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Chapter 5 Semi-classical treatment of electrical transport

The electric tranport is a response to external perturbations as important as the optical response. Treatment of non-

equilibrity to some extent is inevitable for the discusstion of transport. A big difference between the electric transport and

the optical response is, however, in the former the characteristic energy scale is much smaller than that in the latter (∼ Eg).

In this chapter, we have a brief look at very basic part of the transport in the linear response regime, in semi-classical

treatment. We will go into the quantum transport in the later chapters.

5.1 Classical transport phenomena

Among transport phenomena interests of physicist mainly lies in quantum transport such as the quantum Hall effect.

In earth-flooding semiconductor devices, however, dominant is the classical transport *1 .

The reason that the classical theories are applicable to transport in semiconductors at room temperatures mainly lies in

the low density of carriers. In bulk transport, for example, the Fermi level EF lies in band-gap, that is, there is no density

of states around EF. When we are looking at the energy distribution of electrons, what we actually see is the tail of the

Fermi distribution function, which can be approximated with Maxwellian.

Heavy doping changes semiconductors into disordered metals, or spatial modulation of materials which shift the posi-

tions of Fermi levels above the conduction band edges provide low-dimensional metallic systems. Even in many of such

systems, classical approximations hold around room temperatures. The Fermi degeneration temperature for a system

with density n and particle mass m is

TF =
ℏ2

2mkB
(3π2n)2/3 :3D,

ℏ2

16πmkB
n : 2D. (5.1)

Substitution of typical values for semiconductors give, e.g. for a two-dimensional electron system, which has compara-

tively large Fermi energy, about 70K for TF. That is, the distribution of kinetic energy is still described by a Maxwellian.

Furthermore, the width of distribution is as large as the Fermi energy making the quantum mechanical interference effect

obscure. In this chapter we thus concentrate on the phenomena, which can be described within classical theories for

electron kinematics in solids.

5.1.1 Transport phenomena and transport coefficient

“Transport” here means transportation of some physical quantity in real space. In the treatment of such a problem,

we often map the problem onto a set of particles and the transport is transfer of the particles in the model. For example,

consider a stretched string and some local shift from the stretched line. The shift is transmitted on the string as a wave but

we can also treat the shift as a particle, which brings some potential energy. We may consider, then, the transport of the

*1 In many devices quantum confinement is working and low-dimensional systems are realized though the transport can be understood within
classical theories.
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shift. In solids, we actually have various elementary excitations such as phonons, spin-waves (magnons), etc. In electric

conduction, which is a representative transport in semiconductors, the physical quantity is charge and a particle bringing

it is called a “carrier”. Examples are, of course, electrons and holes, many-body states of band electrons actually.

Needless to say, we first need to exclude trivial motion of the center of mass due to arbitrary selection of inertial system.

We thus assume that the center of mass for the system under consideration sits still in equilibrium without perturbation.

Transport is a response flow of some physical quantity to an external perturbation. *2. In the case of linear response, like

electric current for voltage in Ohm law, the coefficient is called transport coefficient.
We often have strongly non-linear response in electric transport in semiconductors though we begin with linear re-

sponse. As a typical example, in the electric current response to the field, thre linear response between the current density

j and the field E is written as
j = σE, E = ρj = σ−1j, (5.2)

where σ is the conductivity tensor，ρ is the resistivity tensor. These two are inverse tensor to each other.

5.1.2 Boltzmann equation

r

p

dr

dp

f t( , , )d dr p r p

( d d )v Ft, t
Fig. 5.1 Illustration of time evolution for particles in an in-
finitesimal volume drdp in an infinitesimal time dt with a scat-
tering.

Let us consider a distribution function f(r,p, t) in a six-dimensional space of spatial coordinate r and momentum p,

i.e., a phase space. The meaning of f is that the ratio of particles in the volume drdp around the point (r,p) in the whole

system is f(r,p, t)drdp.

In the absence of scattering, the classical equation of motion is described as

dr/dt = v = p/m∗, dp/dt = F , (5.3)

with F as the force working on the particle. Kinematic states of particles in drdp are the same in the first order and so

are the time evolution during dt, giving

f(r + vdt,p+ F dt, t+ dt) = f(r,p, t).

