Lecture on

Semiconductors / 半導体

(Physics of semiconductors)

2021.4.7 Lecture 01

Institute for Solid State Physics, University of Tokyo

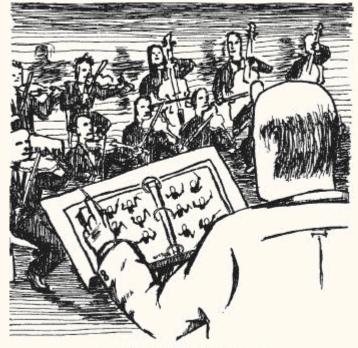
Shingo Katsumoto

How the lecture will go on?

- Powerpoint (converted to pdf) file will be uploaded in the corresponding ITC-LMS site, (<u>https://itc-lms.ecc.u-tokyo.ac.jp/lms/course?idnumber=202135603-00290F01</u>) by the day before the lecture.
- The lecture notes (in Japanese, English) will be uploaded in the site <u>https://kats.issp.u-tokyo.ac.jp/kats/semicon4/</u> by the end of the lecture week.
- Small amount of problems for your exercise at home will be given in the last of the lecture in every two weeks. Submission deadline of the solutions is two weeks later. I hope I can collect them through LTC-LMS but if that is difficult I will prepare my own web script.
- In the very last of the lecture in July, the problems for your report will be given. The deadline for the submission of the report will be notified then.
- The lecture is recorded on the cloud. I hope I can upload the video for one or two weeks.
- ➤ I hope I can find some ways to get questions from you (via chat, etc.?)

Lecture Plan

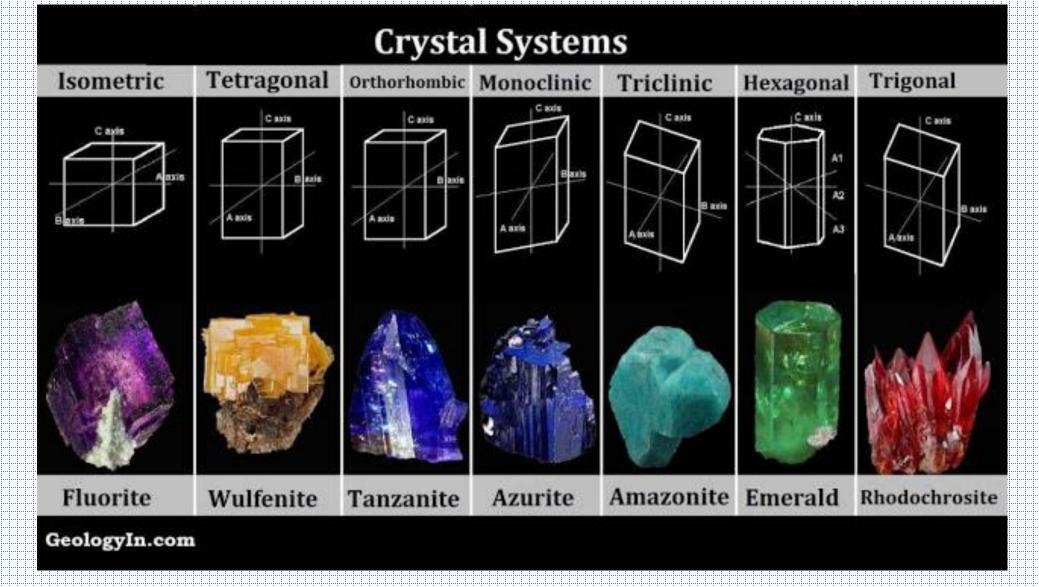
Related site: https://kats.issp.u-tokyo.ac.jp/kats/semicon4/


- 1) Crystal structure and crystal growth
- 2) Energy band, effective mass approximation
- 3) Carrier statistics and chemical doping
- 4) Optical properties
- 5) Semi-classical treatment of charier transport
- 6) Homo/hetero junctions, semiconductor devices (optical, electrical)
- 7) Quantum structures (quantum wells, wires,
- dots) by nanofabrication techniques
- 8) Basics of quantum transport
- 9) Galvanomagnetic effects, Quantum Hall effects
- 10) Spin-related phenomena (spintronics)
- 11) Topological effects

- 1)結晶構造と結晶成長
- 2) エネルギーバンド,有効質量モデル
- 3)半導体キャリア統計とドーピング
- 4) 光学的性質
- 5) 電気伝導の半古典論
- 6)ホモ・ヘテロ接合,半導体デバイス(光,電子) 7) 微細構造技術による量子構造(量子井戸,細線, ドット)
- 8) 量子輸送の基礎
- 9) 電流磁気効果, 量子ホール効果
- 10) スピン物性(スピントロニクス)
- 11)トポロジカル効果

- Not metal
- Middle range band gap
- Weak divergence of resistivity with lowering temperature

Structure sensitive (conduction) properties

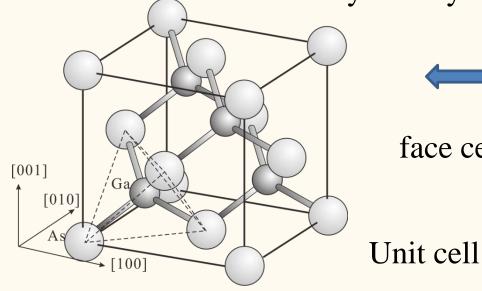

- Drastic changes in electric conduction with ultra-small amount of impurities
- Changes in electronic and optical properties with quantum confinement structures like quantum wells, wires, and dots

A SEMI-CONDUCTOR

Yu & Cardona, "Fundamentals of Semiconductors"

