Lecture on

Semiconductors / 半導体

(Physics of semiconductors)

2021.4.14 Lecture 02

Institute for Solid State Physics, University of Tokyo

Shingo Katsumoto

Review of last week

Chapter 1 Crystal structure and crystal growth

- Crystal structure
- Basis, primitive cell, unit cell
- Lattice, Bravais lattice
- Reciprocal lattice
- Brillouin zone

Semiconductor materials

- Group IV: C, Si, Ge, Sn, SiC, Si_xGe_{1-x}
- Group III-V: GaAs, InP, AlAs, InAs, GaSb, ...

Thin film

- III-N: GaN, InN, ...
- Group II-VI: CdTe, HgTe, ...

Crystal growth

- Czochralski
- Bulk Bridgman
 - Floating zone

Chapter 2 Energy bands, effective mass approximation

Nearly free electron model, empty lattice approximation

- MOCVD
- MBE

Tight-binding approximation (TBA)

Single atom on single unit cell

Single atom Hamiltonian: $\mathscr{H}_a = \hat{T} + u$

 \hat{T} : kinetic energy, u: atomic potential

 $\begin{aligned} \mathscr{H}_{a}(R_{i}) &= \hat{T} + u(r - R_{i}) \\ \mathscr{H}_{a}(R_{i})\phi_{n}(r - R_{i}) &= \epsilon_{n}\phi_{n}(r - R_{i}) \\ \phi_{n} \text{: eigenfunctions for } R_{i} &= 0 \end{aligned}$

$$\psi_{nk}(r) = \frac{1}{\sqrt{N}} \sum_{i} e^{ikR_i} \phi_n(r - R_i)$$
$$= \frac{e^{ikr}}{\sqrt{N}} \left[\sum_{i} e^{-ik(r - R_i)} \phi_n(r - R_i) \right]$$

Lattice periodic function

: Bloch form

$$\mathscr{H} = [\hat{T}_x + V(x)]\psi(x) = E\psi(x)$$

3

Tight binding approximation (2)

$$\begin{split} \langle \psi_{nk} | \mathscr{H} | \psi_{nk} \rangle &= N^{-1} \sum_{i,j} e^{ik(R_j - R_i)} \langle \phi_n(r - R_i) | [\hat{T}_r + V(r)] | \phi_n(r - R_j) \rangle \\ &= N^{-1} \sum_{i,j} e^{ik(R_j - R_i)} \\ &\times \langle \phi_n(r - R_i) | [\hat{T}_r + u(r - R_i) + V(r) - u(r - R_i)] | \phi_n(r - R_j) \rangle \\ &= \epsilon_n + N^{-1} \sum_{i,j} e^{ik(R_j - R_i)} \langle \phi_n(r - R_i) | [V(r) - u(r - R_i))] | \phi_n(r - R_j) \rangle \\ &= \epsilon_n + \sum_j e^{ikR_j} \langle \phi_n(r) | [V(r) - u(r))] | \phi_n(r - R_j) \rangle. \\ &\qquad E_n(k) = \epsilon_n + \langle \phi_n(r) | v(r) | \phi_n(r) \rangle - \sum_{R_j \neq 0} e^{ikR_j} t_n(R_j) \\ &\alpha_n \equiv - \langle \phi_n(r) | v(r) | \phi_n(r) \rangle \quad \text{Crystal field contribution} \end{split}$$

 $t_n(R_j) \equiv -\langle \phi_n(r) | v(r) | \phi_n(r - R_j) \rangle$ Hopping integral

Tight binding approximation (3)

 t_n nearest neighbor only = t

$$E_n(k) = \epsilon_n - \alpha_n - t(e^{ika} + e^{-ika})$$
$$= \epsilon_n - \alpha_n - 2t\cos ka$$

Cosine band with the width of 4t.

Methods for obtaining band structure

Experiments

- Hot electron transport
- Optical absorption
- Electroreflectance
- Cyclotron resonance
- Photoemission spectroscopy

Empirical calculation

- Pseudo-potential approximation
- $k \cdot p$ perturbation

ab-initio calculation

- Local density approximation
- Augmented plane wave
- Generalized gradient approximation

Angle resolved photoemission spectroscopy (ARPES)

see, e.g. for short review B. Lv, T. Qian, H. Ding, Nature Reviews Physics 1, 609 (2019).