Some scatterings bring shifts in f as illustrated in Fig. 5.1. We write the coefficient in the shifts as (∂f/∂t)c, that is,

f(r + (p/m∗)dt,p+ F dt, t+ dt) + (∂f/∂t)cdt = f(r,p, t).

Expanding f in the left hand side to the first order, we get

Boltzmann equation� �
∂f

∂t
+

p

m∗ · ∂f
∂r

+ F · ∂f
∂p

= −
(
∂f

∂t

)
c

(5.4)� �
Equation (5.4) is called Boltzmann equation, and the right hand side is called the collision term.

*2 This definition cannot include supercurrent or diamagnetic current at edge states of quantum Hall effect. But we usually include them into
transport phenomena taking the reference of coordinate to crystal lattices.
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The collision term depends on the scattering mechanism and the nature of scattering centers and is generally difficult

for us to calculate. The simplest approximation of this term is the constant relaxation time approximation, in which we

consider a relaxation time τ independent of energy and put

Constant relaxation time approximation� �
−
(
∂f

∂t

)
c

= −f − f0
τ

, (5.5)� �
where f0 is the equilibrium distribution function for F = 0, τ , the relaxation time, is the time for recovery from non-

equilibrium states. In spatially uniform systems, ∂f/∂r = 0, and the approximation (5.5) can be generalized to the one

with energy or momentum dependence in τ .

Below, to avoid trivial failure in pure classical pictures, we use some quantum mechanical relation like p = ℏk or

quantum statistics.

5.1.3 Drift current, diffusion current

As currents we here consider electric currents. Net particle flow appears when the distribution function f gets some

anisotropy in p space. Hence we need to consider perturbations in (5.4) other than anisotropy or non-uniformity in p.

The candidates are then F (= −eE), and ∂/∂r. The former perturbation, e.g. acceleration by external electric field,

brings about non-uniformity of distribution function f(r, ℏk, t) in k-space resulting in the flow of carriers in the real

space. That kind of flow is called drift current. The latter is non-uniformity of the distribution in the real space and also

causes carrier transport, which is called diffusion current.
First let us consider a steady uniform electron system under uniform electric field E. From this assumption, ∂f/∂t = 0

(steady) and ∂f/∂r = 0 (uniform). We further assume τ only depends on p. Then eq.(5.4) becomes

−eE · ∂f
∂p

= −f − f0
τ(p)

∴ f(p) = f0(p) + eτ(p)E · ∂f
∂p

.

In the next step of approximation, we take E as a small perturbation. Hence, the 1st order expansion is obtained with

replacing f in the right hand side with f0 as

f(p) ≃ f0(p) + eτ(p)E · (∂f0/∂p). (5.6)

Higher order terms can be obtained by successive replacements. Now eq.(5.6) can be viewed as the first order expansion

of f(p) ≃ f0(p+ eτ(p)E with E, which means this f(p) is the one shifted by −eτ(p)E in p space form f0(p). If τ is

constant for p, the shift is uniform as illustrated in Fig. 5.2.

kkkFkF-kF-kF 00

f( )k

kx

ky

kF-kF

0

Fig. 5.2 Schematic view for constant shift of Fermi sphere of
electrons under acceleration by external electric field in the space
of wavenumber. The distribution f(k) shifts from the equilib-
rium position (indicated by broken line) by a wavevector indi-
cated by small arrows. The upper shows the shift in the dis-
tribution and the lower shows the shift of Fermi sphere in two-
dimensional systems. In realistic systems, the shifts are much
smaller than that illustrated here.
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We need to integrate v(k)f(k) in k space to obtain the current. Without loosing generality we take E = (Ex, 0, 0) and

erasing integrals of odd functions we obtain∫
d3k

(2π)3
v(k)

(
f0 + eτE · ∂f0

ℏ∂k

)
=

∫
d3k

(2π)3
ℏkx
m

eτEx
∂f0
ℏ∂kx

=
eEx
m

∫
D(E)τ(E)

ℏ2k2x
m

∂f0
∂E

dE, (5.7)

where we assume τ depends only on energy. ℏ2k2x/2m, the kinetic energy along x-direction is E/3 from the equipartition

condition．

For a metallic Fermi-degenerated system, ∂f0/∂E can be approximated as −δ(E − EF) in (5.7). For a three-

dimensional system the density of states is D(E) = A
√
E with a coefficient A, then (5.7) is

⟨vx⟩ = −A
eEx
m

2τ(EF)

3
E

3/2
F ,

while the particle density is calculated as

n =

∫ EF

0

D(E)dE = A
2

3
E

3/2
F .