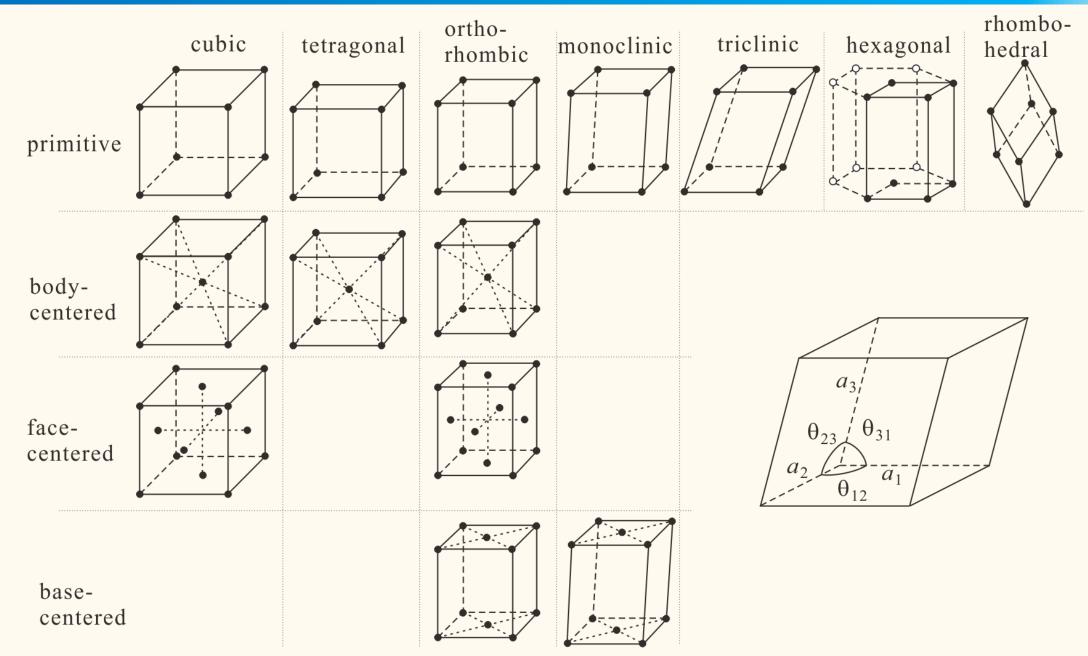
Chapter 1 Crystal structures and crystal growths

http://www.geologyin.com/2014/11/crystal-structure-and-crystal-system.html


ex) GaAs

Uniform solids
$$\begin{cases} crystals \\ single \\ amorphous \end{cases}$$

Crystals: Spatially periodic structures


Unit of spatial repetition Primitive cell: unit of spatial repetition with smallest number of atoms

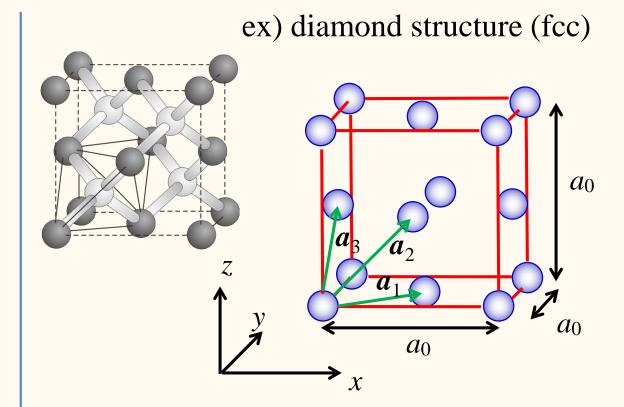
Unit cell: unit of spatial repetition taken as for human to find symmetry of the crystal

face centered cubic (fcc)

Bravais lattices

Lattice, reciprocal lattice (1)

Lattice: spatial repetition of the unit structure.

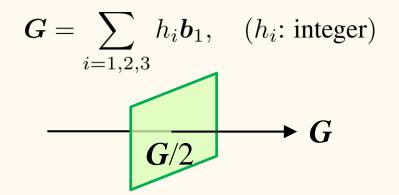

$$r' = r + \sum_{i=1,2,3} l_i a_i = r + R$$

l_i: integers, *a_i*: primitive (translation) vector*R*: lattice vector

Lattice potential
$$U(\mathbf{r})$$
 $U(\mathbf{r}) = \sum_{\mathbf{G}} U_{\mathbf{G}} e^{i\mathbf{G}\mathbf{r}}$
 $U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$

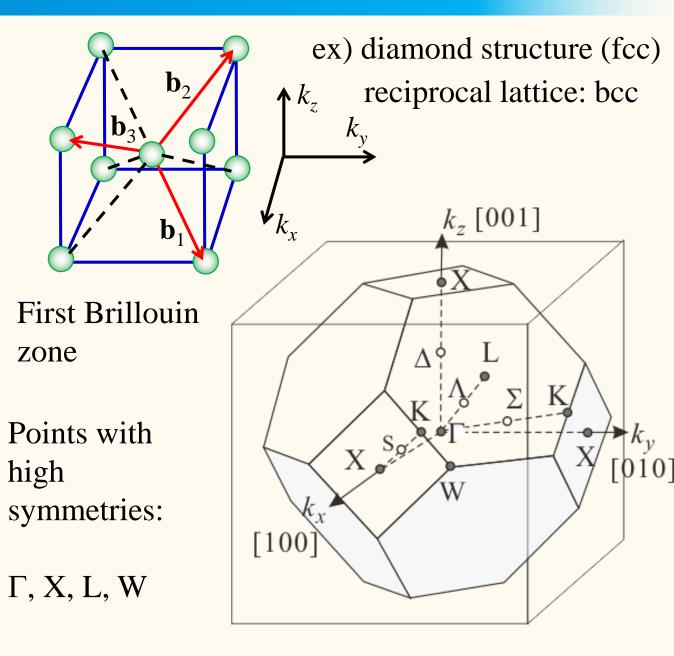
$$\boldsymbol{G} \cdot \boldsymbol{R} = 2\pi n$$
 (*n*: integer), $\therefore e^{i\boldsymbol{G} \cdot \boldsymbol{R}} = 1$