Angle resolved photoemission spectroscopy (ARPES) (2)

Soft-X ray ARPES of GaAs

Bands below Fermi energy can be detected

Strocov et al., J. Electron Spectroscopy and Related Phenomena 236, 1 (2019).

Plane wave expansion

Crystal Schrodinger equation:

Bloch function (omit band index)

$$\mathscr{H}\psi(\boldsymbol{r}) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right]\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r}) \tag{1}$$
$$\psi(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}}u_{\boldsymbol{k}}(\boldsymbol{r}) \tag{2}$$

Fourier expansion (:: lattice periodicity)

$$V(\mathbf{r}) = \sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}}, \quad u_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} C_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}}$$
(3)

(2), (3)
$$\rightarrow$$
 (1) $\sum_{\mathbf{G}} \left[\left\{ \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G})^2 - E \right\} \right\} C_{\mathbf{G}} + \sum_{\mathbf{G}'} V_{\mathbf{G} - \mathbf{G}'} C_{\mathbf{G}'} \right] e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}} = 0$ (4)

Each term in the sum over G is zero in (4)

$$\sum_{\mathbf{G}'} \left[\left\{ \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G})^2 - E \right\} \delta_{\mathbf{G}\mathbf{G}'} + V_{\mathbf{G}-\mathbf{G}'} \right] C_{\mathbf{G}'} = 0$$
(5)

$$\left| \left[\left\{ \frac{\hbar^2}{2m} (\boldsymbol{k} + \boldsymbol{G})^2 - E \right\} \delta_{\boldsymbol{G}\boldsymbol{G}'} + V_{\boldsymbol{G}-\boldsymbol{G}'} \right]_{\boldsymbol{G}\boldsymbol{G}'} \right| = 0$$

9

 $V(\mathbf{r})$

$$\left| \left[\left\{ \frac{\hbar^2}{2m} (\boldsymbol{k} + \boldsymbol{G})^2 - E \right\} \delta_{\boldsymbol{G}\boldsymbol{G}'} + V_{\boldsymbol{G}-\boldsymbol{G}'} \right]_{\boldsymbol{G}\boldsymbol{G}'} \right| = 0 \quad \rightarrow \text{We need } \boldsymbol{V}_{\boldsymbol{G}}$$

Pseudo potential method:1.Only consider valence bands and conduction bands around the
Fermi level. Effect of core electrons in renormalized into
periodic potential.

2. Replace real potential with pseudo potential which gives similar tailing of wavefunction.

 $V_{\rm p}(\mathbf{r})$

band structure: almost determined in skirt characteristics

Pseudo potential calculation method (2)

Replacement with
pseudo potential
$$V(\mathbf{r}) = -\frac{Ze}{\mathbf{r}} \implies W_p(r) = \begin{cases} 0 & (r < r_c) \\ -\frac{Z'e}{r} & (r \ge r_c) \end{cases} \stackrel{W_p(r)}{} \stackrel{r_c}{} \stackrel{r_c}{} \stackrel{r_c}{} \stackrel{r_c}{} \\ \text{simplest example} \end{cases}$$
Crystal pseudo
potential
$$V_p(\mathbf{r}) = \sum_{j,\alpha} W_p^{\alpha}(\mathbf{r} - \mathbf{R}_j - \tau_{\alpha}) \qquad \tau_{\alpha} : \text{vectors pointing nuclei in the unit cell}$$
Fourier transform:
$$v_p(\mathbf{K}) = \int \sum_{j,\alpha} W_p^{\alpha}(\mathbf{r} - \mathbf{R}_j - \tau_{\alpha}) e^{-i\mathbf{K}\cdot\mathbf{r}} \frac{d\mathbf{r}}{V}$$

$$r' \equiv \mathbf{r} - \mathbf{R}_j - \tau_{\alpha}$$
N: unit cell number
 $\Omega: \text{ unit cell volume}$

$$\frac{1}{N} \sum_{j} e^{-i\mathbf{K}\cdot\mathbf{R}_j} \sum_{\alpha} e^{-i\mathbf{K}\cdot\mathbf{r}_{\alpha}} \frac{1}{\Omega} \int_{\Omega} W_p^{\alpha}(\mathbf{r}') e^{-i\mathbf{K}\cdot\mathbf{r}'} d\mathbf{r}$$

