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Next we see FETs without pn-junction. For transistor action, they utilize phenomena on the surfaces or interfaces. In

homo-type pn-junctions the uniformity of space is broken by impurity doping. They do not use interfaces or surfaces.

This was important for Shockley and co-workers to realize “stable and reproducible” devices because for the semicon-

ductor technologies in those days control of surfaces or interfaces was too difficult for commercial production. Even

the high quality crystalline growth and the accurate doping technique, which are indispensable for the realization of pn-

junctions, were surprisingly high technique. However the great strides in semiconductor technologies caught the control

techniques of surfaces and interfaces in incredibly short time. Naturally there were movement to utilize them for device

actions and they overwhelmed bulk shortly. We have a look for these representative modern devices here. But the limit

of miniaturization inevitably requires three dimensionality nowadays and we do not know what happens next.

6.3.3 Schottky barrier (junction)

Here we consider junctions between semiconductors and metals. Simple guiding principles are

1. Rigid band approximation,

2. Recovery of bulk states away from the junction,

3. In equilibrium EF (µ) is constant over the space.

On semiconductor surfaces, there usually are surface states with high density of states. Metal-semiconductor junctions

are strongly affected by those states. Here, however, we first look what Anderson’s rule tells about the interface[?]. The

baseline of rigid bands can be taken to an edge of “band”, in which electrons can freely travel between the metal and the

semiconductor. It is usually impossible to find such an energy band inside insulators and semiconductors, which have very

different energy bands. Then such a “band” can be found as the vacuum levels. Then the excitation energy required is so

called work function. Let the work functions in the semiconductor and the metal eϕS and eϕM respectively. Generally

eϕM ̸= eϕS. On the other hand, from the guiding principle 2., the bulk EF’s in the metal and in the semiconductor away

from the junction should be the same. And EF should be constant throughout the system.

The following procedure, of course, is not real physical process but just a virtual process inside human brain, for

construction of consistent band alignment. The final result, however, may be realized in the model of junctions though

there still remain many idealizations and reality should be much more complex.

We assume eϕM is larger than eϕS, the semiconductor is doped to n-type and the donor concentration is ND. We

make the vacuum levels in the both sides fit to each other and extrapolate the bulk band structures to the interface to

obtain the band alignment shown in Fig. 6.9(a). Here the Fermi level in the semiconductor places higher than that in the

metal causing flow of carriers from the semiconductor to the metal. The carrier flow generates charge accumulation at

the interface creating an electric field perpendicular to the junction plane. The metallic side is also charged up but it has

much higher charge concentration, which screens the electric field within the screening length less than a lattice constant

making the band bending negligible in this side. Let the accumulated charge in the metal side per unit area −Q, in the

semiconductor side (x > 0, interface at x = 0), the electric field at x is (eNDx − Q)/ϵϵ0 and the potential difference

between 0 and xd is

ϕ(xd) =

∫ xd

0

(eNDx−Q)/ϵϵ0dx =
1

ϵϵ0

(
eND

2
x2d −Qxd

)
. (6.30)
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Fig. 6.9 (a) Virtual band alignment, in which a metal and a semiconductor are connected as the vacuum levels for
them agree. (b) Band bending effect to make EF constant throughout the junction is superposed to the alignment in
(a). The situation corresponds to an ideal interface without surface states at the semiconductor side. (c) Illustration
of Fermi level pinning by surface states. The surface potential ϕsurf is determined by the position of the dominant
surface states from the band edge Ec. This usually has nothing to do with the difference between the work function.

Let the space charge (depletion) layer width be wd. The condition that electric field outside the depletion layer should be

zero, gives wd = Q/eND. On the other hand, the condition eϕ(wd) = ϕM − ϕS also gives Q as

Q =
√

2ϵϵ0NDe(ϕM − ϕS), ∴ wd =

√
2ϵϵ0(ϕM − ϕS)

eND
≡

√
2ϵϵ0Vs
eND

. (6.31)

Here we write eVs ≡ ϕM − ϕS . Now we can illustrate the band structure for electrons (holes for p-type) around the

metal-semiconductor interface as in Fig. 6.9(b), showing a potential barrier, which is called Schottky barrier.

An external voltage V is mostly bared in the semiconductor side, and the height of the barrier changes to e(Vs − V )

while the height from the metal side remains as eVs. To be more accurate, we need to consider the kinetic energy

distribution in the semiconductor and count the number of electrons which go over the barrier. But here for simplicity

we assume the kinetic energy of electrons in the semiconductor is a constant. Then the equation for thermal electron

emission from metallic surface can be applied to obtain

J = AT 2

[
exp

(
e(V − Vs)

kBT

)
− exp

(
−eVs
kBT

)]
= eAT 2 exp

(
−eVs
kBT

)[
exp

(
eV

kBT

)
− 1

]
. (6.32)

Here A is the Richardson coefficient. The first term is current from the semiconductor side, the second is that from

the metal side. The current-voltage characteristics is similar to that of a pn-junction with the Schttkey barrier height

corresponding to the built-in potential.