G: reciprocal lattice vector

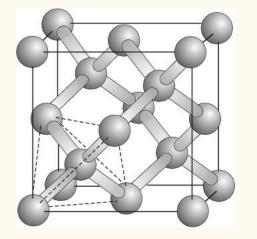


$$m{a}_1 = rac{a_0}{2}(m{e}_x + m{e}_y), \ \ m{a}_2 = rac{a_0}{2}(m{e}_y + m{e}_z), \ \ m{a}_3 = rac{a_0}{2}(m{e}_z + m{e}_x)$$

Lattice, reciprocal lattice (2)


$$|A| \equiv \boldsymbol{a}_1 \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3)$$
$$\boldsymbol{b}_1 = \frac{2\pi \boldsymbol{a}_2 \times \boldsymbol{a}_3}{|A|}, \quad \boldsymbol{b}_2 = \frac{2\pi \boldsymbol{a}_3 \times \boldsymbol{a}_1}{|A|},$$
$$\boldsymbol{b}_3 = \frac{2\pi \boldsymbol{a}_1 \times \boldsymbol{a}_2}{|A|}$$

primitive reciprocal vectors


Plane that cuts G at G/2 vertically

→ unit cell in the reciprocal lattice: Brillouin zone

Inorganic crystals often used as semiconductors: Group IV

Diamond structure (fcc)

diamond

germanium

II	III	IV	V	VI
4 Be ペリリウム 9.012182	5 B ホウ素 10.811	6 C 12.0107	7 N 望秦 14.0067	8 〇 酸素 15.9994
12	13	14	15	16
Mg	AI	Si	P	S
マグネシウム	アルミニウム	ケイ素	リン	硫黄
24.305	26.98153	28.0855	30.973762	32.065
30	31	32	33	34
乙n	Ga	Ge	As	Se
^{亜鉛}	ガリウム	ゲルマニウム	上素	セレン
65.38	69.723	72.63	74.9216	78.96
48	49	50	51	52
Cd	In	Sn	Sb	Te
カドミウム	インジウム	スズ	アンチモン	デルル
112.411	114.818	118.71	121.76	127.6

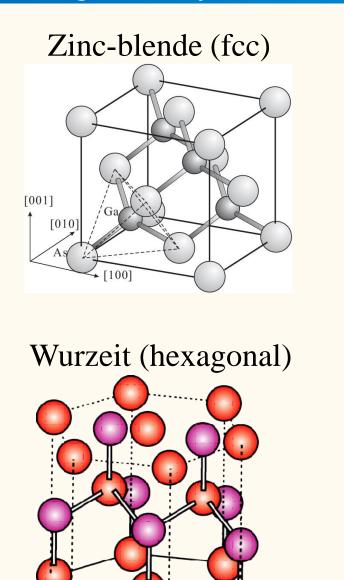
 $(\alpha$ -Sn)

SiC

 Si_xGe_{1-x}

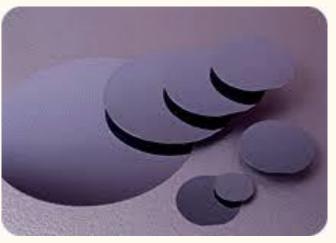
Inorganic crystals often used as semiconductors: Group III-V

GaAs

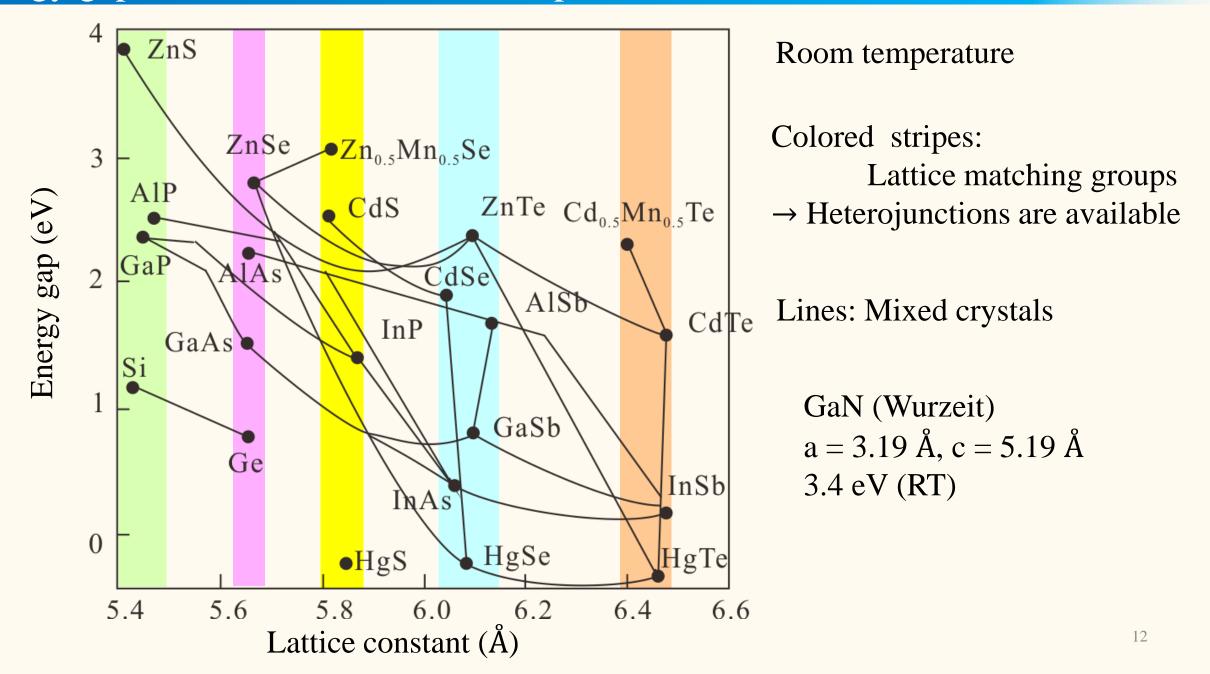

(ZB)