Putting together the above expressions we obtain the expression for σ = j/E = −e⟨vx⟩/Ex as

Drude conductivity� �
σ =

e2nτ(EF)

m
(5.8)� �

which is well known Drude conductivity．
When the temperature is high, or the particle density is low and the Maxwellian approximation holds, from f0 ≈

A exp(−E/kBT ),

−∂f0
∂E

= − A

kBT
exp

[
− E

kBT

]
= − f0

kBT
= − f0

(2⟨E⟩/3n)

is obtained, in the last equation of which we have used averaged kinetic energy kBT/2 for single kinetic degree of

freedom. The electric conductivity is again given in the Drude form as

σ = e2
∫

τ(E)D(E)
2E

3m

3nf0
2⟨E⟩

dE =
ne2⟨τ⟩E

m
. (5.9)

Here, ⟨E⟩E represents the average with weight E3/2:

⟨τ⟩E =
⟨τE⟩
⟨E⟩

=

∫ ∞

0

τ(E)E3/2f0dE

/∫ ∞

0

E3/2f0dE. (5.10)

We then proceed to the diffusion current caused by non-uniformity of f in real space. In Boltzmann equation (5.4), F

is set to zero and constant relaxation time approximation (5.5) is applied to the space distribution of f = f0 + f1 as

v ·∇f = −f1/τ, take to the first oder of f1 f1 = −τv ·∇f0. (5.11)

When a constant diffusion current J is flowing through a spatial volume V , it is written as

J = (−e)

∫
V

τv(v ·∇f0)dr.

The direction of ∇f0 is assumed to be constant and along x-axis then the components in v other than vx vanish with

integration since they are odd functions. ⟨v2x⟩ = ⟨v2⟩/3 and we further assume that the temperature is uniform and

constant, no spatial variation in ⟨v2⟩, then the current density is

jx (current density) = −e

∫
unit volume

τv2x
∂f0
∂x

dr = −e

⟨
τv2

3

⟩
∂n

∂x
.
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That is,
j = (−e)D∇n, D = ⟨τv2/3⟩. (5.12)

Here D is diffusion constantand within constant relaxation time approximation,

Einstein relation� �
D =

τ

3
⟨v2⟩ = τkBT

m∗ =
µ

e
kBT (5.13)� �

Equation (5.13) is called Einstein relation. µ in the right end is the mobility, defined in (5.19), which appears later.

5.1.4 Hall effect

The drift current under magnetic field (flux density B) can be calculated with substituting Lorentz force into F in

(5.4). The straightforward but a bit long calculation is summarized in Appendix A. Here we consider the situation shown

in Fig. 5.3, that is, the sample has a finite length along y-axis and infinitely elongated along x-axis and the electric field

E = (Ex, 0, 0) is applied. jy brings the carriers and accumulates them to the edges. The charges at the edges form electric

field Eint = (0, Ey, 0) and in the ultimate steady state jy = 0.

This phenomenon, which generates an electric field vertical both to the current and the magnetic field is the Hall effect.
The linear response coefficient

RH =
Ey

JxBz
(5.14)

is called Hall coefficient. Hall field Ey is obtained as follows. From jy = 0,

Ey = −(At/Al)Ex. (5.15)

Substituting the above and (5A.11b) into (5.14), we obtain the conductivity tensor defined in j = σ̂E as

σxx =
ne2

m∗ Al =
ne2

m∗

⟨
τ

1 + (ωcτ)2

⟩
E

, σxy =
ne2

m∗

⟨
ωcτ

2

1 + (ωcτ)2

⟩
E

, (5.16)

RH = − 1

ne

At

ωc(A2
l +A2

t )
. (5.17)

In weak fields, from ωcτ ≪ 1,

RH = − 1

ne

⟨τ2⟩E
⟨τ⟩2E

=
1

n(−e)

Γ(2s+ 5/2)Γ(5/2)

(Γ(s+ 5/2))2
=

rH
n(−e)

(
=

1

n(−e)

)
. (5.18)

Knowing s, we obtain the carrier concentration as well as the sign of charge from the Hall measurement (for holes −e

is replaced with e). rH, which is called Hall factor, takes in many cases values around 1 depending on the scattering

mechanism at high temperatures (see Tab. 5.1). Within constant relaxation time approximation (s = 0) or when the

system is Fermi-degenerated, rH = 1. When s = 0, as eq.(5A.9) tells, eq.(5.18) holds giving the expression shown in the

last parentheses.