In the above the surface of semiconductor is too much idealized for it to have no surface states. However in real

metal-semiconductor junctions, current-voltage characteristics are similar to eq.(6.32). One big difference is in eq.(6.32),

the barrier height should change with changing the metal species but in reality, the barrier height is almost constant for

semiconductor species and independent of metals. This is due to the surface states on the semiconductors. The surface

states have narrow energy widths, very high density of states pinning the Fermi level to the center of them. Hence the

band bending exists even before the connection to metals and the alignment is accomplished between the metal EF and

the surface states. This is called pinning of Fermi level by the surface states.

Once the Fermi level is pinned by the surface states, the band bending is determined by semiconductor species. Hence

when n-type Schottky barrier can be formed for a semiconductor for example, p-type is not available for the same

semiconductor. The other way around. Actually, for GaAs, p-type Schottky barrier is not available while for InP, n-type

Schottky barrier is difficult. This makes it difficult to obtain complementary devices which utilize Schottky barriers.

In the case of metal-oxide-semiconductor (MOS) devices, an inversion layer formed by e.g., pushing down a band of

a p-type semiconductor and turning it to an n-type channel, can be used for complementary device. This is, however,

impossible for Schottky devices.
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6.3.4 MES-FET

Among III-V semiconductors, GaAs is frequently used for electric devices as well as for optical devices. But it is

difficult to form good quality oxide layers on the surfaces, hence no MOS type device for GaAs is available. Instead,

MEtal-Semiconductor FET (MES-FET) structure has been frequently adopted. GaAs has light electron mass, high mo-

bilities. And the effective capacitance of Schottky diode can be small. Hence GaAs MESFETs are often used for

high-frequency application.

conduction channel

depletion layer

source drain
gate

As shown in the left figure, the structure of MES-FET is

simple. The conduction channel thickness is controlled with

the reverse bias voltage (gate voltage) through that of deple-

tion layer. The device action, characteristics are similar to

those for JFET. Schottky junctions have larger leak current

in gate characteristics, only single carrier type is available

and complementary circuits cannot be composed with them.

These properties are great obstacles for large scale integration.

MES-FETs are still widely used as high frequency devices for e.g., microwave.

6.3.5 MOS structure

As named, a thin oxide film for insulation is inserted between a metal and a semiconductor in a Metal-Oxide-

Semiconductor (MOS) structure. Needless to say, most frequently used Si has SiO2 as the oxide layer, which is very

stable and has good insulation characteristics. An SiO2 film can be easily formed with thermal oxidation onto a Si. Both

p-type and n-type channels can be controlled and Complementary MOS (CMOS) circuits are easily realized. Also with

low gate leakage current, high on-conductance, off-resistance, the power consumption in logic circuits jumped down

with the CMOS circuits hence increased degree of integration. Now CMOS is doubtlessly the king of semiconductor

circuits. A few decades ago high speed logic circuits were mainly composed with Emitter Coulpled Logic (ECL) of BJT

but the requirement of large scale integration and the increase of cut-off frequency in CMOS circuit have made drastic

change and now, even so called supercomputers are using CMOS circuit in CPU.

MOSFET structure also resembles to JFET and the essential difference to MESFET is the existence of thin oxide

layer between the semiconductor and the gate metal. In a depletion type device, the conduction channel is pinched by

depletion layer while in a enhancement type device, the band is pushed down with gate electric field to form conduction

channel. An oxide layer bears much higher voltage than a Schottky barrier, hence with a strong bending, e.g., formation

of an n-type two-dimensional conduction channel below a p-type semiconductor surface (inversion layer).

Si-MOS structures are now used not only in integrated circuits but also for power devices. Recently however, SiC is

collecting wider interest for power devices because of the lower ON-resistances. And for high-frequency power devices,
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Fig. 6.10 Schematic view of a MOSFET device. In
fabrication holes are opened on thermally oxidized films
with lithography. The dopants are diffused through the
holes. The structure like this often appears due to the
process.
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the weight of developement is shifting to GaN-related materials.

6.3.6 FinFET

In the beginning of 21st century, in semiconductor in-

tegrated circuits, fierce competition for improving the

degree of integration continued, centered on CMOS.

Compared to other logic circuit schemes, CMOS is

overwhelmingly advantageous in terms of power con-

sumption. Even for such CMOS scheme, what limits

the degree of integration is in-chip heating due to power

consumption. In order to solve this, device driving at low voltage has come to be required. A way is to replace SiO2

with some other insulating thin film that has higher dielectric constant. With this, ON/OFF action of the channels would

be available. The letter κ is often used as the symbol of the dielectric constant and such dielectrics are called “high-κ”

or simply “high-k” materials. From various restrictions, now hafnium silicate, hafnium oxide, zirconia are used for such

high-κ materials.

Furthermore, the FinFET, in which the channel shape is changed from the planer type to the fish-fin shaped, has been

now widely used. As illustrated in the figure, in a FinFET, a thin channel is covered with the gate and the depletion layer/

the inversion layer grow over the channel from both sides of the “fin”, resulting in faster switching rate (less than 1 ps)

and higher ON-conductance than those of planer structure. Also the device density can be higher. Now they are the main

structure for the logic LSIs.