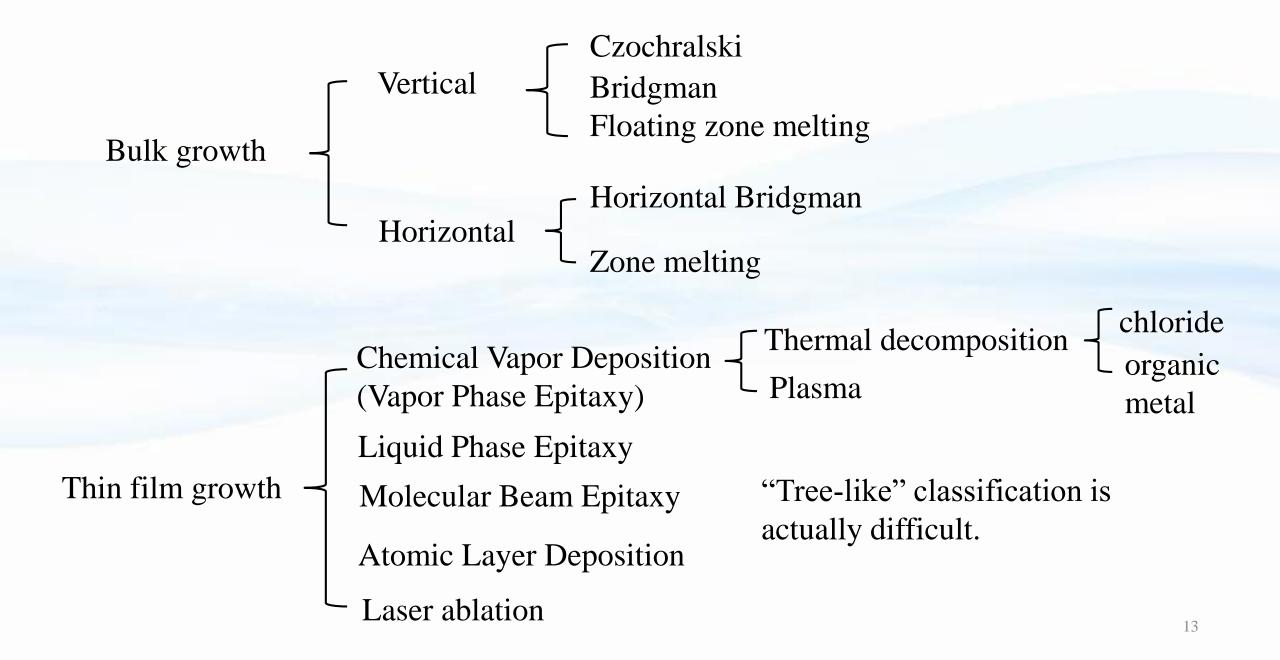
GaN

(WZ)

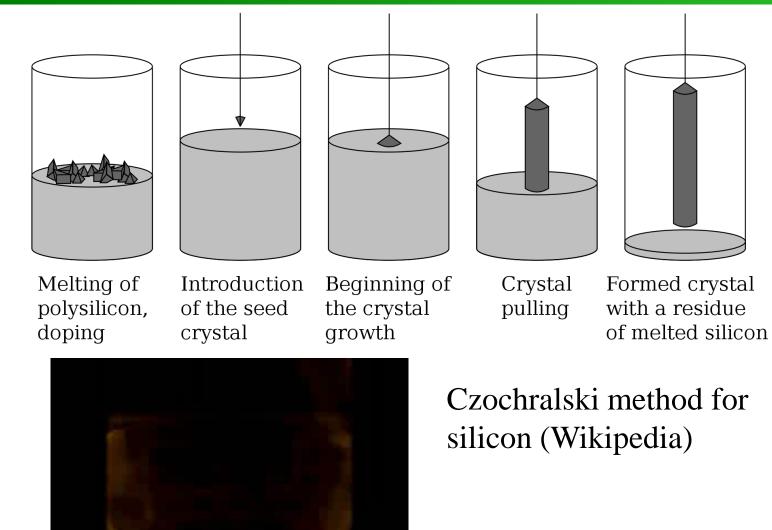

CdTe

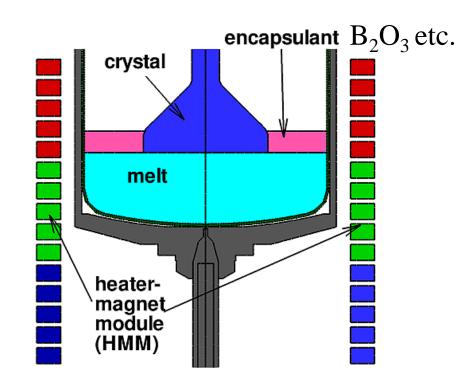
 (\mathbf{ZB})