$$= \sum_{\alpha} e^{-i\mathbf{K}\cdot\tau_{\alpha}} \frac{1}{\Omega} \int_{\Omega} W_p^{\alpha}(\mathbf{r}') e^{-i\mathbf{K}\cdot\mathbf{r}'} d\mathbf{r}' \qquad \because e^{-i\mathbf{K}\cdot\mathbf{R}_j} = 1$$

$$= \sum_{\alpha} e^{-i\mathbf{K}\cdot\tau_{\alpha}} \frac{1}{\Omega} \int_{\Omega} W_p^{\alpha}(\mathbf{r}') e^{-i\mathbf{K}\cdot\mathbf{r}'} d\mathbf{r}'$$

 $w_p^{\alpha}(\mathbf{K})$: form factor (Fourier transform of $W_p(r)$) depends only on potential form $e^{-i\mathbf{K}\cdot\boldsymbol{\tau}_{\alpha}}$: structure factor depends only on internal structure of unit cell

11

Empirical pseudo potential calculation for fcc semiconductors

ex) GaAs Ga:
$$\frac{a}{8}(1,1,1)$$
 As: $-\frac{a}{8}(1,1,1)$
 $\tau_1 = \frac{a}{8}(1,1,1)$ $\tau_2 = -\frac{a}{8}(1,1,1)$
 $v_p(\mathbf{K}) = e^{i\mathbf{K}\cdot\boldsymbol{\tau}_1}v_p^1(\mathbf{K}) + e^{-i\mathbf{K}\cdot\boldsymbol{\tau}_1}v_p^2(\mathbf{K})$
 $= (v_p^1 + v_p^2)\cos\mathbf{K}\cdot\boldsymbol{\tau} + (v_p^1 - v_p^2)\sin\mathbf{K}\cdot\boldsymbol{\tau}$
 $= v_p^s(\mathbf{K})\cos\mathbf{K}\cdot\boldsymbol{\tau} + v_p^a(\mathbf{K})\sin\mathbf{K}\cdot\boldsymbol{\tau}$

Distance from the origin and number of points in reciprocal lattice

distance	Points	number
0	(0,0,0)	1
$\sqrt{3}$	(1,1,1),	8
2	(2,0,0),	6
$\sqrt{8}$	(2,0,2),	12
$\sqrt{11}$	(3,1,1),	24

	$v_{p}^{s}(111)$	$v_{p}^{s}(220)$	$v_{p}^{s}(311)$	$v_{p}^{a}(111)$	$v_{p}^{a}(200)$	$v_{p}^{a}(311)$
Si	-2.856	0.544	1.088	0	0	0
Ge	-3.128	0.136	0.816	0	0	0
GaAs	-3.128	0.136	0.816	0.952	0.68	0.136
CdTe	-2.72	0	0.544	2.04	1.224	0.544

conduction valley energy surface

spin-orbit interaction is not taken into account

GaAs

Group velocity of wavefunction with energy eigenvalue $E_n(k)$

$$\boldsymbol{v}_n(\boldsymbol{k}) = \frac{1}{\hbar} \nabla_{\boldsymbol{k}} E_n(\boldsymbol{k})$$

Acceleration

$$\frac{d\boldsymbol{v}_n}{dt} = \frac{d\boldsymbol{k}}{\hbar dt} \cdot \nabla_{\boldsymbol{k}} (\nabla_{\boldsymbol{k}} E_n(\boldsymbol{k})) = \frac{\nabla_{\boldsymbol{k}}}{\hbar^2} \sum_{j=x,y,z} \frac{\partial E_n(\boldsymbol{k})}{\partial k_j} F_j$$

$$\left(\frac{1}{m^*}\right)_{ij} \equiv \frac{1}{\hbar^2} \frac{\partial^2 E(\mathbf{k})}{\partial k_i \partial k_j}$$

$$\frac{dv_i(\boldsymbol{k})}{dt} = \sum \left(\frac{1}{m^*}\right) \quad F_j = \overleftarrow{\left(\frac{1}{m^*}\right)}$$