6.4 Heterojunction

The two materials on the sides of a junction have similar properties, lattice structures, etc. to each other in semicon-

ductor heterojunction in comparison with Schottky junctions or with MOS structures. As a result, in semiconductor

heterojunctions, sharp changes in the effective potential can be realized, the quantum coherence of electrons is kept over

the junctions. Therefore they can be used for the building block of the devices which utilize quantum effects such as

electron tunneling. And with heterojunctions, one even can create new periodic structures in solids and modify the band

structure. This is called band engineering.

Because this lecture is for the physics in semiconductors, we begin with how to treat such hetero-interface physically.

6.4.1 Effective mass approximation at hetero-interfaces

As in the textbook[1] written by myself or that by Bastard[2], let us consider hte application of effective mass approx-

imation for a hetero-interface under simplest case.

6.4.1.1 Hetero-interface

We consider the situation in which semiconductors A and B (A：z < 0，B：z > 0) are connected at z = 0 (xy-plane).

In each region, the Bloch theorem is appled to write

ψ(A)(r) =
∑
l

f
(A)
l (r)u

(A)
lk (r), ψ(B)(r) =

∑
l

f
(B)
l (r)u

(B)
lk (r), (6.33)
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where l is the band index, u(A,B)
lk are functions with the lattice periodicity. For simplicity, the lattice periodic part of the

Bloch functions and the band dispersions are the same other than the positions of band bottoms and tops.

u
(A)
lk (r) = u

(B)
lk (r), ∂ϵ

(A)
l /∂k = ∂ϵ

(B)
l /∂k.

With this simplification, the continuity condition of wavefunction at z = 0 gives

f
(A)
l (rxy, 0) = f

(B)
l (rxy, 0),

where rxy is a vector in the xy-plane. For the freedom of rxy , the Bloch theorem tells

f
(A,B)
l =

1√
S
exp(ikxy · x)χ(A,B)

l (z),

where 1/
√
S is the partial normalization factor of plane wave in xy-plane, χl(z) is the envelopefunction along z-direction.

For the freedom along z-direction, we consier the k ·p perturbation. That is, first we obtain the lattice periodic function

and the discrete levels for k = 0 and the wavefunctions for k ̸= 0 are obtained by the hybridization of these wavefunctions

caused by the perturbation Hamiltonian, which is proportional to k · p. We write down the equation for χ = {χj} as

D (0)

(
z,−iℏ ∂

∂z

)
χ = ϵχ, (6.34)

where the N ×N matrix of operators D (0) is

D
(0)
lm

(
z,

∂

∂z

)
=

[
ϵl(z) +

ℏ2k2xy
2m0

− ℏ2

2m0

∂2

∂z2

]
δlm +

ℏkxy

m0
· ⟨l|pxy|m⟩ − iℏ

m0
⟨l|pz|m⟩ ∂

∂z
(6.35)

with
ϵl(z) = ϵ

(A)
l (z < 0), ϵ

(B)
l (z ≥ 0). (6.36)

Here we write |um0⟩ as |m⟩, etc.

Emphasizing “band-discontinuity potential,” we write

Vl(z) ≡

{
0 z < 0 (z ∈ A)

ϵ
(B)
l − ϵ

(A)
l z ≥ 0 (z ∈ B).

(6.37)

Then we reach the simultaneous equation of {χl} as *1

N∑
m=1

{[
ϵ
(A)
m0 + Vm(z) +

ℏ2k2xy
2m0

− ℏ2

2m0

∂2

∂z2

]
δlm − iℏ

m0
⟨l|p̂z|m⟩ ∂

∂z
+

ℏkxy

m0
· ⟨l|p̂xy|m⟩

}
χm = ϵχl. (6.38)

Let us consider the continuity condition of the envelope function χl of band l. Because we have assumed that ul is

common for A and B, χl should be continuous at the interface. On the other hand, the integration of (6.38) over the

interface and the continuity of χl leads to the condition

A (A)χ(A)(z0 = 0) = A (B)χ(B)(0), (6.39)

where

Alm = − ℏ2

2m0

[
δlm

∂

∂z
+

2i

ℏ
⟨l|pz|m⟩

]
. (6.40)

It is now clear that the band-hybridizing term ⟨l|pz|m⟩ from the k·p perturbation breaks the simple continuity of derivative

of the envelope function.

*1 If we go up to the second order in k, we have many other terms, which makes the equation very complicated. We thus have omitted them.
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6.4.1.2 Joint of envelope function

Next we do not equate u nor the band dispertion (effective mass) but only the single band is considered. The effective

mass equation is a second-order differential equation, and the general boundary connection conditions are as follows.(
χ(A)(0)

∇Aχ
(A)(0)

)
=

(
t11 t12
t21 t22

)(
χ(B)(0)

∇Bχ
(B)(0)

)
, (6.41)

where, taking a as the common lattice constant,

∇A,B =
m0

mA,B

∂

a∂z
. (6.42)

TBA = {tij} is called interface matrix.