+ + + + + + + +z

x

y

B

Jx

Jy

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ey

Fig. 5.3 Magnetic field is applied along z-axis. Cur-
rent along x-axis generates y-component Jy through the
Lorentz force. The y-component in current results in
charge accumulation at the sample edges, which creates
Hall electric field along y-axis. In steady state, Jy is can-
celed by the Hall field and the total current is along x-axis.
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Let v be the average velocity gained by the electrons from the electric field E , the mobilityis defined as v/|E|, and in

the relaxation time approximation, written as

µ =
v

|E|
=

nev

ne|E|
=

j

ne|E|
=

σ

ne
= σ|RH| =

eτ

m∗ . (5.19)

Scattering mechanism E exponent T exponent Hall factor

Acoustic phonon −1/2 −3/2 1.18

Ionized impurity (weak screening) +3/2 +3/2 1.93

Ionized impurity (strong screening) +1/2 +1/2 1.18

Neutral impurity 0 1.00

Piezoelectric phonon +1/2 1.10

Tab. 5.1 Hall factors for various scattering mechanism. E，T -exponents are for scattering time. See e.g. [1].

5.1.5 Various scatterings

We have considered the Boltzmann equation by relaxation time approximation, but various mechanisms such as scat-

tering with phonons and other degrees of freedom in solids contribute to relaxation. We consider relaxation time for each

relaxation mechanism, and index each relaxation time τα with index α. Then the frequencies of the relaxations (∝ τ−1
α )

is summed up to give the total relaxation. This gives the Matthiessen’s rule

τ−1 =
∑
α

τ−1
α . (5.20)

In the relaxation time approximation of classical transport, the carrier scatterings are taken into account through the

averaged scattering time and the Matthiessen’s rule(5.20) into the total relaxation time. Therefore we can infer the

scattering mechanism dominating the present transport by tuning, for example, a parameter which gives different effects

on different scattering times. Scattering of band electrons (holes) have many origins as shown in Fig. 5.4. In this section,

representative scatterings and their characteristics are listed.

Phonon scattering: Quantization of lattice vibration gives phonons. The phonons are classified into acoustic phonons,

which have the dispersion E(kp) → 0 for wavenumber kp → 0, and optical phonons, which have finite E(kp → 0). In

a plain expression, the difference comes from whether the oscillations of neighboring atoms are in phase or out of phase.

For the band electrons the lattice vibration is distortion in the lattice potential and causes scattering. The scattering of

electrons causes rebounding of nuclei resulting in the phonon scattering. Such phonon scattering is, from the electron

side, inelastic associated with the energy gain/loss.

Fig. 5.4 Classification of scatterings mostly by the origins.
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The relaxation time due to the acoustic phonon has energy dependence as τ(E) = aphE
−1/2. The averaged scattering

time with energy-weight ⟨τph⟩E is

⟨τph⟩E = aph(kBT )
−1/2 Γ(2)

Γ(5/2)
=

8
√
πaph

3
√
kBT

. (5.21)

In high temperature approximation, the energy distribution of phonons gives aph ∝ (kBT )
−1, then the mobility limited

by the acoustic phonons µph has the temperature dependence as

µph ∝ ⟨τ⟩E ∝ (kBT )
−3/2. (5.22)

On the other hand, optical phonons have large energies around k ≈ 0 and do not affect the transport for weak electric

field. In hot electron transport, in which the electrons are very far from equilibrium by the effect of strong electric field,

the optical phonon scatterings are very important.

Fig. 5.5 Hall mobility in GaAs(experiments, points) and
fitting by putting various scattering mechanisms with
temperature dependence into (5.20). Red broken lines
indicate temperature dependences of various scattering
mechanisms[2].