: inverse effective mass tensor

 $\frac{dv_i(\boldsymbol{k})}{dt} = \sum_j \left(\frac{1}{m^*}\right)_{ij} F_j = \overleftarrow{\left(\frac{1}{m^*}\right)} \boldsymbol{F}$ $\left(\frac{1}{m^*}\right)^{-1} \quad \text{:effective mass tensor}$

$$E(\mathbf{k}) - E(\mathbf{k}_0) \approx \sum_{i,j=x,y,z} \left(\frac{\hbar^2}{2m^*}\right)_{ij} \delta k_i \delta k_j = \sum_{l=1,2,3} \frac{\hbar^2}{2m_l^*} \delta k_l^2$$

Energy surface measurement (cyclotron resonance)

Motion of charged particle in magnetic field: cyclotron motion in the plane perpendicular to the magnetic field

 $\omega_{\rm c} = \frac{qB}{m}$ Cyclotron frequency $E_n = \hbar\omega_{\rm c} \left(n + \frac{1}{2} \right)$ Landau quantization Optical pumping \rightarrow microwave absorption B $\omega_c \rightarrow$ cyclotron mass m_c Energy surface: ellipsoid $\left(\frac{1}{m_c}\right)^2 = \frac{\cos^2\theta}{m_t^2} + \frac{\sin^2\theta}{m_l m_t}$ Electron-hole distinction \leftarrow circular polarization

(24 GHz microwave)

Dresselhaus, Kip, Kittel, Phys. Rev. 98, 368 (1955).

Cyclotron resonance

[1]0]

k-p perturbation

Crystal Schrodinger equation:

Bloch function

Equation for lattice periodic function

Perturbation by *k*-dependent term
$$\mathscr{H}_0 \equiv \mathscr{H}(\mathbf{0}) \qquad \mathscr{H}_0$$

Good approximation for small $k \rightarrow$ band edge information

$$\mathscr{H}\psi(\boldsymbol{r}) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\boldsymbol{r})\right]\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$$
(1)

$$\psi_{n\boldsymbol{k}}(\boldsymbol{r}) = e^{i\boldsymbol{k}\cdot\boldsymbol{r}} u_{n\boldsymbol{k}}(\boldsymbol{r}) \tag{2}$$

$$\left[-\frac{\hbar^2 \nabla^2}{2m_0} + V(\boldsymbol{r}) + \frac{\hbar^2 \boldsymbol{k}^2}{2m_0} - i\frac{\hbar^2}{m_0}\boldsymbol{k}\cdot\boldsymbol{\nabla}\right]u_{n\boldsymbol{k}}(\boldsymbol{r}) = E_n u_{n\boldsymbol{k}}(\boldsymbol{r}) \quad (3)$$

$$\mathscr{H}_0 \equiv \mathscr{H}(\mathbf{0}) \qquad \mathscr{H}'(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m_0} - i \frac{\hbar^2}{m_0} \mathbf{k} \cdot \nabla$$

$$\int \begin{array}{l} u_{i\boldsymbol{k}}(\boldsymbol{r}) = u_{i0}(\boldsymbol{r}) + \sum_{j \neq i} \frac{\langle j | \mathscr{H}' | i \rangle}{E_i - E_j} u_{i0}(\boldsymbol{r}) & |i\rangle \equiv |u_{i0}\rangle \\ E_i(\boldsymbol{k}) = E_i(0) + \langle i | \mathscr{H}' | i \rangle + \sum_{j \neq i} \frac{|\langle i | \mathscr{H}' | j \rangle|^2}{E_i - E_j} \end{array}$$

$$E_i(\mathbf{k}) = E_i(0) + \frac{\hbar^2 \mathbf{k}^2}{2m_0} - \frac{\hbar^4}{m_0^2} \sum_{j \neq i} \frac{\langle i | \mathbf{k} \cdot \nabla | j \rangle \langle j | \mathbf{k} \cdot \nabla | i \rangle}{E_i - E_j}$$

k-p approximation (2)

