], but even more extensive research is still underway, such as the BEC of exciton polaritons. In solids,

the bound states formed by Coulomb force between quasiparticles of positive and negative charges are called exciton.

When the quasiparticles are spread over several lattice constants,

the exciton is called “Wanner type.” When the charge polarization

occurs within a molecule or over very few lattice points, it is called

“Frenkel type.” The latter often found in organic semiconductors,

in which the molecules at the lattice points are comparatively well

separated. Here we concentrate ourselves on the Wannier type.

Let us consider an exciton state with an electron excited to the

conduction band, and a hole excited to the valence band. These

spread over several lattice points or more, and effective mass ap-

proximation can be applied. Based on the free state of both electrons

and holes, even if they create a bound state, the degree of freedom

of the movement of the center of mass remains, and the ”wave num-

ber” and kinetic energy due to this remain. This wavenumber should

be derived from the overall wavenumber conservation since the con-

cept of holes is also introduced by considering the conservation of

the total wavenumber. The “mass” of the exciton also would be in-

troduced simply by taking the sum of effective masses of electrons

and holes, as me +mh. I have used the expression “would” because the Coulomb force, which is most natural candidate
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for the force in the equation of motion for electrons and holes, works in the opposite directions, the accelerations for

two kinds of particles with different effectve masses is a bit complicated for the treatment. Anyway we assume that the

effective mass approximation holds. Then the creatio energy of an exciton from the state without the electron and the

hole, hence including the electron-hole pair creation energy, is written as

E(n)
ex (k) = Eg +

ℏ2k2

2(me +mh)
− e4m∗

r

2ℏ2
1

n2
, n = 1, 2, · · · , (3.33)

where the third term is the binding energy of the electron and the hole. We assume the system is isotropic and the exciton

is hydrogen-like. mr is the reduced mass defined as

1

m∗
r

=
1

m∗
e

+
1

m∗
h

. (3.34)

The second term in (3.33) is the kinetic energy of the parallel motion. The dispersion described in eq.(3.33) is illustrated

in the figure in the previous page. The existence of such bound states can be confirmed by checking, e.g. the optical

absorption spectra, which we will see in the next chapter.

However, for example in optical absorption experiments, there often appear many absorption peak spectra which cannot

be interpreted simply with eq.(3.33). The candidates for the interpretation of those observations are, the excitons trapped

by impurity potentials (bound excitons), the exciton molecules made of more than two excitons, or such complicated

excited states.

In the above illustration, the cases for the number of charged excitation including zero or single donor is from three to

four (corresponding to hydrogen molecule or its charged state) are listed. Such excited states are called exciton comlexes.

In this chapter, we introduced electrons excited in the conduction band, holes excited in the valence band, and excitons,

which are bound states of these excitations.

All of them are many-body states of electrons, but they can be treated as if “particles” are freely moving in the space of a

crystal, which is different from the vacuum. Such free particle-like pictures, in which many-body effects are renormalized

are called quasi-particle.
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Chapter 4 Optical response of bulk semiconductors

Many of the substances called “semiconductors” have bandgaps around the energy region of electromagnetic wave

called “light”, and have characteristic optical responses. The optical response is one of the most important subject as well

as the carrier transport. In the optical devices such as detectors or emitters, semiconductors are mostly used as active

materials. In this chapter, as the first look, we see basic optical properties of semiconductor bulk materials.

4.1 Optical response of two-level systems

In order to consider the optical response of semiconductor bulk, we should investigate the relationship between light

and the transition between the extended electronic states of the valence band and conduction band that we have seen

so far. But here, we begin with the optical response of a much simpler “two-level system.” The reason why we devote

our pages to such basic matters here is that we want to confirm the zero-point oscillation of the electromagnetic field

and the state of photons in particular. The following two sections are for the lecture to be just self-contained. For more

complete description, see the textbooks listed in [8]. If the reader already has such knowledge, the skip to Sec.4.1.3 is

recommended. In addition, if he/she is already used to the two-level systems, a further skip to Sec.4.2 is also OK.

4.1.1 Quantizationo of electromagnetic field

We have a very short look at the quantization of electromagnetic field to consider the states of photons[8]. As the

basics we start with the one-dimensional harmonic oscillator, which subject appears in the beginning part of elementary

quantum mechanics. The problem is discribed as the Schrödinger equation;[
− ℏ2

2m

d2

dx2
+
mω2

hx
2

2

]
ϕ = Eϕ. (4.1)

The second term in the parenthis in the left hand side represents the potential characteristic for the harmonic oscillator.