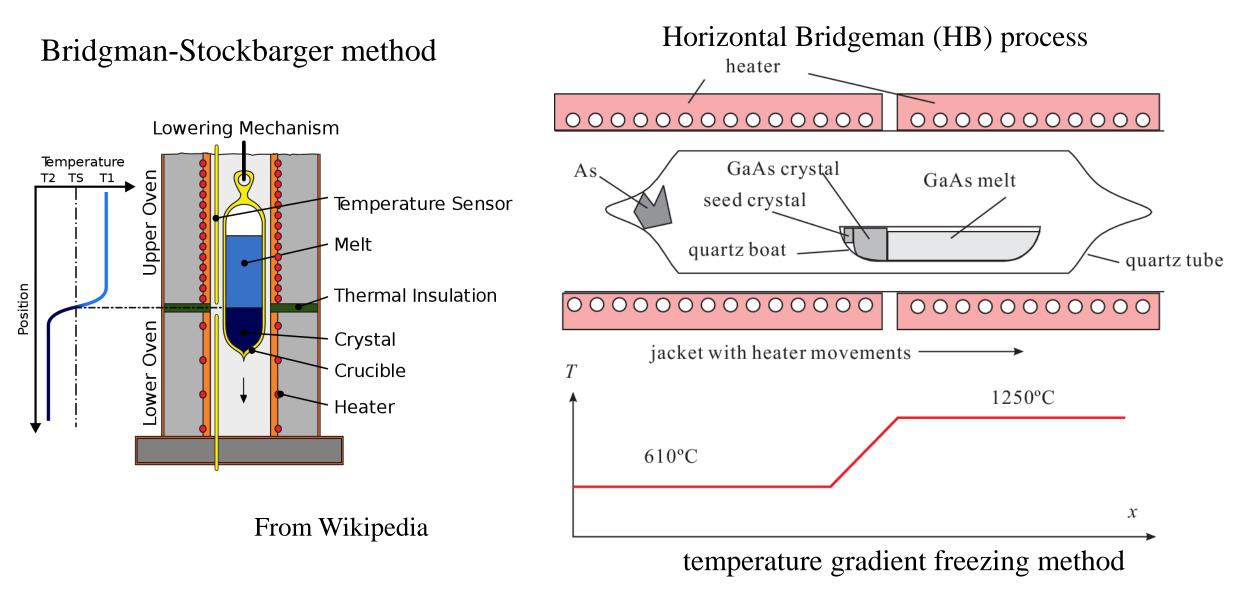




II	III	IV	V	VI
4	5	6	7	8
Be	B	C	N	〇
ペリリウム	ホウ素	炭素	窒素	酸素
9.012182	10.811	12.0107	14.0067	15.9994
12	13	14	15	16
Mg	AI	Si	P	S
マグネシウム	アルミニウム	ケイ素	リン	航黄
^{24.305}	26.98153	28.0855	30.973762	32.065
30	31	32	33	34
乙n	Ga	Ge	As	Se
^{亜鉛}	ガリウム	ゲルマニウム	上素	セレン
65.38	69.723	72.63	74.9216	78.96
48	49	50	51	52
Cd	In	Sn	Sb	Te
カドミウム	インジウム	2,7	アンチモン	デルル
112.411	114.818	118.71	121.76	127.6
4	5	6	7	8
Be	B	C	N	〇
ペリリウム	ホウ素	近 <u>素</u>	窒素	酸素
9.012182	10.811	12.0107	14.0067	15.9994
12 Mg マグネシウム 24.305	and the second se	28.0855	15 P リン 30.973762	16 S 硫黄 32.065
30	31	32	33	34
Zn	Ga	Ge	As	Se
^{亜鉛}	ガリウム	ゲルマニウム	上素	セレン
65.38	69.723	72.63	74.9216	78.96
48	49	50	51	52
Cd	In	Sn	Sb	Te
カドミウム	インジウム	7.7	アンチモン	テルル
112,411	114.818	118.71	121.76	127.6

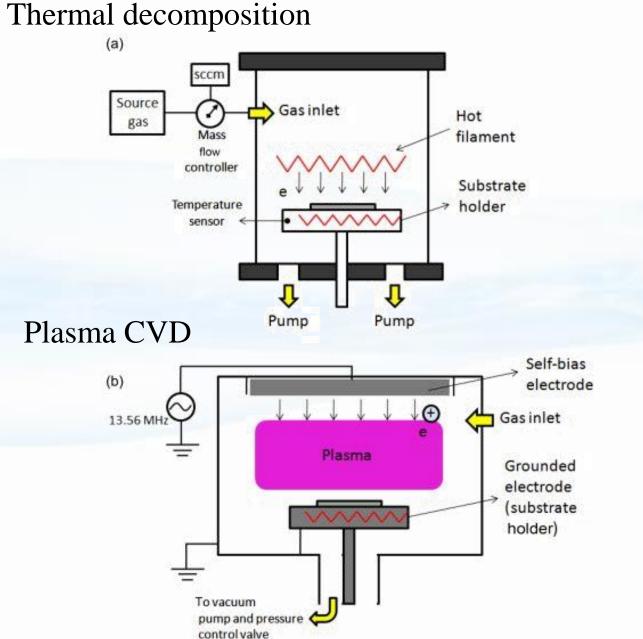

Energy gaps and lattice constants of representative (cubic) semiconductors


Various methods for semiconductor crystal growth

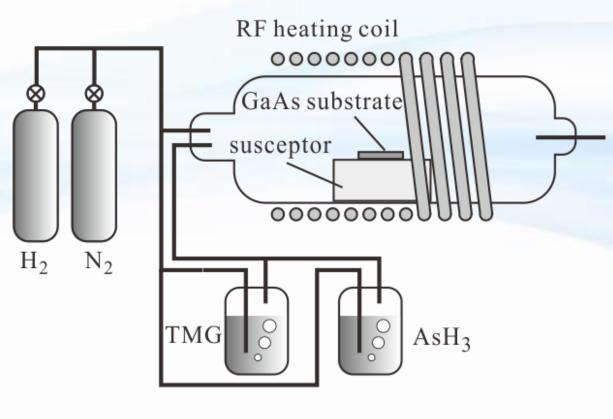


Crystal growth: Czochralski method

Liquid encapsulated Czochralski (LEC) (GaAs, InP, etc. high vapor pressure materials)



Floating zone method


https://www.youtube.com/watch?v=jPijg8NIamo

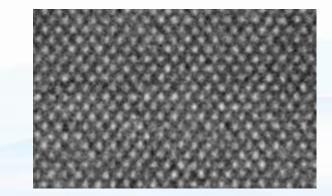
Chemical vapor deposition (CVD), metal-organic CVD (MOCVD)