Ionized impurity scattering：Impurity atoms in solids

often emit electrons to become positive or trapped neg-

ative ions, forming a Coulomb potential for band elec-

trons and causing scattering. In most cases, such po-

tentials are screened by surrounding charge carriers and

have the Yukawa-type (e−r/LD/r) distance (r) depen-

dence rather than the Coulomb-type 1/r. When the ion-

ized impurities have magnetic moments due to the elec-

tron spins, they also cause magnetic impurity scattering

the the internal freedom causes peculiar effects like the

Kondo effect. If there is no internal freedom the scatter-

ing is simple potential scattering and elastic.

Scattering by Yukawa potential of carriers with

Maxwell distribution, contributes to the scattering time

as

τion ∝ T 3/2, µion ∝ T 3/2

ln(1 + x)− x
1+x

, x ≡ 24m∗λkBT

ℏ2
(5.23)

for weak screening, i.e. a long LD. For strong screening

with a very short LD, the scattering is δ-function like and the contribution is

τion ∝ T 1/2, µion ∝ T 1/2. (5.24)

The mobility in GaAs obtained from Hall and conductivity measurements, and the result of fitting by considering

various types of scatterings included in eq.(5.20) are shown in Fig. 5.5. The broken lines show temperature dependences

of the scatterings. We see all of these limit the mobility.

5.2 Thermal transport and electric transport

In the Boltzmann equation (5.4), the second and the third term in left hand side representing non-uniformity in the

phase space, correspond to drift current and diffusion current respectively. In this subsection we treat the thermoelectric

effect, in which coexistence of the both types of currents should be considered. A temperature gradient in solids causes a

heat current (or thermal flux). Here we consider heat transport by charge carriers, i.e. electrons and holes though lattice

vibrations (phonons) also carry heat in solids. Below, we do not consider Joule heating for a while.
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5.2.1 Thermal conductivity

Thermal flux density along x-direction with carrier concentration n is defined as

jqx = ⟨nvx(E − µ)⟩ =
∫ ∞

0

vx(E − µ)f(E)D(E)dE. (5.25)

Then thermal conductivity κn under temperature gradient ∇T is defined as

κn = − jqx
∂T/∂x

. (5.26)

In vector format jq = −κ̂∇T．

5.2.2 Thermoelectric effects

B

B

B

B B

A A

V

T x1 1,

T x2 2,

J

(a) (b)

The heat flux in (5.26) should also lead to some

electric effect. Such complex effects of tempera-

ture gradient and electric response are called ther-
moelectric effects.

Let the temperatures at edges of a conductor A

T1 and T2 respectively. Two conductors of an-

other material B with the same lengths are con-

nected to the edges. Other ends of conductors

(material B) are connected to a voltmeter with in-

finite input impedance ((a) in the left figure). In the steady state, there is no net current and the electric current driven by

heat flow should be compensated by the voltage VAB measured at the voltmeter. This is called Seebeck effect, and the

ratio of the voltage to the temperature difference (∆T = T1 − T2)

SAB =
VAB

∆T
(5.27)

is called Seebeck coefficient. On the other hand as in (b), when there is a junction of A and B set at a uniform temperature,

a current J causes heat fluxes QA and QB. In a steady state there is no charge accumulation and J is uniform, that means

QA and QB are different reflecting difference in the thermal transport coefficients. The difference results in heating at

the interface. This is called Peltier effect and the ratio of the heating speed to J ,

ΠAB =
QAB

J
(5.28)

is called Peltier coefficient. If we apply a current J to a BAB type junction as in (a), the same current flows with inverted

directions through the two interfaces. Hence if a heating occurs at one interface, a cooling of the same amount of heat

occurs at the other end.

In a uniform conductor with a current J and a temperature gradient (assume along x-direction) ∂T/∂x, cooling or

heating occurs. Heat creation per unit length ∂Q/∂x is proportional to the product of J and ∂T/∂x. This is Thomson
effect and the coefficient

τ =
∂Q/∂x

J(∂T/∂x)
(5.29)

is called Thomson coefficient.
Among the above three kinds of coefficient, Kelvin (Thomson) relations

ΠAB = SABT, τA − τB = T
dSAB

dT
(5.30)
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hold (Appendix B). From the relations we can define material specific (combination free) Seebeck coefficient as

SA(T ) ≡
∫ T

0

τA(T
′)

T ′ dT ′. (5.31)

The relation with the coefficient in (5.27) is
SAB = SA − SB. (5.32)

In the measurement of Seebeck effect, we need to connect the sample and the voltmeter with leads, which also have

Seebeck coefficient. Hence the measured voltage is the difference between the Seebeck effects of the sample and the leads.