We define a dimensionless variable q with

x =

√
ℏ

ωhm
q, (4.2)

and rewrite (4.1) as
ℏωh

2

(
− d2

dq2
+ q2

)
ϕ = Eϕ. (4.3)

We introduce down and up operators

a =
1√
2

(
d

dq
+ q

)
, a† =

1√
2

(
− d

dq
+ q

)
, [a, a†] = 1, (others) = 0, (4.4)

where the commutation relation is readily derived from the definition. Then eq.(4.3) is furthre rewritten as

ℏωh

(
a†a+

1

2

)
ϕ(≡ Ĥϕ) = Eϕ. (4.5)

If we define the number operator as
n̂ ≡ a†a. (4.6)
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Because n̂ and Ĥ commute with each other ([n̂, Ĥ] = [Ĥ, n̂] = 0), they have common eigenfunctions. Here we assume

|w⟩ is a eigen function common for Ĥ and n̂ with eigen[values ϵ, γ respectively. From the commutation relation eq.(4.4),

we see
Ĥ(a†|w⟩) = (γ + ℏωh)(a

†|w⟩), Ĥ(a|w⟩) = (γ − ℏωh)(a|w⟩), (4.7)

that is, a†|w⟩, a|w⟩ are also such simultaneous eigenfunctions with the energy eigenvalues of up and down shifts by ℏωh

respectively. Let |0⟩ be the simultaneous eigenstate with the lowest energy eigenstate ϵ0. Since there is no eigenstate with

energy eigenvalue of ϵ0 − ℏωh, the above equation leads to a|0⟩ = 0. Furthermore, ϵ0 = ℏωh/2 is concluded.

On the other hand, the eigenstates with higher energy eigenvalues than ϵ0 can be obtained by sequential application of

a† to |0⟩. The eigenvalues are

En = ℏωh

(
n+

1

2

)
(n = 0, 1, 2, · · · ). (4.8)

And the commutation relation tells that the operatore an(a†)n works as multiplication of n!. Then the normalized

eigenfunction for the eigenvalue En can be obtained from the normalized |0⟩ is written as

|n⟩ = (a†)n√
n!

|0⟩. (4.9)

Also from a|0⟩ = 0, a solution of |0⟩ = φ0(q) is straightforwardly obtained as

dφ0

dq
+ q2φ0 = 0 ∴ φ0 =

1

π1/4
exp

(
−q

2

2

)
. (4.10)

Based on the above knowledge, we go to the electromagnetic field. Our starting point here is the fact that the electro-

magnetic field is mathematically equivalent to a set of harmonic oscillators *1. We take Coulomb gage (divA = 0⃗), and

expand the vector potential A with the plane waves as follows.

A(r, t) =
∑
k,λ

(Akλe
i(k·r−ωkλt) +A∗

kλe
−i(k·r−ωkλt)),

(ωk = c|k|, A∗
kλ = A−kλ).

(4.11)

Here λ represents the freedom of polarization. From the selection of Coulomb gauge, the electromagnetic wave should

be transverse and λ represents two-dimensional freedom. From the Maxwell equaiton E = ∂A/∂t, B = rotA, the

energy of electromagnetic field E in volume V is written as

E =

∫
V

[ϵ0E
2(r, t) + µ−1

0 B2(r, t)]
d3r

2
= 2ϵ0V

∑
k,λ

ωkλ(Akλ ·A∗
kλ), (4.12)

because the terms with exp(±2ik · r) vanish with spatial integration.

Then we introduce variables(vectors) Qkλ, Pkλ as

Qkλ =
√
ϵ0V (Akλe

−iωkλt +A∗
kλe

iωkλt), Pkλ = dQkλ/dt = iωkλ

√
ϵ0V (−Akλe

−iωkλt +A∗
kλe

iωkλt). (4.13)

E is expressed as

E =
1

2

∑
kλ

(P 2
kλ + ω2

kλQ
2
kλ), (4.14)

which tells the electromagnetic field is described as a set of harmonic oscillators in Q space. Then the field can be

quantized with changing P , Q to operators and require the following commutation relations.

[Q̂k′λ′ , P̂kλ] = iℏδkk′δδδ′ , (others) = 0. (4.15)

*1 According to the literature[10], this is called “Jeans theorem.” Actually, in ref.[9], that “theorem” is proven. The discussion then leads to the
Rayleight-Jeans law. However, there is more famous “Jeans theorem”, which is on the distribution of particles with gravitational interactions[9,
10]
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The Hamiltonian is in the same form with (4.3).