The particle current density along z is determined by the envelope function as

j(z) =
ℏ

2im∗

[
χ∗(z)

∂χ

∂z
− ∂χ

∂z
χ(z)

]
. (6.43)

From the particle-number conservation, j(z) in A and B regions should be the same. The condition is equivalent to

detTBA = 1. (6.44)

Because this condition is fulfilled when TBA is the unit matrix I , the simplest envelope function approximation is to

put TBA = I . In this case, the envelope function can be treated just the same as the real wavefunction. In the case of

GaAs-(Al,Ga)As interface, the interface matrix obtained for a one-dimensional tight-binding model indicates the envelope

function approximation works well.

In such a case, we can consider the step function potential at the boundary with the height of band discontinuity
which is determined by the combination of the materials. And the envelope function can be viewed as ordinary quantum

wavefunction. On the above basis, we now can use methods to design quantum systems such as one-dimensional potential

by thin film growth technique.

(a) (b)

Fig. 6.11 (a) Diagram displaying symbols for the band alignment parameters at a junction of crystals A and B. (b)
Anderson model, in which the relative positions of bands are determined by the affinities from the vacuum level.
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6.4.2 Anderson’s model

Figure 6.11 illustrates a long-used Anderson model *2 for heterojunctions[3]．In the model, as shown in Fig. 6.11(a),

the bands in the bulk continue to the interface. The effect of charge transfer is taken into account as built-in potential just

like the treatment of pn homo-junctions.

An important point in this model is the relative band position at the heterojunctions. In the Anderson model, as shown

in Fig. 6.11(b), this is determined from the quantity called “affinity”, which is the lowering in the energy of electrons

with condensation into the crystal state. Then in this model, the connection of the bands is determined by the species of

the crystals In the figure, the affinities of A and B are χA and χB respectively.

The model, in itself, has many problems, many of which are on the “affinity.” Can the affinities be well-defined? Can we

calculate them? Are they measurable? We do not have time to go into the problems and furthermore, the experiments have

shown that such simple modeling does not work at the level of device designing, in which we need detailed information

of band-discontinuity.

We will have a brief look at the junction types and summarize theoretical approachs to the band-discontinuities in

Appendix 6C.

6.4.3 Classification of heterojunctions

Semiconductor heterojunctions are classified phenomenologically by the alignment of bands at the interface. Fig-

ure 6.12 shows three types of band alignment. (a) is most frequently found and called type-I. On the larger gap side,

the conduction bottom is higher and the valence top is lower. In type-II, as shown in (b), the conduction bottom and the

valence top shift to the same direction when an electron passes the interface. There is a common energy gap region for

A and B in the case of Fig. 6.12 (b). When the missalignment is larger and the energy gap at the interface is closed as in

(c), in Japan they call the alignment type-III and in other countries staggered type=II. For example, in ref. [4], the authors

call (c) as type-II.

A A AB B B

DEc

DEc DEc

DEv DEv
DEv

Eg
A Eg

A
Eg

A

Eg
B

Eg
B

Eg
B

(a) (b) (c)

Fig. 6.12 (a) Type-I: To the wider gap semiconductors, the conduction bottom goes up, the valence top goes down.
(b) Type-II: The conduction bottom and the valence top moves to the same direction when going through the junction.
Also called broken-up or misaligned．(c) Type-III: (Special classification in Japan) Same as type-II but there is no
overlapping in the energy gap. Instead there is an overlapp between the valence band on one side and the conduction
band on the other side. Also called staggered.

*2 This “Anderson” is a different person from novel laureate Philip W. Anderson in Bell lab. P. W. Anderson is famous for his “Anderson model”
of impurities and R. L. Anderson was in IBM Watson. Bit confusing.
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6.5 Formation of heterojunctions

We have already had a look on the epitaxial growth technique. Here I just mention about the lattice matching and

energy variation.

6.5.1 Epitaxial growth

Most popular method to form heterojunctions of semiconductors is epitaxial growth already presented in the lecture by

Prof. Akiyama. Epitaxial growth methods can be classified into liquid-phase epitaxy, vapour-phase epitaxy, and vacuum

deposition. In liquid-phase epitaxy, precipitation onto crystal substrates from melts of ingredients is used. The growths

occur in states close to equilibrium and high quality crystals can be obtained while it is hard to obtain sharp interfaces.

When one needs sharp interfaces and precise control of layer thicknesses, usually the latter two methods of epitaxy are

adopted.

An important point in the formation of heterojunction is the lattice matching in lattice constants and crystal systems.

In Fig. 6.13, we plot representative compound semiconductors and elemental semiconductors on the plane of lattice

constant and energy gap. Most of the plotted semiconductors have a common crystal system, FCC bravais lattice. Vertical

gray bands indicate possible groups of lattice matched heterostructure growth though these combinations are not always

available in practical growths. Besides these semiconductors, heterojunctions of GaN family are important for industrial

demands. They usually have Wurtzite structure (hexagonal close-packed, HCP) and need high temperature treatments,

the heterostructures thus are mostly composed within nitride families.

Even with considerable lattice mismatch, a misfit-dislocation free growth to a certain film thickness is possible. An

estimation of the thickness given as a balance point of the strain energy concentrated on dislocations and that within whole

grown film, is called Matthews’ critical thickness[5]. Because actual crystal growths are carried out under some non-

equilibrium condition, the total free energy not necessarily takes the minimum, the process is generally non-adiabatic.