Equation (5.32) indicates the fact. Thermocouple works as a sensor for temperature difference ∆T with knowledge of

Seebeck coefficients for the two components.

5.2.3 Boltzmann equation and thermoelectric coefficients

Let us look for the relation between the thermoelectric coefficients and the distribution function with Boltzmann equa-

tion under relaxation time approximation (5.4), (5.5). In a steady state ∂f/∂t = 0 we rewrite the equation as

v · ∇f +
F

m
∇vf = −f − f0

τ(E)
. (5.33)

We take the approximation that the shifts from equilibrium are small and replace f in the left hand side with f0.

∇f0 due to temperature gradient ∇T is written as

∇f0 = ∇T
∂f0
∂T

.

In f0, E and T always appear in the expression −(E − EF)/kBT , which we write a here for short description. Then

∂f0
∂T

=
∂f0
∂E

∂E

∂a

∂a

∂T
=

∂f0
∂E

(−kBT )
E − EF

kBT 2
=

∂f0
∂E

EF − E

T
,

therefore ∇f0 = ∇T
EF − E

T

∂f0
∂E

. (5.34a)

And ∇vf0 = ∇vE
∂f0
∂E

= mv
∂f0
∂E

. (5.34b)

When the electric field E and the temperature gradient ∇T coexist, (5.33) can be written with (5.34) as

f = f0 − τ(E)v ·
[
−eE+

EF − E

T
∇T

]
∂f0
∂E

. (5.35)

We take E = (Ex, 0, 0) and the current along x-direction is

jx = −e⟨nvx⟩ = −e

∫ ∞

0

vxf(E)D(E)dE = e

∫ ∞

0

v2xτ

[
−eEx +

EF − E

T

∂T

∂x

]
∂f0
∂E

D(E)dE.

The Seebeck coefficient is obtained with putting jx = 0 as

S =
Ex

∂T/∂x
=

∫ ∞

0

v2xτ
EF − E

eT

∂f0
∂E

D(E)dE

/∫ ∞

0

v2xτ
∂f0
∂E

D(E)dE

=
1

eT

[
EF −

∫ ∞

0

τE2 ∂f0
∂E

D(E)dE

/∫ ∞

0

τE
∂f0
∂E

D(E)dE

]
. (5.36)

Here v2x is replaced with 2E/3m.

E6-9



- +

+

+

+

+

-

-

-

-

Cooling

J

heating heating

n-type p-type

Fig. 5.6 Left panel: Schematic
of Peltier device. p-type semicon-
ductors and n-type semiconductors
are placed staggered (in the figure
just a single pair) along the current
path. While electric current me-
anders heat flows one way. Right
panel: Photo of a Peltier device.
From Akizuki-denshi web site.

In eq.(5.35) inside the parentheses at right hand side, the first term represents the drift current while the second the

diffusion current caused by the temperature distribution. The canceling of these term results in the Seebeck effect,

therefore the Seebeck effect is the result of diffusion current which causes charge non-uniformity inside the sample. The

non-uniformity creates electric field, of which the drift current cancels the diffusion current.

In Maxwellian approximation, ∂f0/∂E = −f0/kBT , and we further assume the energy dependence of the relaxation

time as τ ∝ Es, then

S = − 1

eT

[
⟨τE⟩E
⟨τ⟩E

− EF

]
= − 1

eT

[(
5

2
+ s

)
kBT − EF

]
. (5.37)

This equation tells that if we can measure the temperature dependence of S, we obtain EF and s. The above calculation

is for electrons and for holes −e is replaced with +e, hence measurement of S also gives the sign of carriers. This result

for Maxwellian approximation does not depend on the carrier concentration, which can be understood as follows. The

Einstein relation (5.13) connects the diffusion constant and the mobility, which are material constants for diffusion and

drift currents respectively. Hence these constants disappear from the balancing equation leaving the temperature. The

carrier concentration also included as the first order in both currents and dropped. In the case of Hall coefficient, the drift

current by external field comes into one side and the carrier concentration remains in the expression.

5.2.4 Peltier device

Peltier and Thomson coefficients can also be obtained from the Kelvin relations. Peltier coefficient also changes its sign

with that of carriers. In a material with junctions to n and p-type semiconductors, a current flow through this structure

thus causes heating at one junction and cooling at the other resulting in a heat flow. Such a device is called Peltier device.