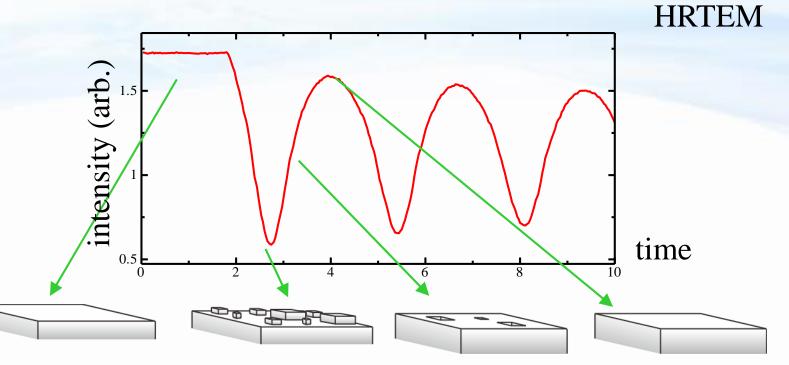
MOCVD

(organometallic vapor phase epitaxy, OMVPE)

Organic metal gases

Molecular Beam Epitaxy (MBE)


RHEED Ga Mn In Substrate Ga Mn In As Sb shutter control


Ultra-high vacuum evaporation

Refractive high energy electron diffraction (RHEED)

Chapter 2 Energy bands, effective mass approximation

- 7 Alter William Contraction of the second se

Bing Concert hall at Stanford University https://www.deccaeurope.com/Case-Studies/bing-concert-hall-at-stanford-university-california

Bloch theorem and nearly free electron model

Bloch theorem Eigenstates in lattice potential:

$$\psi_{n\boldsymbol{k}}(\boldsymbol{r}) = u_{n\boldsymbol{k}}(\boldsymbol{r}) \exp(i\boldsymbol{k}\cdot\boldsymbol{r})$$

 $u_{n\boldsymbol{k}}(\boldsymbol{r}+\boldsymbol{R}) = u_{n\boldsymbol{k}}(\boldsymbol{r}) \quad \boldsymbol{R}:$ Latt

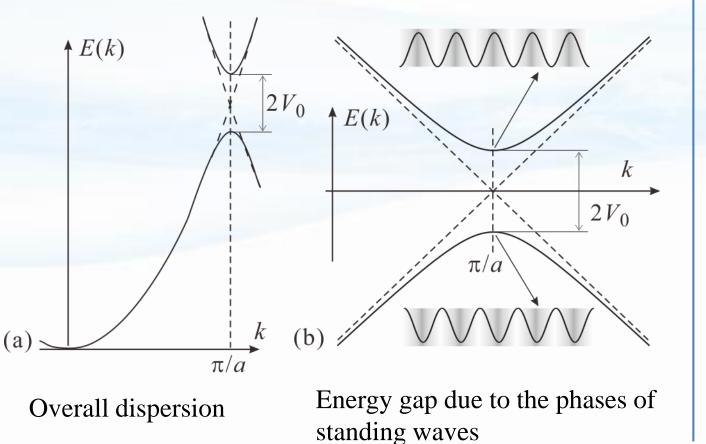
R: Lattice translation vector *n*: band index

One-dimensional system with a weak periodic potential

$$V(x) = 2V_0 \cos(k_w x) \ (k_w = 2\pi/a, \ a$$
: lattice const.)

 $\langle k'|V|k\rangle = V_0 \langle k'|(e^{ik_w x} + e^{-ik_w x})|k\rangle = V_0 (\delta_{k'k+k_w} + \delta_{k'k-k_w})$ Perturbation is important from $k \pm k_w$

Energy crossing between $|k\rangle$ and $|k - k_w\rangle$ occurs around $k = k_w/2$


Hamiltonian around $k = k_w/2$ in the space formed with $|k\rangle$ and $|k - k_w\rangle$

$$\mathscr{H} = \begin{bmatrix} \frac{\hbar^2 k^2}{2m_0} & V_0 \\ V_0 & \frac{\hbar^2 (k - k_{\rm w})^2}{2m_0} \end{bmatrix} \approx \begin{bmatrix} \epsilon_{\rm z} - \frac{\hbar^2 k_{\rm w} \Delta k}{2m_0} & V_0 \\ V_0 & \epsilon_{\rm z} + \frac{\hbar^2 k_{\rm w} \Delta k}{2m_0} \end{bmatrix} \qquad k = k_{\rm w}/2 - \Delta k$$

Nearly free electron model (2)

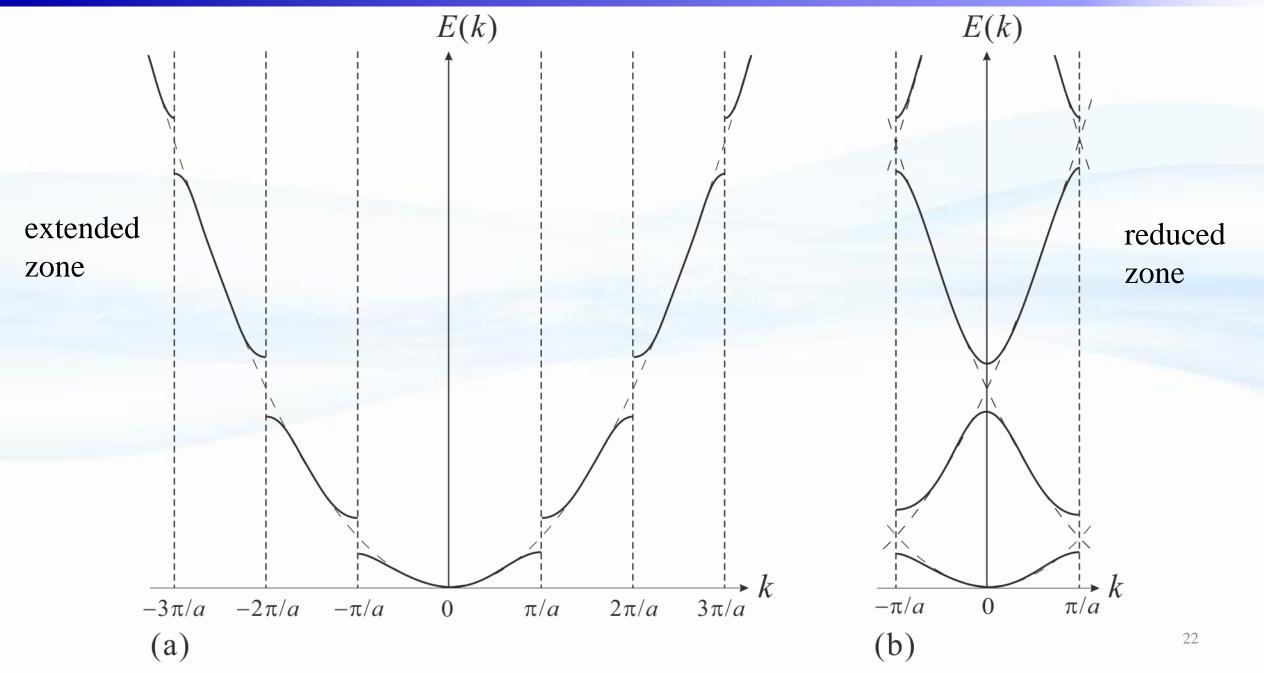
$$E_{\pm} = \epsilon_{\rm z} \pm \sqrt{\epsilon_{\rm z} \frac{\hbar^2 (\Delta k)^2}{2m_0} + V_0^2} \qquad \epsilon_{\rm z} = \frac{\hbar^2 k_{\rm w}^2}{8m_0}$$