Hence the Matthews’ thickness is just a rough estimation. In many cases we need to keep substrate temperatures high
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Fig. 6.13 Plots of the lattice constants
and the energy gaps of II-VI, III-V com-
pound semiconductors and IV elemental
semiconductors. The lines connecting
the points indicate possible mixed crys-
tals. Vertical gray bands indicate possible
groups of lattice matched heterostructure
growth.
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Fig. 6.14 Conceptual illustration of van der
Waals heterostructure, which is produced by
stacking various two-dimensional materials.

enough during growths and the difference in coefficients of thermal expansion in the two materials sometimes causes

dislocations or strains. Many points should be taken into account in actual growths[6].

6.5.2 van der Waals heterostructure

Recently van der Waals heterostructure, which is formed in completely different way, is collecting attentions[7]. That

is a mechanical stacking of two-dimensional materials like graphene as shown in Fig. 6.14 (graphene will be introduced

later as a two-dimensional electron system without heterointerface). Sometimes epitaxial growth like CVD is adopted but

in many cases mechanical stacking of exfoliated two dimensional materials creates high-quality heterostructure, which

implies possible completely new formation method of heterostructure.
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Chapter 7 Quantum structures (quantum wells, wires, dots)

So far, we have looked at low-dimensional systems such as graphene, which is a two-dimensional substance. These

were, so to speak, natural low-dimensional systems. By using heterojunction, metal joining, and microfabrication tech-

nology, human hands have come to enter the design of material systems to a certain extent. In this chapter, we look at

three typical quantum structures, two-dimensional, one-dimensional, and zero-dimensional systems.

7.1 Quantum well

A region with lower potential sandwiched with two heterojunctions to higher potential materials is quantum well.
The readers should be familiar with it since introduction of elementary quantum mechanics. In other words, however,

the semiconductor heterojunction technology has made the quantum well as a real substance from just an exercise for

students.

7.1.1 Discrete quantum levels in a quantum well

Let the well width be L, the barrier height V0. In x ≤ −L/2, L/2 ≤ x (outside the well) Schrödinger equation is[
− ℏ2d2

2mdx2
+ V0

]
ψ = Eψ. (7.1)

Let us put κ ≡
√
2m|E − V0|/ℏ and let C1,2, D1,2 be constants specific to the regions, the solution outside the well can

be written as

ψ(x) =

{
C1 exp(iκx) + C2 exp(−iκx) E ≥ V0,

D1 exp(κx) +D2 exp(−κx) E < V0.
(7.2)

In the case of E < V0, the wavefunction should be localized around the well and zero for x→ ±∞, then

L/2 < xで D+
1 = 0, x < −L/2で D−

2 = 0.

Superscript ± distinguish the regions positive/negative of x. Inside the well, letting C1, C2 be constants, we write the

wavefunction with plane waves as

ψ = C1 exp(ikx) + C2 exp(−ikx), k ≡
√
2mE

ℏ
, (7.3)

where for simplicity, we assume the effective mass m is common for inside and outside the well. The boundary condition

at x = ±L/2 where the potential is discontinuous is now applied. Continuity and differentiability at the potential

boundary x = 0 require

Continuity

{
C1 exp(ikL/2) + C2 exp(−ikL/2) = D+

2 exp(−κL/2),
C1 exp(−ikL/2) + C2 exp(ikL/2) = D−

1 exp(−κL/2),

Differentiability

{
ikC1 exp(ikL/2)− ikC2 exp(−ikL/2) = −κD+

2 exp(−κL/2),
ikC1 exp(−ikL/2)− ikC2 exp(ikL/2) = κD−

1 exp(−κL/2),
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Fig. 7.1 (a) A plot for graphical solutions of k which satisfy eq.(7.4). The crossing points of the functions
−2 arctan(k/κ) + nπ and kL give the solutions of (7.4). (b) Bound eigenstates for n = 1, 2, 3 under the con-
dition l = 8. The baselines for the wavefunctions are the eigenenergies E1,2,3 measured with V0 (for l = 8 there are
only three bound state solutions, which is different from the situation in the left figure).

respectively. Erasing the constants the following condition is obtained.

exp(2ikL) =

(
κ− ik

κ+ ik

)2

= exp

(
−4i arctan

k

κ

)
,

∴ kL = −2 arctan
k√

κ20 − k2
+ nπ, κ20 ≡ 2mV0

ℏ2
, n = 1, 2, · · · . (7.4)

Let us take kL as a positive value without loosing generality because the solutions contain −k equivalently, and we

restrict the value of arctan(x) between 0 and π/2. As shown in Fig. 7.1(a), the crossing points of the curves and the line,

−2 arctan(k/
√
κ20 − k2)+nπ and kL give the values of k, which satisfy (7.4). As easily guessed from the analogy with

the case of infinite barriers, even numbers of n correspond to odd parity wavefunctions, while odd numbers correspond

to even parities.

In Fig. 7.1(b), we show the form of wavefunctions for the bound states in the case of l = 8.