(b) In the case of *n*-fold degeneracy in $u_{00}(\mathbf{r})$

Approximate the perturbed wavefunction

Substitute to the equation for *u*

Taking inner product with $|0i\rangle$

$$\{ u_{00}^{j} \ (j = i, \cdots, n) \} \ (\equiv \{ |0j\rangle \}) \quad \text{orthogonal}$$
$$|u_{0k}^{i}\rangle = \sum_{j=1}^{n} A_{ij}(k) |0j\rangle$$
$$[\mathscr{H}_{0} + \mathscr{H}' - E_{0}(k)] |u_{0k}^{j}\rangle = 0$$

$$\sum_{j=1}^{n} A_{ij}(\boldsymbol{k}) [\langle 0i|\mathscr{H}_{0}|0j\rangle + \langle 0i|\mathscr{H}_{0}'|0j\rangle - \langle 0i|E_{0}(\boldsymbol{k})|0j\rangle]$$
$$= \sum_{j=1}^{n} A_{ij}(\boldsymbol{k}) [\langle 0i|\mathscr{H}'|0j\rangle + (E_{0} - E_{0}(\boldsymbol{k}))\delta_{ij}] = 0 \quad (4)$$

For eq.(4) to have non-trivial solution

 $|\langle 0i|\mathscr{H}'|0j\rangle + (E_0 - E_0(\boldsymbol{k}))\delta_{ij}| = 0$

Spin-orbit interaction

 $\mathscr{H}_{\rm so} = -\frac{h}{4m_0^2c^2}\boldsymbol{\sigma}\cdot\boldsymbol{p}\times(\nabla V)$ Spin-orbit Hamiltonian spin-operator $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ From identity $|\mathbf{a} \mathbf{b} \mathbf{c}| = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \qquad \left[\frac{p^2}{2m_0} + V + \frac{\hbar^2 k^2}{2m_0} + \frac{\hbar}{m_0} \mathbf{k} \cdot \mathbf{\pi} + \frac{\hbar}{4m_0^2 c^2} \mathbf{p} \cdot \mathbf{\sigma} \times \nabla V \right] |n\mathbf{k}\rangle = E_n(\mathbf{k}) |n\mathbf{k}\rangle,$ $= -\boldsymbol{b} \cdot (\boldsymbol{c} \times \boldsymbol{a})$ $\boldsymbol{\pi} \equiv \boldsymbol{p} + \frac{\hbar}{4mc^2} \boldsymbol{\sigma} imes
abla V$ $|
u,\sigma
angle \equiv |
u0
angle \otimes |\sigma
angle \qquad |nm{k}
angle = \sum c_{n,
u\sigma} |
u',\sigma'
angle$ $\sum \left\{ \left[E_{\nu'}(0) + \frac{\hbar^2 k^2}{2m} \right] \delta_{\nu\nu'} \delta_{\sigma\sigma'} + \frac{\hbar}{m} \mathbf{k} \cdot \mathbf{P}_{\sigma\sigma'}^{\nu\nu'} + \Delta_{\sigma\sigma'}^{\nu\nu'} \right\} c_{n\nu'\sigma'} = E_n(\mathbf{k}) c_{n\nu\sigma}$ eigenequation $\boldsymbol{P}_{\sigma\sigma'}^{\nu\nu'} \equiv \langle \nu\sigma | \boldsymbol{\pi} | \nu'\sigma' \rangle, \quad \Delta_{\sigma\sigma'}^{\nu\nu'} \equiv \frac{\hbar^2}{4m^2c^2} \langle \nu\sigma | [\boldsymbol{p} \cdot \boldsymbol{\sigma} \times (\nabla V)] | \nu'\sigma' \rangle$

Γ-band edges of diamond and zinc-blende semiconductors

Γ -band edges of diamond and zinc-blende semiconductors (2)

 $\langle S\alpha | \mathscr{H}_0 | S\alpha' \rangle = \delta_{\alpha\alpha'} E_c, \quad \langle \{+, Z, -\}\alpha | \mathscr{H}_0 | \{+, Z, -\}\alpha' \rangle = \delta_{\alpha\alpha'} E_v$