Energy gap: $\Delta k = 0 \rightarrow 2V_0$

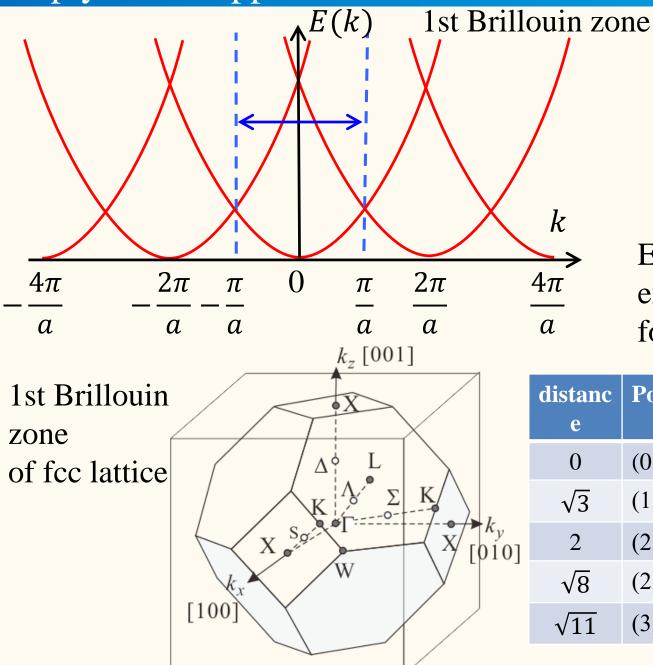
Bloch theorem

$$\psi_{n\boldsymbol{k}}(\boldsymbol{r}) = u_{n\boldsymbol{k}}(\boldsymbol{r}) \exp(i\boldsymbol{k}\cdot\boldsymbol{r})$$

Standing wave $e^{ik_{w}x/2} \pm e^{-ik_{w}x/2} = (1 \pm e^{-k_{w}x})e^{ik_{w}x/2}$ $= (e^{k_{w}x} \pm 1)e^{-ik_{w}x/2}$


Lattice periodic function

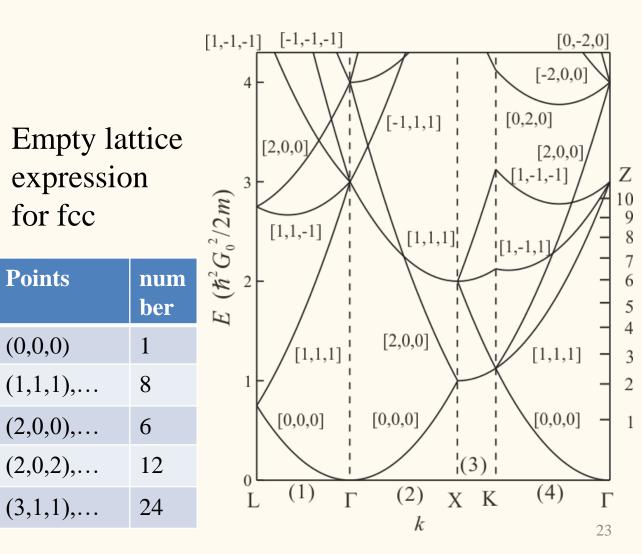
Points $k_w/2$ and $-k_w/2$ are equivalent