7.1.2 Optical absorption in quantum wells

We would like to have a short look at optical absorption in quantum wells. As usual we take z-axis vertical to the well

plane. We write the envelope functions for electrons and holes as ϕe(z) and ϕh(z) respectively and then approximate the

total wavefunction as
ψe(r) = ϕe(z) exp(ikxy · rxy)uc(r),
ψh(r) = ϕh(z) exp(ikxy · rxy)uv(r).

}
(7.5)

uc, uv are lattice periodic parts of the Bloch eigenfunction with k = 0. Direct type inter-band optical absorption

probabilities are proportional to

⟨uc(r)|∇|uv(r)⟩
∫ ∞

−∞
dzϕe(z)

∗ϕh(z). (7.6)

In the case of infinite height barriers, the envelope functions are written as sin(nπz/L), cos(lπz/L) (n = 2, 4, · · · ,

l = 1, 3, · · · ) and the latter integration over z in (7.6) is finite only between electron envelope function and hole envelope
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Fig. 7.2 (a) Illustration of theoretically proposed optical absorption spectrum, in which both the coupling density
of states and the exciton density of states in the quantum well are taken into account. The approximation that the
transition exists only between electrons and holes with the same quantum index. In the valence band of fcc semi-
conductors we have heavy and ligh holes and transitions with the two bands are considered in the figure. (b) Optical
absorption spectrum of a AlAs/GaAs multiple (40 layers) quantum well with width 7.6 nm. The finite barrier height
causes transitions between the levels with different quantum indices, which appear in exciton peaks.

function with the same quantum index (n or l in this case). For finite heights, this orthogonality breaks leaving parity

selection rule but still elements between different quantum indices are small and we only consider the transition between

the states with the same index. The energy associated with the transition is

E = Eg +∆E(eh)
n +

ℏ2

2µ
k2xy, (7.7)

where ∆E(eh)
n is the sum of the energies for electron and hole in n-th energy levels, 1/µ = 1/m∗

e +1/m∗
h is the reduced

mass. The last term for two-dimensional kinetic energy indicates that there should be continuous absorption spectrum

above ∆E(eh)
n corresponding to the two-dimensional density of states.

From E = (ℏ2/2m∗)k2 and n = πk2/(2π)2 = (E/4π)(2m∗/ℏ2), the two-dimensional density of states can be

written as
dn

dE
=

m∗

2πℏ2
H(E) (H(x) : Heaviside function). (7.8)

This is constant for energy and with (7.7), we expect a staircase like optical absorption spectrum.

Formaion of excitons appears in optical absorption as peaks at energies lower than the fundamental absorption edge.

Such peaks for excitons in quantum wells are illustrated in Fig. 7.2(a). Only the ground states (n = 0) of the excitons

are considered. And coupling density of states between electrons and holes with different subband quantum indices

is ignored assuming that the barrier is high enough. Figure 7.2(b) shows an experimental result on an AlGaAs/GaAs

multiple quantum well with width 7.6 nm. The lineshape of the absorption spectrum can be understood as an overlap of

staircase-like shape reflecting the two-dimensional density of states (7.8) and absorption by excitons indicated as hh or lh.

Because the barrier height is finite in the experiment, peaks due to the transition between states with different quantum

indices are also observed. The effect of low-dimensionality is observable in increases of binding energy of excitons,

which results in wider separation of exciton peaks from absorption edges and the peaks persist up to higher temperatures.

Now we can see that the optical absorption spectra can provide experimental determination of band-discontinuities

∆Ec, ∆Ev. In the combination of GaAs-AlxGa1−xAs, reseachers could not separate lh and hh peaks in very early

experiments presumably due to low quality of samples. The result once led them to a wrong conclusion of∆Ec : ∆Ev =

85 : 15 because ∆Ev should be too small to accomodate the lh level. After the revised experiments, it was established
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that ∆Ec : ∆Ev = 57 : 43 is a good empirical law.

Appendix 6C: Trials for simple theory to find band discontinuities

The capacity of computers has increased dramatically, and first-principles calculations that require a lot of computer

resources as LAPW, can now be performed relatively easily. Even though, the researchers are still trying to construct a

theory to obtain band discontinuity from a small number of experimental parameters using simple physical principles.

I will introduce such researches so far, but it has been found that many cannot withstand the subsequent criticisms,

experiments, and first-principles calculations.

6C.1 Common anion rule

This “common anion rule” is considered for compound semiconductors[8] which have finite inonicity. The claim is as

follows. Because the valence band is mostly composed of p-orbitals of anion, ∆Ev ≈ 0 for the semiconductors with a

common anion. This is a surprizingly rough theory. The prediction is far from experiments and from other models.

6C.2 Pseudo-potential theory

The quantitiy “affinity” can be formally calculated from the first principles. In the era of Anderson’s research, ∆Ec are

determined from the experiments, and the affinity is obtained from the fitting. Here we see a theory, which is constructed

by Frensley and Krömer[9] aiming at finding band discontinuity from bulk parameters.

The calculation goes as follows. First with the self-consistent pseudo-potential method, the relative positions of bulk

bands are calculated in the electrostatic potential inside the crystal[10]. Next from the electronegativity of consisting

atoms and from the band structure, the electrostatic potential at the interface is calculated and the relative positions of

bands are obtained. They claimed the agreement with exeriments[9].