Peltier devices once were frequently used in combination with cooling fans for cooling CPUs in PCs. They have long

been used where we need cooling without noises such as refrigerators in bedrooms.

Appendex 4C: Lattice vibration in semiconductors (continued)

Continuing from the last time, let us briefly look at the lattice vibration of sphalerite-type crystals as an example of

three-dimensional crystal lattice vibration.

4C.2 Lattice vibration in zinc-blende crystals

We consider zinc-blende (ZB) crystals as an example of three-dimensional crystal which has two species of atoms in

the unit cell. The Bravais lattice is fcc but the ZB crystalline structure can be considered as an overlapp of two “fcc

crystals”, in which one atom is placed at the lattice point of fcc lattice. We consider two such fcc-crystals with different

atoms with common lattice constant a. We obtain a ZB crystal by placing these two with the shift of a(1/4, 1/4, 1/4).
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Fig. 4C.3 Schematic diagram of lattice vibration modes (dis-
persion relation) in a zinc-blende crystal.

Let uα,R be the atomic shift vectors. Here α is the index of the two sublattice, R is the lattice point. The lattice kinetic

energy can be written as

EK =
∑
α,R

1

2
Mαu̇

2
α,R. (4C.6)

On the other hand, with expanding the ptential V (r) to the second order, the potential energy is written as

EP =
∑

αα′,RR′,jj′

uj
α,Ruj′

α′,R′
∂2V

∂uj
α,R∂uj′

α′,R′

, j = x, y, z. (4C.7)

The equation of motion can be obtained by defining the Lagrangian L ≡ EK − EP, and general coordinate qk ≡ uj
α,R

from the Lagrange equation;
d

dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= 0.

In the present case from (4C.6), (4C.7) we get

Mαü
j
α,R = −

∑
α′,R′,j′

∂2V

∂uj
α,R∂uj′

α′,R′

uj′

α′,R′ ≡ −
∑
α′,R′

Cαα′,RR′uα′,R′ . (4C.8)

Tensor C corresponds to “force constant” and just depends on the combination αα′, and on the relative position of unit

cell R′′ = R′ −R. Then with Cαα′,RR = Cαα′(R′′) we can write

Mαü
j
α,R = −

∑
α,R′′

Cαα′(R′′)uα′,R+R′′ . (4C.9)

This equation is invariant againg the shifts among the lattice points R → R′. Then we can write the solution in the form

of Bloch function
uα,R(t) = uα(q, t) exp(iq ·Rα). (4C.10)

As the time dependence, we consider the oscillation with angular frequency of ω, and assume

uα,r(t) =
1√
Mα

uα(q, ω) exp[i(q ·Rα − ωt)]. (4C.11)

Substituting this to (4C.9) results in

ω2uα(q, ω) =
∑
α′

[
1√

MαMα′

∑
R

Cjj′

αα′(R) exp(iq ·R)

]
uα′(q, ω) ≡

∑
α′

Dαα′(q)uα′(q, ω). (4C.12)
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For (4C.12) to have solutions other than the trivial 0⃗,

|Djj′

αα′(q)− ω2δαα′δjj′ | = 0. (4C.13)

The dispersion relations can be obtained by solving this numerically. The 6th order equation gives 6 modes, in which 3

acoustic modes and 3 optical modes exist. The each 3 are separated into 2 transverse modes and 1 longitudinal mode.

The namings are, then, TA, LA, TO, LO.

Appendix 5A: Galvanomagnetic effect

We consider the response of drift current to magnetic flux B. In the Boltzmann equation (5.4), F is taken as F =

−e(E+ v ×B) and the relaxation approximation (5.5) is applied. With f1 ≡ f − f0,

− e

ℏ
(E+ v ×B) · ∂f

∂k
= −f1

τ
(p = ℏk). (5A.1)

In the first term of the left hand side, f in ∂f/∂k is replaced with f0. Form dE = v · dp, the second term is ∂f0/∂k =

ℏ(∂f0/∂E)v and the term of f0 is orthogonal with v×B and vanishes (magnetic field driven force is orthogonal with v

and does not give work). In the second term we take terms to f1 and obtain

− ev ·E∂f0
∂E

− e

ℏ
(v ×B) · ∂f1

∂k
= −f1

τ
. (5A.2)

Here we introduce a vector Ea with the physical dimension of electric field satisfying

f1 = eτ(v ·Ea)
∂f0
∂E

. (5A.3)

This is from the concept that the Lorentz force shifts the Fermi sphere as in Fig. 5.2 and the origin of the shift is

represented as an electric field. Then the equation is

− v ·E = −v ·Ea +
eτ

m
(v ×B) ·Ea, ∴ E = Ea −

eτ

m∗B×Ea. (5A.4)

The solution to eq.(5A.4) is given as follows.

