Lecture on

Semiconductors／半導体

（Physics of semiconductors）

2021．6．09 Lecture 09

$$
10: 25-11: 55
$$

Institute for Solid State Physics，University of Tokyo Shingo Katsumoto

Band discontinuity parameters

crystal A crystal B

Anderson's rule: affinity from the vacuum level determines the alignment

[^0]
(a)

(b)

Type-II

(c) Type-III
(Type-II staggered)

Chapter 7 Quantum Structure (Quantum wells, wires, dots)

Zhores I. Alferov

Herbert Kroemer

Jack S. Kilby

The Nobel Prize in Physics 2000 was awarded "for basic work on information and communication technology" with one half jointly to Zhores I. Alferov and Herbert Kroemer "for developing semiconductor heterostructures used in high-speed- and opto-electronics" and the other half to Jack S. Kilby "for his part in the invention of the integrated circuit".

Quantum well (elementary quantum mechanics)

Outside the well: $\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{0}\right] \psi=E \psi, \quad x \leq-\frac{L}{2}, \frac{L}{2} \leq x, \quad \kappa \equiv \frac{\sqrt{2 m\left|E-V_{0}\right|}}{\hbar}$

$$
\psi(x)=\left\{\begin{array}{cc}
C_{1} \exp (i \kappa x)+C_{2} \exp (-i \kappa x) & E \geq V_{0} \\
D_{1} \exp (\kappa x)+D_{2} \exp (-\kappa x) & E<V_{0}
\end{array}\right.
$$

States localized inside the well: $E<V_{0} \quad \frac{L}{2}<x \rightarrow D_{1}^{+}=0, \quad x<-\frac{L}{2} \rightarrow D_{2}^{-}=0$
Inside the well: $\quad \psi(x)=C_{1} \exp (i k x)+C_{2} \exp (-i k x), k \equiv \frac{\sqrt{2 m E}}{\hbar}, x \in\left[-\frac{L}{2}, \frac{L}{2}\right]$

Envelope function connection

Continuity $\left\{\begin{array}{l}C_{1} \exp (i k L / 2)+C_{2} \exp (-i k L / 2)=D_{2}^{+} \exp (-\kappa L / 2), \\ C_{1} \exp (-i k L / 2)+C_{2} \exp (i k L / 2)=D_{1}^{-} \exp (-\kappa L / 2),\end{array}\right.$
Differentiability $\left\{\begin{array}{l}i k C_{1} \exp (i k L / 2)-i k C_{2} \exp (-i k L / 2)=-\kappa D_{2}^{+} \exp (-\kappa L / 2), \\ i k C_{1} \exp (-i k L / 2)-i k C_{2} \exp (i k L / 2)=\kappa D_{1}^{-} \exp (-\kappa L / 2),\end{array}\right.$

Quantum well

(a)

(b)

$$
\begin{aligned}
k L & =-2 \arctan \frac{k}{\sqrt{\kappa_{0}^{2}-k^{2}}}+n \pi \\
\kappa_{0}^{2} & \equiv \frac{2 m V_{0}}{\hbar^{2}}, \quad n=1,2, \cdots
\end{aligned}
$$

Optical absorption of quantum wells

$$
\left.\begin{array}{l}
\qquad \begin{array}{r}
\psi_{e}(\boldsymbol{r}) \\
\psi_{h}(\boldsymbol{r})
\end{array}=\underbrace{}_{\phi_{e}(z)} \exp \left(i \boldsymbol{k}_{x y} \cdot \boldsymbol{r}_{x y}\right) \\
\phi_{h}(z) \\
\exp \left(i \boldsymbol{k}_{x y} \cdot \boldsymbol{r}_{x y}\right)
\end{array}\right\}
$$

Direct transition rate: $\quad P_{c v} \propto\left\langle u_{c}(\boldsymbol{r})\right| \nabla\left|u_{v}(\boldsymbol{r})\right\rangle \int_{-\infty}^{\infty} d z \phi_{e}(z)^{*} \phi_{h}(z)$
Transition energy: $E=E_{\mathrm{g}}+\Delta E_{n}^{(e h)}+\frac{\hbar^{2}}{2 \mu} k_{x y}^{2}$
Two dimensional density of states: $\frac{d n}{d E}=\frac{m^{*}}{2 \pi \hbar^{2}} H(E) \quad(H(x):$ Heaviside function $)$