6C.3 LCAO theory

W. A. Harrison applied his linear combination of atomic orbitals (LCAO) theory to the heterostructure in ref.[11, 12].

In Harrison’s theory, LCAO forms the bands. Most of bands in semiconductors can be expressed with the combination

of the single s-orbital and the three p-orbitals. The valence band top is composed of p-orbitals and expressed as

Ev =
ϵcp + ϵap

2
−

[(
ϵcp − ϵap

2

)2

+ V 2
xx

]1/2

, (6C.1)

where ϵc,ap are the energies of p-orbitals of cation and anion respectively on their own sites, Vxx is the matrix element

between neighboring p-orbitals. According to the theory[11], Vxx is approximated as

Vxx = 2.16ℏ2/md2, (6C.2)

where m is the electron mass and d is the bond length. The number 2.16 is obtained by fitting the results for Si and Ge to

those of other band calculation[13].

In this method, the valence band discontinuities for many semiconductor can be easily calculated and often used for the

estimation. It is said to give fairly good agreements with experiments in many cases though with many exceptions e.g.,

in the case of GaAs-AlAs the Harrison theory gives ∆Ev=0.04 eV for about 0.5 eV in the experiments[14]. Actually the

main difference in ref. (6C.1) from the common anion rule is just ϵcp and still the approximation is rough.
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6C.4 Interface dipole theory

This theory had been pur forward by Tersoff and Harrison[15, 16, 17]. First Tersoff criticized Harrison’s LCAO theory

that the theory is not reallistic in that the charge transfer between the semiconductors is ignored and no dipole exists at

the interface[15]. Then they collaborated in constructing LCAO theories with electric dipoles[17].

In the Tersoff’s original idea, on the surface of a semiconductor (an insulator), an energy level of “charge neutrality”

can be defined in the band gap. The charge neutrality level is given at the point where the contributions of the valence

orbitals and those of the conduction orbitals are balanced. In a metal-semiconductor Schottky junction, this charge

neutrality level should be matched to the Fermi surface in the metal*3. The charge transfer through the interface is over a

very short distance, only single lattice constant. The transfer length scale is very different from the space-charge created

so as to match EF with the bulk value. When two semiconductors are jointed, there is no charge transfer for matched

charge neutrality levels. Otherwise the transfer occurs to match the charge neutrality levels. Hence, if we can calculate

the position of charge neutrality level, the band offset can be derived from that.

(a) (b)

Tab. 6C.1 (a) The in-gap state EB obtained by equating the contributions from the both bands to (6C.3) and the
positions of EF measured in the Schottky diodes with Au and Al as the electrodes.

For the calculation of the charge neutrality level (or, metal-induced gap states, MIGS), the contributions from the

valence and the conduction to the real-space averaged Green function

G(R, E) =

∫
d3r

∑
nk

ψ∗
nk(r)ψnk(r +R)

E − Enk
=

∑
nk

eik·R

E − Enk
(6C.3)

are equalized to give MIGS EB . EB obtained with this method and the positions of EF obtained in Schottky diodes

with Au and Al electrodes[?] are listed in Tab. 6C.1(a). Already in this table, the agreement is not very good. And after

the publication, there occured many criticisms including the experiments. In conclusion, the theory is convenient in the

discussion of chemical trend but it is hard to say that it can be used for device design.

6C.5 Example of first principles calculation

Wei and Zunger proceeded with the so-called first-principles calculation of the interface, and the low accuracy of the

common anion law and even the simple LCAO theory is due to the roughness of the bulk band calculation rather than

the effect of the interface dipole[19]. That is, the bulk contribution ∆Eb
VBM and the surface contribution ∆Eis

VBM to the

energy difference ∆EVBM at the valence band maximum (VBM) are in the relation

∆EVBM = ∆Eb
VBM +∆Eis

VBM. (6C.4)

*3 In the most of real Schottky junctions, there are defect levels with very high densities and the Fermi levels are pinned there. At the heterointerface
with small defect densities, the situation is different.
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According to their claim, ∆Eis
VBM is small and the problem in LCAO theory rather lies in the estimation of ∆Eb

VBM.

That is in Harrison theory, only s and p orbitals are considered but particularly the contribution from the d orbitals of

cation is comparatively large and the most of disagreement with experiments can be explained with this (calculation was

done by all-electron generalized linear augmented plane wave method[20]).

Tab. 6C.2 ∆Ev for semiconductors with Te and As as anion. The results of simple LCAO, experiments, and
all-electron first principles calculation.

The calculated results are summarized in Tab. 6C.2. Now the LAPW method can be rather easily utilized in the form

of convenient packages like HiLAPW or VASP though still consumes large calculation resources and the jobs are heavy).

The method is only for periodic systems and in the case of heterointerface, the unit cell is taken large along vertical

direction to the interfaceso as to contain two intefaces and the periodic boundary condition is applied. This is, in a sense,

calculation of a superlattice band structure and can be used to check the staircase approximation of the heterointerface.