Ĥ =
1

2

∑
kλ

(P̂ 2
kλ + ω2

kQ̂
2
kλ). (4.16)

creation/annihilation operators, which corresponds to up/down operators, are

a†kλ =
1√
2ℏωk

(ωkQ̂kλ − iP̂kλ), akλ =
1√
2ℏωk

(ωkQ̂kλ + iP̂kλ). (4.17)

From (4.15), the commutation relations

[akλ, a
†
k′λ′ ] = δkk′δλλ′ , (others) = 0 (4.18)

are derived. Finally (4.16) can be quantized in the Hamiltonian form as

Ĥ =
∑
kλ

ℏωk

(
a†kλakλ +

1

2

)
. (4.19)

The vector potential, for example, can also be written in the form of operator as

Â(r, t) =
∑
kλ

√
ℏ

2ϵ0ωkV
ekλ

[
akλe

i(k·r−ωkt) + a†kλe
−i(k·r−ωkt)

]
. (4.20)

4.1.2 States of photons

Corresponding to eq.(4.6), the operator
n̂kλ ≡ a†kλakλ (4.21)

represents the revel of excitation in the mode (k, λ) from the ground state |0⟩kλ. Single step of the excitation corresponds

to the energy of ℏωk, which is also the energy of single photon in the Einstein relation of photon quantum. Hence n̂kλ in

(4.21) can be interpreted as photon number operatorin mode (k, λ). As in (4.9), there are eigenfunctions of (4.19) in

which the number of photons in mode (k, λ) is nkλ. We use the expression that the symbol {· · ·α} represents the set of

elements with α as the index. Then the state is represented as |{nkλ}⟩.
From (4.9), we call the state described in the form
Number state� �

|{nkλ}⟩ =

[∏
kλ

(a†kλ)
nkλ

√
nkλ!

]
|0⟩ (4.22)

� �
as number state .

The expectation value of the energy of the number state is

⟨{nkλ}|Ĥ|{nkλ}⟩ =
∑
kλ

ℏωk

(
nkλ +

1

2

)
. (4.23)

A state with multiple mode is a superpositon of eigenstates with different eigenvalues and is not an eigenstate of the total

Hamiltonian. On the other hand, the expectation value of the electric field is from (4.20),

⟨{nkλ}|Ê|{nkλ}⟩ = −⟨{nkλ}|(∂Â/∂t)|{nkλ}⟩ = 0. (4.24)

That is the expectation value of the electric field is zero. This does not mean the time-average makes it zero. Even for the

measurements in very short time, the average over many measurements is zero. Just the same for the magnetic field. On

the other hand the quantum fluctuation in the electric field is

⟨{nkλ}|Ê2|{nkλ}⟩ =
∑
kλ

ℏωk

ϵ0V

(
nkλ +

1

2

)
=

1

ϵ0V
⟨{nkλ}|H|{nkλ}⟩, (4.25)
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which is non-zero. Furthermore, even for the photon number zero state, each mode has the fluctuation of ℏωk/(2ϵ0V ),

which is called zero-point motionof electromagnetic field. The zero-point fluctuation corresponds to 1/2 in the energy

expression of (4.23). This is very important property for the spontaneous emission of photon. The reason of using space

for free electromagnetic field is to describe this clearly.

The properties of number state described above indicate that it is difficult to coherently superimpose the oscillating

electromagnetic field of multiple photons to obtain the oscillating electromagnetic field as in the classical picture in the

energy eigenstate where the number of photons is fixed. On the other hand, by superimposing several states, it is possible

to create a state with a finite expected value of the electromagnetic field. For example, the number states for a single

mode (hence for a while we omit writing the mode index as |n⟩) can be summed up with Gaussian weight to get

Coherent state� �
|α⟩ = exp

(
−|α|2

2

)
exp(αa†)|0⟩ = exp

(
−|α|2

2

) ∞∑
n=0

αn

√
n!
|n⟩, (4.26)

� �
where α is a complex parameter. The state expressed as (4.26) is called coherent state. When the annihilation operator

is applied, from a|n⟩ =
√
n|n− 1⟩,

a|α⟩ = α|α⟩, (4.27)

that is the coherent state is the eigenstate of the annihilation operator with the eigenvalue of α. This means that the

coherent state is a superposition of an infinite number of states, and even if quantum mechanical ”measurement” is

performed on the single photon in it, the whole state remains unchanged. If we measure the photon number in this state,

the probability of detecting n-photons is

P (n) = ⟨n|α⟩ = e−|α|2 |α|2n

n!
, (4.28)

which is a Poissonian distribution. We write the complex parameter α in the amplitude and the phase as α = |α|eiϕ.