Hamiltonian \mathscr{H} expression $|S\downarrow\rangle$ $|Z\downarrow\rangle$ $|S\uparrow\rangle$ $|Z\uparrow\rangle$ $\ket{+\downarrow}$ $|+\uparrow\rangle$ $-\uparrow
angle$ Pk_{-} Pk_+ Pk_z $|S\uparrow\rangle$ E_c 0 0 0 0 $\sqrt{2}$ $\sqrt{2}$ $\frac{Pk_+}{\sqrt{2}}$ $\frac{Pk_{-}}{\sqrt{2}}$ E_c 0 $|S\downarrow\rangle$ 0 0 0 Pk_z $P^*k_ E_v + \frac{\Delta}{2}$ 0 0 0 0 $|+\uparrow
angle$ 0 0 $\frac{P^*k_-}{\sqrt{2}}$ $\frac{\sqrt{2}\Delta}{3}$ 0 $E_v - \frac{\Delta}{3}$ 0 0 $|+\downarrow\rangle$ 0 0 0 $0 \qquad E_v - \frac{\Delta}{3}$ P^*k_+ 0 0 0 $|-\uparrow\rangle$ $\frac{P^*k_+}{\sqrt{2}}$ $E_v + \frac{\Delta}{3}$ 0 0 0 0 $\ket{-\downarrow}$ 0 0 $\sqrt{2\Delta}$ 0 0 0 0 $|Z\uparrow\rangle$ P^*k_z E_v 0 $\sqrt{2}\Delta$ 0 P^*k_z 0 0 $|Z\downarrow\rangle$ 0 0 E_v

21

Γ-band edges of diamond and zinc-blende semiconductors (3)

,

Eigenvalue equation

$$\lambda = E_v + \frac{\Delta}{3},$$

$$(\lambda - E_c) \left(\lambda - E_v + \frac{2\Delta}{3}\right) \left(\lambda - E_v - \frac{\Delta}{3}\right) - |P|^2 k^2 \left(\lambda - E_v + \frac{\Delta}{3}\right) = 0.$$

Ignoring the term $|P|^2k^2$ we finally obtain:

$$E_{c}(\mathbf{k}) = E_{c} + \frac{\hbar^{2}k^{2}}{2m_{0}} + \frac{|P|^{2}k^{2}}{3} \left[\frac{2}{E_{g}} + \frac{1}{E_{g} + \Delta}\right]$$

$$E_{v1}(\mathbf{k}) = E_{v} + \frac{\Delta}{3} + \frac{\hbar^{2}k^{2}}{2m_{0}},$$

$$E_{v2}(\mathbf{k}) = E_{v} + \frac{\Delta}{3} + \frac{\hbar^{2}k^{2}}{2m_{0}} - \frac{2|P|^{2}k^{2}}{3E_{g}},$$

$$E_{v3}(\mathbf{k}) = E_{v} - \frac{2\Delta}{3} + \frac{\hbar^{2}k^{2}}{2m_{0}} - \frac{|P|^{2}k^{2}}{3(E_{g} + \Delta)}$$

$$E_{g} = E_{c} - E_{v} - \frac{\Delta}{3}$$

Band warping, a conventional way to get band parameters

constant-energy surface

Summary of $k \cdot p$ second order perturbation

$$E_v(\mathbf{k}) = E_v + \frac{\Delta}{3} + Ak^2 \mp \sqrt{B^2 k^4 + C^2 (k_x^2 k_y^2 + k_y^2 k_z^2 + k_z^2 k_x^2)}$$
$$E_{vsp}(\mathbf{k}) = E_v - \frac{2\Delta}{3} + Ak^2$$

Table of band parameters

	E_r	E_L	E_{Δ}	$E_{\rm so}$	m_t^*	m^*	m_t^*	A	B	C
	(eV)	(eV)	(eV)	(eV)	(m_0)	(m_0)	(m_0)	(eV^{-1})		
С	11.67	12.67	5.45	0.006	1.4	-	0.36	3.61	0.18	3.76
Si	4.08	1.87	1.13	0.044	0.98	-	0.19	4.22	0.78	4.8
Ge	0.89	0.76	0.96	0.29	1.64	-	0.082	13.35	8.5	13.11
AlAs	2.95	2.67	2.16	0.28	2	-	-	4.04	1.56	4.71
GaP	2.7	2.7	2.2	0.08	1.12	-	0.22	4.2	1.96	4.65
GaAs	1.42	1.71	1.9	0.34	-	0.067	-	7.65	4.82	7.71
GaSb	0.67	1.07	1.3	0.77	-	0.045	-	11.8	8.06	11.71
InP	1.26	2	2.3	0.13	-	0.08	-	6.28	4.16	6.35
InAs	0.35	1.45	2.14	0.38	-	0.023	-	19.67	16.74	13.96
InSb	0.23	0.98	0.73	0.81	-	0.014	-	35.08	31.28	22.27
CdTe	1.8	3.4	4.32	0.91	-	0.096	-	5.29	3.78	5.46

Lundstrom "Fundamentals of Carrier Transport" (Cambridge, 2000).