Appendix 6D: Recombination current and ideality factor

In the discussion of current-voltage characteristics of pn junctions in the text, we only considered the diffusion current.

In reallistic pn-junctions, various other factors contribut the current. Here we have a brief look at the current caused by

carrier recombination in the depletion layer at the junction interfaces.

First we consider direct gap semiconductors, in which the interband recombination rate is much higher than those in

indirect ones. Let the interband recombination rate be Re, this should be proportional to the carrier concentrations n and

p. Thus Re is proportional to the product pn. Let Rrc be the coefficient, then

Re = Rrcpn. (6D.1)

Re equals to the thermal activation rate Gth of the electron-hole pair in the dark and in equilibrium. Then the law of mass

action gives

Rrc =
Gth

pn
=
Gth

n2i
. (6D.2)

When there is optical activation or minority carrier injection by the external current, the activation rate and the recombi-

nation rate are not balanced and the difference is the net recombination rate U . In n-type semiconductors, the variation

in the hole concentration is the main factor. If we write pn = p0 +∆p, nn ≈ ND, then

U = Re −Gth = Rrc(pn− n2i ) ≈ Rrc∆pND ≡ ∆p

τp
, (6D.3)

where we define the minority carrier lifetime as

τp =
1

RrcND
. (6D.4)

Similarly the electron lifetime in p-type semiconductors are written as

τn =
1

RrcNA
. (6D.5)
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In contrast, in the indirect gap semiconductors like Si or Ge, the carrier recombination is via the localized traps. In that

case, the net recombinatin rate is, according to so called Shockley-Read-Hall statistics[21] written as

U =
σnσpvthNt(pn− n2i )

σn

[
n+ ni exp

Et − Ei

kBT

]
+ σp

[
p+ ni exp

Ei − Et

kBT

] , (6D.6)

whereNt is the trap density, σn, σp are the capture cross-sections for electrons and holes respectively, Et is the trap level,

Ei is the Femi level of the intrinsic semiconductors. And vthe is the thermal velocity of the minority carrier

vth =

√
3kBT

m∗ . (6D.7)

In eq.(6D.6), U takes the maximum at Et ≈ Ei. Though actually Et distribute over the band gap, the trap levels close to

Ei contribute lartgely to U *4, then as a coarse approximation, we consider only single species of traps and put Et = Ei

then

U =
σnσpvthNt(pn− n2i )

σn(n+ ni) + σp(p+ ni)
. (6D.8)

Just like in the case of interband transition, we write U as ∆p/τp or ∆n/τn, giving

τp =
1

σpvthNt
, τn =

1

σnvthNt
. (6D.9)

Now we use quasi-Fermi levels introduced in eq.(6.4) and from eq.(3.13) the np product is written as

np = n2i exp
µe − µh

kBT
. (6D.10)

Substitutin the above into (6D.6), we obtain

U =

σnσpvthNtn
2
i

[
exp

eV

kBT
− 1

]
σn

[
n+ ni exp

Et − Ei

kBT

]
+ σp

[
p+ ni exp

Ei − Et

kBT

] . (6D.11)

Then again we put Et = Ei, and for further simplicity, we assume σn = σp = σ to obtain

U =

σvthNtn
2
i

[
exp

eV

kBT
− 1

]
n+ p+ 2ni

=

σvthNtn
2
i

[
exp

eV

kBT
− 1

]
ni

[
exp

µe − Ei

kBT
+ exp

Ei − µh

kBT
+ 2

] . (6D.12)

Further, when µe, muh are position dependent, U takes the maximum in the case Ei places in the middle between µe and

µh. Then (6D.12) reduces to

U ≈
σvthNtn

2
i

[
exp

eV

kBT
− 1

]
2ni

[
exp

eV

2kBT
+ 2

] ≈ 1

2
σvthNtni exp

eV

2kBT
eV > kBT. (6D.13)

Because the above is the maximum the estimation should be a bit large but the current density due to the recombination

can be written as

jrc =

∫ wd

0

qUdx ≈ qwdni
2τ

exp
eV

2kBT
. (6D.14)

In eq. (6D.14) in comparison with eq. (6.11), the voltage term in the exponential has an extra factor 1/2. To put it

plainly, this is because the energy exchange when recombination occurs in the trap is half that of the case where the

*4 This means that the lifetime of minority carriers is determined by a deep level, especially in indirect semiconductors. In “solar grade” Si, in
conparison with those for LSI (impurity −10 ∼ 10−11), the purity can be a bit lower while the deep level concentrations should be reduced.
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current is generated by overcoming the bandgap (6.11). In this way, different processes in which current flows generally

have different voltage coefficients. Then in experiments, the forward current is written as

JF ∝ exp
eV

ηkBT
(6D.15)

and the factor η (ideality factor) is fit to the experiment. When η is close to 1, the diffusion current is dominant and the

junction is close to the ideal case. When it is close to 2, the recombination current inside the depletion layer is dominant.

In the laboratories, η sometimes goes over 2 and still takes higher values. In the case of pn-junctions, the interface

comes to the middle of depletion layer and there is some interdiffusion of dopants, thus the factor 2 is frequently obtained

while it is usually close to 1 in the case of Schottky junctions.
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