Then the expectation values of the electric field and the magnetic field are

⟨α|Ê(r, t)|α⟩ = −
√

2ℏωk

ϵ0V
|α|ekλ sin(k · r − ωkt+ ϕ), (4.29a)

⟨α|B̂(r, t)|α⟩ = −
√

2ℏ
ϵ0ωkV

|α|k × ekλ sin(k · r − ωkt+ ϕ). (4.29b)

This means classical electromagnetic wave is reproduced in the coherent state.

4.1.3 Basic optical processes in two-level systems

The two-level system composed of two qunatum states is also called qubit in the field of quantum information and is

the most basic quantum system. As in Fig. 4.1, we consider a two-level electronics system of (|a⟩, |b⟩) with the energy

eigenvalues (Ea, Eb). We take these
H0|a⟩ = Ea|a⟩, H0|b⟩ = Eb|b⟩ (4.30)

as the basis and the general state can be written as

ψ(t) = ca(t)e
−Eat/ℏ|a⟩+ cb(t)e

−Ebt/ℏ|b⟩. (4.31)

In Fig. 4.1, three basic optical processes in the two-level system are illustrated. (a) is the optical absorption, in which

the electron absorbs the photon energy and makes transition of |a⟩ → |b⟩. (b) is the spontaneous emission of photon

associated with the transition |b⟩ → |a⟩ of the electron initially excited to |b⟩. (c) is the slimulated emission, in which

the first photon comes to the excited state |b⟩ to sitimulate the emission of the second photon coherent to the first one.
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Fig. 4.1 Three basic optical processes in two-level systems (a) optical absorption, (b) spontaneous emission of a
photon, (c) stimulated emission of a photon

We write the Hamiltonian of the system with electromagnetic field in non-relativistic approximation as

Hop =
(p+ eA)2

2m
+ V (r), (4.32)

where A is the vector potential and we treat it as perturbation. We then drop the term of A2 and the perturbation

Hamiltonian H ′ can be defined as
Hop ≈ H0 +

e

m
A · p ≡ H0 + H ′. (4.33)

For simplicity, we assume H ′ does not have the diagnal terms.

⟨a|H ′|a⟩ = ⟨b|H ′|b⟩ = 0. (4.34)

We consider the case that a plane electromagnetic wave is applied to the two-level system, which wave is described in

Coulomb gauge (divA = 0) as
A = A0ep cos(kp · r − ωt). (4.35)

As we saw in the previous section, this means a coherent state comes to the two-level system. The perturbation Hamilto-

nian is
H ′ =

eA0

m
ep · p̂ cos(kp · r − ωt). (4.36)

This approximation is called dipole approximation from the following reason. The matrix element of H ′ for |a⟩ → |b⟩
is with writing A0 cos(kp · r − ωt) as A,

eA

m
ep · ⟨b|p̂|a⟩ = eA

m
⟨b|ep · m

iℏ
[r̂,H0]|a⟩ =

iA

ℏ
(Eb − Ea)ep · ⟨b|(−e)r̂|a⟩. (4.37)

The last term is the transition element of the electric dipole momen operator and the transition by the Hamiltonian (4.36)

is called dipole transition.

Substituting (4.30) to the Schrödinger equation iℏ∂ψ/∂t = (H0 + H ′)ψ, we obtain

iℏ
[
dca
dt

|a⟩e−iEat/ℏ +
dcb
dt

|b⟩e−iEbt/ℏ
]
= caH

′|a⟩e−iEat/ℏ + cbH
′|b⟩e−iEbt/ℏ. (4.38)

Taking inner products with ⟨a| and ⟨b| leads to the following simultaneous differential equations for (ca, cb).
dca
dt

= − i

ℏ
cb⟨a|H ′|b⟩e−iω0t,

dcb
dt

= − i

ℏ
ca⟨b|H ′|a⟩eiω0t,

ω0 ≡ Eb − Ea

ℏ
. (4.39)
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4.1.4 Optical absorption, emission

Frist we consider the optical absorption in (a). We take ca(0) = 1, cb(0) = 0 as the initial condition and c(1)a (t) = 1 as

the starting point of the sequential substitution method to get the approximate solution.

c(1)a (t) = 1,

c
(1)
b (t) = − i

ℏ

∫ t

0

⟨b|H ′|a⟩(t′)eiω0t
′
dt′, (4.40a)

c(2)a (t) = 1− 1

ℏ2

∫ t

0

dt′⟨a|H ′|b⟩(t′)e−iω0t
′

[∫ t′

0

dt′′⟨b|H ′|a⟩(t′′)eiω0t
′′

]
. (4.40b)