Graphene: A two-dimensional material (another example of TBA)

Graphene lattice/reciprocal lattice structure

 $\boldsymbol{a}_1 = \begin{pmatrix} \sqrt{3}a/2\\a/2 \end{pmatrix}, \quad \boldsymbol{a}_2 = \begin{pmatrix} 0\\a \end{pmatrix}$

$$\boldsymbol{b}_1 = \begin{pmatrix} 4\pi/\sqrt{3}a\\ 0 \end{pmatrix}, \quad \boldsymbol{b}_2 = \begin{pmatrix} -2\pi/\sqrt{3}a\\ 2\pi/a \end{pmatrix}$$

Tight binding model

Sublattice wavefunction

tight-binding

Linear combination

tight-binding Hamiltonian equation

$$\psi_{A} = \sum_{j \in A} \exp(i\mathbf{k}\mathbf{r}_{j})\phi(\mathbf{r} - \mathbf{r}_{j}), \quad \psi_{B} = \sum_{j \in B} \exp(i\mathbf{k}\mathbf{r}_{j})\phi(\mathbf{r} - \mathbf{r}_{j})$$
$$\langle \psi_{\alpha} | \psi_{\beta} \rangle = N\delta_{\alpha\beta} \quad (\alpha, \beta = A, B)$$
$$\psi = \zeta_{A}\psi_{A} + \zeta_{B}\psi_{B} = \begin{pmatrix} \zeta_{A} \\ \zeta_{B} \end{pmatrix}$$
$$H_{AA} = \langle \psi_{A} | \mathscr{H} | \psi_{A} \rangle, \quad H_{BB} = \langle \psi_{B} | \mathscr{H} | \psi_{B} \rangle,$$
$$H_{AB} = H_{BA}^{*} = \langle \psi_{A} | \mathscr{H} | \psi_{B} \rangle$$
$$\mathscr{H}\psi = \begin{pmatrix} H_{AA} & H_{AB} \\ H_{BA} & H_{BB} \end{pmatrix} \begin{pmatrix} \zeta_{A} \\ \zeta_{B} \end{pmatrix} = NE\psi = NE \begin{pmatrix} \zeta_{A} \\ \zeta_{B} \end{pmatrix}$$

Eigenvalues:

$$E = \frac{1}{2N} \left(H_{AA} + H_{BB} \pm \sqrt{(H_{AA} - H_{BB})^2 + 4|H_{AB}|^2} \right)$$
$$= \frac{H_{AA}}{N} \pm \frac{|H_{AB}|}{N} \equiv h_{AA} \pm |h_{AB}|$$

Sublattice transition term

$$H_{AB} = \sum_{l \in A, j \in B} \exp\left[i\boldsymbol{k}(\boldsymbol{r}_j - \boldsymbol{r}_l)\right] \langle \phi(\boldsymbol{r} - \boldsymbol{r}_l) | \mathscr{H} | \phi(\boldsymbol{r} - \boldsymbol{r}_j) \rangle_{\boldsymbol{r}}$$

Take the nearest neighbor approximation:

$$\begin{aligned} \mathbf{k} \cdot \mathbf{d}_1 &= \frac{k_x a}{\sqrt{3}}, \ \mathbf{k} \cdot \mathbf{d}_2 &= \left(-\frac{k_x}{2\sqrt{3}} + \frac{k_y}{2} \right) a, \\ \mathbf{k} \cdot \mathbf{d}_3 &= \left(-\frac{k_x}{2\sqrt{3}} - \frac{k_y}{2} \right) a \\ \langle \phi(\mathbf{r} - \mathbf{r}_l) | \mathscr{H} | \phi(\mathbf{r} - \mathbf{r}_j) \rangle_{\mathbf{r}} &= \xi \end{aligned}$$

$$h_{AB}|^{2} = \left|\sum_{j=1}^{3} \exp(i\mathbf{k} \cdot \mathbf{d}_{j})\right|^{2} \xi^{2}$$
$$= \left(1 + 4\cos\frac{\sqrt{3}k_{x}a}{2}\cos\frac{k_{y}a}{2} + 4\cos^{2}\frac{k_{y}a}{2}\right)\xi^{2}$$

Dirac points in k -space

E

 k_x