Shifts from these points can be renormalized into $u_{nk}(r)$ \rightarrow

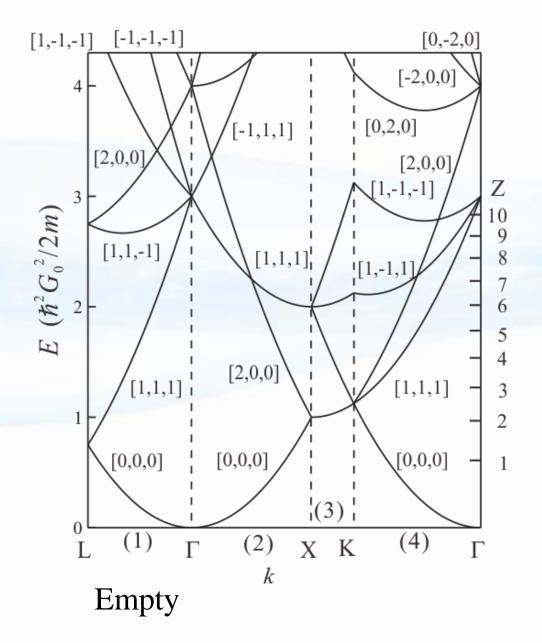
Reduced zone expression

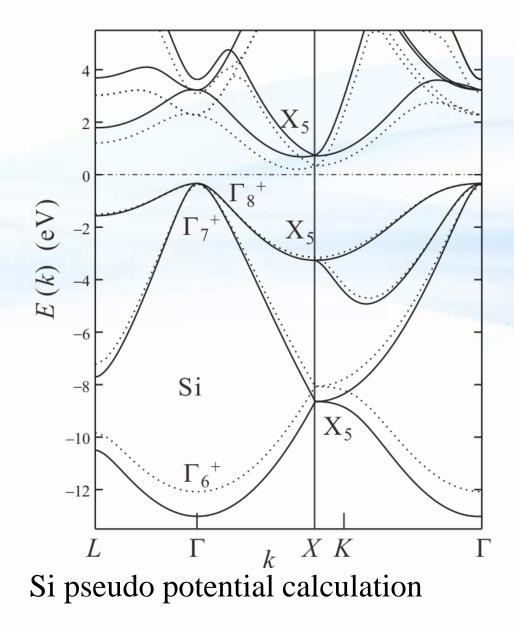
Nearly free electron model (3) Reduced zone expression

Empty lattice approximation



$$V_0 \to 0$$
 $e^{ikx} = e^{i(k-k_w)x}e^{ik_wx}$


The free space has a lattice periodicity.


Points

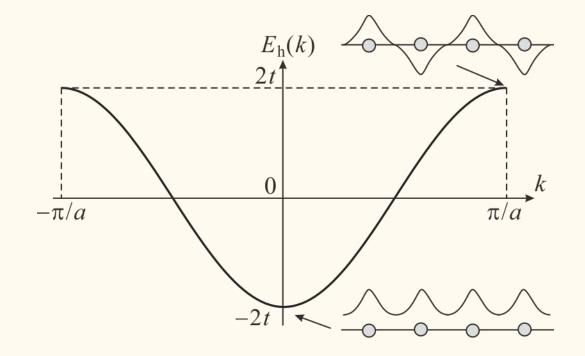
(0,0,0)

Empty lattice approximation and more realistic band structure

Tight-binding approximation

Single atom on single unit cell

Single atom Hamiltonian: $\mathscr{H}_a = \hat{T} + u$


 \hat{T} : kinetic energy, u: atomic potential

 $\begin{aligned} \mathscr{H}_{a}(R_{i}) &= \hat{T} + u(r - R_{i}) \\ \mathscr{H}_{a}(R_{i})\phi_{n}(r - R_{i}) &= \epsilon_{n}\phi_{n}(r - R_{i}) \\ \phi_{n} \text{: eigenfunctions for } R_{i} &= 0 \end{aligned}$

$$\psi_{nk}(r) = \frac{1}{\sqrt{N}} \sum_{i} e^{ikR_i} \phi_n(r - R_i)$$
$$= \frac{e^{ikr}}{\sqrt{N}} \left[\sum_{i} e^{-ik(r - R_i)} \phi_n(r - R_i) \right]$$

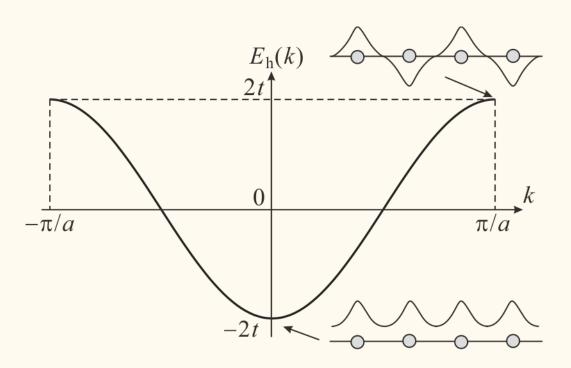
Lattice periodic function

: Bloch form

$$\mathscr{H} = [\hat{T}_x + V(x)]\psi(x) = E\psi(x)$$
 25

Tight binding approximation (2)

$$\begin{split} \langle \psi_{nk} | \mathscr{H} | \psi_{nk} \rangle &= N^{-1} \sum_{i,j} e^{ik(R_j - R_i)} \langle \phi_n(r - R_i) | [\hat{T}_r + V(r)] | \phi_n(r - R_j) \rangle \\ &= N^{-1} \sum_{i,j} e^{ik(R_j - R_i)} \\ &\times \langle \phi_n(r - R_i) | [\hat{T}_r + u(r - R_i) + V(r) - u(r - R_i)] | \phi_n(r - R_j) \rangle \\ &= \epsilon_n + N^{-1} \sum_{i,j} e^{ik(R_j - R_i)} \langle \phi_n(r - R_i) | [V(r) - u(r - R_i))] | \phi_n(r - R_j) \rangle \\ &= \epsilon_n + \sum_j e^{ikR_j} \langle \phi_n(r) | [V(r) - u(r))] | \phi_n(r - R_j) \rangle. \\ &\qquad E_n(k) = \epsilon_n + \langle \phi_n(r) | v(r) | \phi_n(r) \rangle - \sum_{R_j \neq 0} e^{ikR_j} t_n(R_j) \\ &\alpha_n \equiv - \langle \phi_n(r) | v(r) | \phi_n(r) \rangle \quad \text{Crystal field contribution} \end{split}$$


 $t_n(R_j) \equiv -\langle \phi_n(r) | v(r) | \phi_n(r - R_j) \rangle$ Hopping integral

Tight binding approximation (3)

 t_n nearest neighbor only = t

$$E_n(k) = \epsilon_n - \alpha_n - t(e^{ika} + e^{-ika})$$
$$= \epsilon_n - \alpha_n - 2t\cos ka$$

Cosine band with the width of 4t.