The expression ⟨b|H ′|a⟩(t) is to clarify that ⟨b|H ′|a⟩ is a function of t.

p 2p0-p-2p

w-w0

si
n

[(
)

/2
]/

(
)

(a
rb

.)
2

2
w

-
w

w
-

w
0

0
t

t =2

t =1.5

t =1

t =0.5

To consider ⟨b|H ′|a⟩(t), we drop the term of photon wavenum-

ber kp from (4.36) because of the following reason. We consider

the process in which the electron wavenumber varies as 0 → ke to

enhance the kinetic energy by ℏ2k2e/2m0. If we consider a pho-

ton with the energy that matches to this energy enhancement, the

photon wavenumber kp is obtained from ke =
√

2keckp. Here

kec = m0c/ℏ is the product of electron rest mass m0 and the speed

of light c, corresponding to a very large momentum. Then ke ≫ kp

and we can ignore the contribution of photon momentum.

Now we write
Vba ≡ ⟨b|eA0

m
ep · p̂|a⟩ (4.41)

and from (4.40a),

cb(t) ≃ − i

ℏ
Vba

∫ t

0

dt′ cosωt′eiω0t
′
= −Vba

2ℏ

[
ei(ω0+ω)t − 1

ω0 + ω
+
ei(ω0−ω)t − 1

ω0 − ω

]
≃ −iVba

ℏ
sin[(ω0 − ω)t/2]

ω0 − ω
ei(ω0−ω)t/2. (4.42)

Then if we apply the oscillating electromagnetic field from t = 0, the probability amplitude of |b⟩ at time t is

Pb(t) = |cb(t)|2 ≃ |Vba|2

ℏ2
t

2

sin2[(ω0 − ω)t/2]

(ω0 − ω)2(t/2)
(4.43)

As is well known the last factor goes to a delta function in the limit of t → ∞ (limt→∞ sin2[(ω0 − ω)t/2]/(ω0 −
ω)2(t/2) = πδ(ω − ω0)). Actually in the plot of sin2[(ω0 − ω)t/2]/(ω0 − ω)2, the peak at ω − ω0 = 0 grows high and

sharp with the increase of t. Hence the factor represents the energy conservation.

When we take the initial condition as cb(0) = 1, ca(0) = 0, that is, the excited state |b⟩ with photon field of ω, the

transition |b⟩ → |a⟩, which is the reversed process of the optical absorption, occurs with the emission of a photon of ω0.

This emitted photon is coherent to the existing coherent photon state[11]. This is the stimulated emission in (c).

Then how we treat spontaneous emission in (b) without photon field outside? As we saw in Sec. 4.1.1, even in the

vacuum with zero number of photons, the zero-point quantum fluctuation of electromagnetic field exists for each mode.

In the spontaneous emission process, the photon emission is “stimulated” by these zero-point fluctuations. Most of the

light emission from semiconductor devices (other than lasers) is by this spontaneous emission. In that sense, we are

looking at zero-point quantum fluctuation when we are facing electric displays.
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4.1.5 Rabi oscillation

In the perturbation term Vba cos(ωt), the cosine part can be expressed as (eiωt + e−iωt)/2, which means the decom-

position into two terms rotation on the complex plane with the angular frequency of ±ω. Among them, the component

important for the transition is with ω ∼ ω0 and the term of rotation with −ω has the frequency very far from ω0 and can

be ignored as

⟨a|H ′|b⟩ = Vab
2
eiωt. (4.44)

This kind of approximation is called rotation wave approximation, in which the simultaneous differential equations are
dca
dt

= − i

2ℏ
cbVabe

−i(ω0−ω)t,

dcb
dt

= − i

2ℏ
caVbae

i(ω0−ω)t.

(4.45)

This can be written into a differential equation for a single variable as

d2cb
dt2

+ i(ω − ω0)
dca
dt

+
|Vab|2

(2ℏ)2
= 0. (4.46)

The solution is obtained straightforwardly as

cb(t) = c+e
iλ+t + c−e

λ−t, λ± ≡ 1

2
(δ ±

√
δ2 + |Vab|2/ℏ2), δ ≡ ω0 − ω. (4.47)

Under the initial condition |ca(0)| = 1, cb(0) = 0,
cb(t) =

i|Vab|
ωRℏ

eiδt/2 sin(ωRt/2),

ca(t) = eiδt/2
[
cos

(
ωRt

2

)
− i

δ

ωR
sin

(
ωRt

2

)] (4.48a)

(4.48b)

are obtained where
ωR ≡

√
δ2 + |Vab|2/ℏ2 (4.49)

is called Rabi frequency.