Ea =
1

1 + ω2
cτ

2

[
E+

eτ

m∗B×E+
( eτ

m∗

)2

(B ·E)B

]
, (5A.5)

ωc =
e|B|
m∗ . (5A.6)

ωc is the cyclotron frequency. Then f1 is given as follows.

f1 =
eτE

1 + ω2
cτ

2
·
[
v +

eτ

m∗ v ×B+
( eτ

m∗

)2

(B · v)B
]
∂f0
∂E

. (5A.7)

We take the case B = (0, 0,Bz), E = (Ex, Ey, 0). From vz = 0 and eq.(5A.7), f1 is calculated as

f1 = e
∂f0
∂E

[
vx

(
τ

1 + (ωcτ)2
Ex − ωcτ

2

1 + (ωcτ)2
Ey

)
+ vy

(
ωcτ

2

1 + (ωcτ)2
Ex +

τ

1 + (ωcτ)2
Ey

)]
. (5A.8)

For example, to obtain jx = −en⟨vx⟩ from this equation take the expectation value of vx with f = f0 + f1. The

expectation value for f0 is zero and odd components in v is dropped from the integration over k. Then

jx = 2

∫
(−e)vxf(k)

dk

(2π)3
= − e2

4π3

∫
τv2x

1 + (ωcτ)2
(Ex − (ωcτ)Ey)

∂f0
∂E

dk. (5A.9)
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The integrand in (5A.9) is the same as that in equilibrium other than v2x and is a function of kinetic energy E. For a

general function ξ(E), the principle of energy equipartition gives∫
v2xξ(E)dk =

2

3m∗

∫
Eξ(E)dk. (5A.10)

With the Maxwellian approximation f0 = A exp(−E/kBT ), and density of states D(E) = ADE1/2, eq.(5A.10) leads

to
∂f0
∂E

=
f0

−kBT
, n = AD

∫ ∞

0

f0E
1/2dE =

2AD

3kBT

∫ ∞

0

E3/2f0dE.

These being substituted into (5A.9) and we obtain

jx =
ne2

m∗

[⟨
τ

1 + (ωcτ)2

⟩
E

Ex −
⟨

ωcτ
2

1 + (ωcτ)2

⟩
E

Ey
]
, (5A.11a)

≡ (ne2/m∗)(AlEx −AtEy) (definitions of Al and At). (5A.11b)

⟨· · · ⟩E is defined in eq.(5.10). jy is obtained in the same way and the conductivity tensor in xy-plane is expressed as

j =
ne2

m∗

(
Al −At

At Al

)
E. (5A.12)

Appendix 5B: Kelvin relations

B A B

T
m

T
mT T T+D

We consider two species of metals A, B and a junction

BAB as shown in the right figure. The temperature at the

two edges is kept to Tm and a unit charge moves from

one edge to the other quasi-statically. As indicated in

the figure, temperatures at the two junctions are T and

T +∆T . The voltage between the two edges is VAB.

From the requirement of quasi-static assumption, we apply the first and the second laws of thermodynamics to obtain

the conditions,
VBA +ΠBA(T )−ΠBA(T +∆T ) + (τB − τA)∆T = 0

ΠBA(T )

T
− ΠBA(T +∆T )

T +∆T
+

τB − τA
T

∆T = 0.

In the differential formula with ∆T → 0,

dVBA

dT
− dΠBA

dT
+ τB − τA = 0,

d

dT

(
ΠBA

T

)
=

τB − τA
T

.

From the second equation

τB − τA = T
d

dT

(
ΠBA

T

)
=

dΠBA

dT
− ΠBA

T
,

and we reach
∴ SAB =

ΠAB

T
,

dSAB

dT
=

τA − τB
T

(5B.1)

with exchange of A and B.
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