The oscillation between the two-levels caused by the electromagnetic wave (photon) with energy close to the energy

difference between the two levels is called Rabi oscillation. When the photon energy is tuned to the energy difference

(δ = 0), the Rabi frequency is proportional to the magnitude of the electromagnetic irradiation. The Rabi oscillation

is widely used in various resonance phenomena utilized to get information inside materials, or quantum information

processing, etc.

4.1.6 Oscillator strength, selection rule

For the one-dimensional harmonic oscillator, which we consider in the beginning of this chapter, from (4.2)，(4.4), we

can write

x̂ =

√
ℏ

2mωh
(a+ a†), (4.50)

which leads to the dipole transition elements of (4.37), corresponding to |0⟩ → |1⟩ is

⟨1|(−e)x̂|0⟩ = −e
√

ℏ
2mωh

≡ µ10. (4.51)
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The probability of the dipole transition |a⟩ → |b⟩ is indicated by the transition dipole moment;

µba ≡ ⟨b|(−e)r̂|a⟩. (4.52)

Then for the “unit” of the strength, we take the transition dipole moment µ10 for the one-dimensional harmonic oscillator

with the characteristic frequency ωh = (Eb−Ea)/ℏ. For the probability we need to take the square of the absolute value,

we define oscillator strength as

fba =
|µba|2

|µ10|2
=

2mωba

e2ℏ
|µba|2. (4.53)

The character f is commonly used and we also call it as “f -value.”

When there are multiple possible final states |b⟩, we use b as the index of all such states. Then the f -values sutisfy the

following sum rule. ∑
b

fba = 1. (4.54)

For the system with N -electrons, the right hand side is N .

When the system has multiple directional oscillators with random directions, the effective transition dipole mement

⟨µeff⟩ is given by taking the avarage as µba/3. Then the oscillator strength is expressed as

f ′ba =
2mωba

3e2ℏ
|µba|2. (4.55)

When the system has spatial inversion symmetry, the eigenstates of the Hamiltonian should have the parity for the

spatial inversion operation. That is, for an eigenstate ϕn(r), the following should hold.

ϕn(−r) = ±ϕn(r). (4.56)

+, − correspond to even and odd parity respectively. In the expression (4.52), r has the odd parity then if |a⟩, |b⟩ have

the same parity, the integration gives zero for µba and the dipole transition is forbidden. As above, the rule that dominates

the possibility of a transition along with symmetry, quantum number etc. is called selection rule.

4.2 Interband transition and optical response

So far we have seen very basic knowledges on the optical response of two-level systems. We now expand the concepts

and the discussions to the electronic states in solids, in which both ground states and excited states are extended over the

crystals.

4.2.1 Absorption of light with interband transition

Materials absorb electromagnetic wave in various ways. Free carrier absorption, impurity absorption, absorption by

lattice vibration, etc. though the main absorption used in the optical devices is the absorption due to the interband

transition of electrons. Thus in this sub-section, we will see the very basics of the interband transition absorption.

For simplicity, we write a plane electromagnetic wave with a linear polarization propagating along z axis with vector

potential A as
A = A0e exp[i(kp · r − ωt)]. (4.57)

The wavenumber kp is (0, 0, kp)，e is the polarizaiton vector and we put ex = (1, 0, 0). The electric field E = −∂A/∂t,
the magnetic field H = µ−1rotA (µ is the permeability of the medium), then the energy flow density (Poynting vector)

is

I = ⟨E ×H⟩ = ϵ0cn̄ω
2A2

0

2
ez. (4.58)
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n̄ is the refractive index (light speed in the medium is c′ = 1/
√
ϵ1ϵ0µ1µ0 (ϵ1, µ1 are the ratio of dielectric constant and

that of magnetic permeability to those of vacuum) n̄ = c/c′ =
√
ϵ1µ1), ez = (0, 0, 1).

The absorption of light causes the exponential damping of the intensity |I| as I(z) = I0 exp(−αz). The damping

constant α is the absorption coefficient. From this definition α = −dI/Idz = −dI/Ic′dt. Thus if we assign the

averaged number of photons absorbed in the unit time and the unit volume as W , then the decreasing rate of I is written

as ℏωW giving

α =
ℏωW
I

=
2ℏωW

ϵ0cn̄ω2A2
0

. (4.59)

Among the various absorption mechanisms, that caused by a valence electron absorbing a photon and being excited to

the conduction band, is called fundamental absorption. The fundamental absorption begins just above the band gap.

The absorption just at the band gap is called “band edge absorption”.

We write the Hamiltonian of the system as H = (p+ eA)2/2m0+V (r) and treat A as a perturbation. With ignoring

A2, H = H0 + (e/m0)A · p. Bloch functions in conduction band and valence band are written as |ck⟩ = ucke
ikr ,

|vk⟩ = uvke
ikr respectively and the perturbation term causes the transition from the valence band to the conduction

band with the probability Wvc per unit volume in the Fermi’s golden rule approximation as

Wvc =
2πe

ℏm0
|⟨ck|A · p|vk′⟩|2δ(Ec(k)− Ev(k

′)− ℏω) =
πe2

2ℏm2
0

A2
0|M |2δ(Ec(k)− Ev(k

′)− ℏω), (4.60)

M =

∫
V

d3r

V
ei(kp+k′−k)·ru∗ck(r)e · (p+ ℏk′)uvk′(r) =

∑
l e

i(kp+k′−k)·Rl

V

∫
Ω

d3ru∗ck(r)e · (p+ ℏk′)uvk′(r)

=
N

V
δkp+k′−k,K

∫
Ω

d3ru∗ck(r)e · (p+ ℏk′)uvk′(r). (4.61)

Here, l is the label of lattice points, V , Ω are the volumes of the system and the unit cell respectively. K is a reciprocal

lattice vector, kp a photon wavenumber, N the total number of the lattice points, NΩ = V .

In eq.(4.61) we implicitly consider a direct excitation of an electron by the electromagnetic field of a photon. Such

a transition is called a direct transition. The necessary condition for the momentum conservation in a fundamental

absorption is kp + k′ − k = K, though practically from common values of band gaps, effective masses and lattice

constants, it turns to be K = 0. Also within the dipole transition approximation, kp can be ignored and we can put

q

hn hnhng

hnghng

hndirect

k k k

E k( )

(a) (b) (c)

Fig. 4.2 Illustrations of optical response due to the interband transition of an electron. (a) Optical absorption with
direct interband transition. (b) Optical absorption with indirect interband transition. (c) Photoluminescence, in which
optically excited electron-hole pair recombine for the light emission.
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k = k′. uck(r), uvk(r) belong to different eigenvalues hence the term of ℏk′ in (4.61) vanishes giving

M =

∫
Ω

d3r

Ω
u∗ck(r)e · puvk(r). (4.62)

From (4.59) and (4.62), we assume k-dependence of M is weak and obtain the expression for the absorption coefficient

for direct transition as

αda =
πe2

n̄ϵ0ωcm2
0

|M |2
∑
k

δ(Ec(k)− Ev(k)− ℏω). (4.63)

The summation part on k is called joint density of states. Let us write it as Jcv(ℏω) and Ec(k)−Ev(k) as Ecv(k), and

turn the summation on k in an integral form to get

Jcv(ℏω) =
∑
k

δ(Ecv(k)− ℏω) = 2

∫
d3k

(2π)3
δ(Ecv(k)− ℏω). (4.64)

We transform the integral in k-space into that on the infinitesimal area dS on an equi-energy surface and on the energy

Ecv . By writing the k-component perpendicular to the equi-energy surface as k⊥, the integration can be transformed into

d3k = dSdk⊥ = dS
dk⊥
dEcv

dEcv = dS|∇kEcv|−1dEcv,

∴ Jcv(ℏω) =
2

(2π)3

∫
dS

|∇kEcv(k)|Ecv=ℏω
. (4.65)

From the above we see that we have absorption anomalies around the points where the integrand of (4.65) vanishes.

Let us consider the case of a direct gap semiconductor as illustrated in Fig. ??(a), and assume Ecv = Eg, ∇kEcv = 0 at

k = k0. In the expansion of Ecv around k0, the first order term is zero and taking the second order term we get

Ecv(k) = Eg +
∑
i

ℏ2

2ξi
(ki − ki0)

2. (4.66)

For simplicity let ξi > 0(i = 1, 2, 3). With variable translation (ℏ/(2ξi)1/2)(ki − ki0) = si,

Ecv = Eg +
∑
i

s2i ≡ Eg + s2, d3k =

√
8ξ1ξ2ξ3
ℏ3

ds1ds2ds3,

We also consider the integration in s-space with that on equi-energy surfaces and on the energy. Because |∇sEcv| = 2s,

Jcv =
2

(2π)3

√
8ξ1ξ2ξ3
ℏ3

∫
dS

2s
=

1

2π2

√
8ξ1ξ2ξ3
ℏ3

√
ℏω − Eg =

√
2

π2

m
3/2
r

ℏ3
√

ℏω − Eg. (4.67)

The calculation in the last line is for a direct gap semiconductor as illustrated in Fig. ??(a), based on the assumption of

isotropic effective mass at the band edge, i.e., ∀i ξi = mr. From m−1
r = m∗−1

e +m∗−1
h this is the reduced mass for an

electron-hole pair. After all, (4.67) is the density of states in a three dimensional k space, that is just a re-calculation of

the density of states in a three dimensional system (2.14). In this case, from the expression of the absorption coefficient

in a direct transition (4.63),

α(ℏω) =
e2(2mr)

3/2|M |2

2πϵ0m2
0n̄ωcℏ3

√
ℏω − Eg, (4.68)

is obtained. The factor in the left hand side other than the joint density of states

fvc =
2|M |2

m0ℏω
, (4.69)

in which |M |2/ω is representing the strength of the transition. The dimensionless quantity fvc is called oscillator
strength.
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Appendix 4A: Rate of stimulated emission, spontaneous emission

Here we consider many identical two-level systems with states (|a⟩, |b⟩). They are placed in the electromagnetic field

with the energy density spectrum U(ω), where ω is the angular frequency. There is no direction interaction between

the two-level systems while they are in equilibrium with the electromagnetic field, which is in thermal equilibrium, i.e.

has the energy distribution of Planck law of radiation, and the momentum distributes isotopically. The rate of optical

absorption (frequency per unit time) for ω ∼ ω0 is obtained from (4.37) as

|⟨b|H ′|a⟩| = |E0ep · ⟨b|(−e)r̂|a⟩| = |E0ep · µba|, (4A.1)

whereE0 = ωA0 is the amplitude of the oscillation in electric field. From(4.43), the absorption probability is proportional

to the square of the above, hence to E2
0 ∝ U . In the form of equation the absorption rate Wba is written as

Wba = BbaU(ω), (4A.2)

with Bba a coefficiant. We write the emission rate as the sum of the rate for spontaneous emission, which is independent

of U and the rate for the stimulated emission, which is proportional to U .

Wab = A+BabU((ω). (4A.3)

As seen in Sec.4.1.4, the optical absorption and the stimulated emission are in the relation of reversed process,

Bba = Bab ≡ B. (4A.4)

We write Eb − Ea = ℏω, and let the numbers of the two-level systems in the states a, b as Na, Nb respectively. Then

Nb = Na exp

(
− ℏω
kBT

)
. (4A.5)

Because the system is in equilibrium, the event frequencies of emissions and absorption should be the same, i.e.

BUNa = (A+BU)Nb. (4A.6)

These leads to the following expression for U(ω).

U(ω) =
A

B

1

exp(ℏω/kBT )− 1
. (4A.7)

We request this to be equivalent to the Planck law of radiation

U(ω) =
ℏω3

π2c3
1

exp(ℏω/kBT )− 1
, (4A.8)

and obtain
A

B
=

ℏω3

π2c3
. (4A.9)

These coefficient A, B are called Einstein A coefficient, B coefficient respectively.

In the discussion of transition probability (4.43), we have considered photons with single energy ℏω. Now we consider

a finite width δω of the energy distribution around ω0 with the photon density (4A.8). We write the electric field amplitude

for ω0 as E0, then the energy density is ϵ0E2
0/2 *2 .

ϵ0
E2

0

2
=

∫ ω0+δω/2

ω0−δω/2

U(ω)dω. (4A.10)

*2 From (??), the energy of oscillating electromagnetic field is ⟨(ϵ0E2 +B2/µ0)/2⟩ = ϵ0⟨(E2)⟩, and then the time average gives ϵ0E2
0/2.
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And taking the directional average, we obtain

⟨
|µab · ep|2

⟩
=

⟨
µ2
12 cos

2 θ
⟩
=
µ2
12

3
. (4A.11)

The the transition probability (4.43) can be approximated as

|cb(t)|2 ≃ |µab|2

3ℏ2
1

ϵ0

∫ ω0+δω/2

ω0−δω/2

U(ω)
sin2[(ω − ω0)t/2]

(ω − ω0)2
dω ≈ πµ2

ab

3ϵ0ℏ2
U(ω0)t. (4A.12)

We replace the integral over the period δω with the infinite integration. And we applied the identity limλ→∞ sin2 λx/λx2 =

πδ(x). The transition probability is obtained as |cb(t)|2/t. Then the discussion leads to the expression of B coefficient as

B =
πµ2

ab

3ϵ0ℏ2
=

πe2

6ϵ0mℏω0
fba. (4A.13)

If we use the frequency spectrum ρ(ν) (2πν = ω) instead of the angular frequency spectrum U(ω), the expression needs

correction of 2π, of course.
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