$$
\begin{aligned}
& \left(-\frac{\hbar^{2}}{2 m_{\mathrm{r}}^{*}} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon \epsilon_{0}|\boldsymbol{r}|}\right) \psi(\boldsymbol{r})=E \psi(\boldsymbol{r}) \\
& \psi^{2 \mathrm{~d}}=\rho^{|m|} e^{-\rho / 2} R(\rho) e^{i m \varphi} \quad \rho=\frac{\sqrt{-8 m_{\mathrm{r}}^{*} E}}{\hbar} r \\
& {\left[\rho \frac{\partial^{2}}{\partial \rho^{2}}+(2|m|+1-\rho) \frac{\partial}{\partial \rho}+\lambda-|m|+\frac{1}{2}\right] R(\rho)=0} \\
& \lambda \equiv \frac{e^{2}}{4 \pi \epsilon_{0} \hbar} \sqrt{-\frac{m_{\mathrm{r}}^{*}}{2 E}} \\
& R(\rho)=\sum_{\nu} \beta_{\nu} \rho^{\nu}, \quad \beta_{\nu+1}=\beta_{\nu} \frac{\nu-q}{(\nu+1)(\nu+p+1)} \\
& E_{\mathrm{b} n}^{2 \mathrm{~d}}=-\frac{E_{0}}{(n+1 / 2)^{2}} \quad n=0,1, \cdots
\end{aligned}
$$

$$
E_{0}=\frac{e^{2}}{8 \pi \epsilon \epsilon_{0} a_{0}^{*}}, \quad a_{0}^{*}=\frac{4 \pi \epsilon \epsilon_{0} \hbar^{2}}{m_{\mathrm{r}}^{*} e^{2}}
$$

$$
E_{\text {ground }}^{2 \mathrm{~d}}=4 E_{0}, \quad a_{0}^{2 \mathrm{~d}}=a_{0}^{*} / 2
$$

Quantum barrier

Simpler way to consider tunneling through energy barriers
Generally $\sqrt{v_{g}} \psi$
$>$ Transfer matrix: T-matrix
$>$ Scattering matrix: S-matrix momentum conservation
\rightarrow relation between wavefunctions
Transfer matrix: $M_{T}\binom{A_{2}}{B_{2}}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)\binom{A_{1}}{B_{1}} \equiv M_{T}\binom{A_{1}}{B_{1}}$
M_{T} for a barrier width L height $V_{0} \quad \kappa \equiv \sqrt{2 m\left(V_{0}-E(k)\right)} / \hbar$
Inside the barrier $\quad V_{2}=V_{1} e^{-\kappa L}, \quad W_{2}=W_{1} e^{\kappa L}$
Boundary condition: value

$$
A_{1}+B_{1}=V_{1}+W_{1}
$$

$$
A_{2}+B_{2}=e^{-\kappa L} V_{1}+e^{\kappa L} W_{1}
$$

$$
\text { derivative } \quad i k\left(A_{1}-B_{1}\right)=\kappa\left(-V_{1}-W_{1}\right), \quad i k\left(A_{2}-B_{2}\right)=\kappa\left(-e^{-\kappa L} V_{1}+e^{\kappa L} W_{1}\right)
$$

Then $\quad M_{T}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$
is obtained as

$$
\left\{\begin{array}{l}
m_{11}=\left[\cosh (\kappa L)+i \frac{k^{2}-\kappa^{2}}{2 k \kappa} \sinh (\kappa L)\right] \\
m_{12}=-i \frac{k^{2}+\kappa^{2}}{2 k \kappa} \sinh (\kappa L) \\
m_{21}=m_{12}^{*}, \quad m_{22}=m_{11}^{*}
\end{array}\right.
$$

t, r : complex transmission and reflection coefficients
Transmission coefficient $T=|t|^{2}$, reflection coefficient $R=|r|^{2}$

$$
\text { Then the transfer matrix is expressed as } \quad M_{T}=\left(\begin{array}{cc}
1 / t^{*} & -r^{*} / t^{*} \\
-r / t & 1 / t
\end{array}\right)
$$

Application of transfer matrix: double barrier transmission

Calculation of transmission coefficient

$$
\left\{\begin{array}{rlrl}
m_{11} & =\left[\cosh (\kappa L)+i \frac{k^{2}-\kappa^{2}}{2 k \kappa} \sinh (\kappa L)\right], & T_{11} & =m_{11}^{2} \exp (i k W)+\left|m_{12}\right|^{2} \exp (-i k W) \quad\left(\because m_{12}=m_{21}^{*}\right) \\
m_{12}=-i \frac{k^{2}+\kappa^{2}}{2 k \kappa} \sinh (\kappa L), & T_{11} T_{11}^{*} & =\left(\left(\left|m_{11}\right|^{2} e^{2 i \varphi} e^{i k W}+\left|m_{12}\right|^{2} e^{-i k W}\right)\left(\left|m_{11}\right|^{2} e^{-2 i \varphi} e^{-i k W}+\left|m_{12}\right|^{2} e^{i k W}\right)\right. \\
m_{21} & =m_{12}^{*}, \quad m_{22}=m_{11}^{*}, & & =\left(\left|m_{11}^{2}-\left|m_{12}\right|^{2}\right)^{2}+2\left|m_{11}\right|^{2}\left|m_{12}\right|^{2}(1+\cos (2(\varphi+k W)))\right. \\
& =1+4\left|m_{11}\right|^{2}\left|m_{12}\right|^{2} \cos ^{2}(\varphi+k W) \\
T & =\frac{1}{\left|T_{11}\right|^{2}}=\frac{1}{1+4\left|m_{11}\right|^{2}\left|m_{12}\right|^{2} \cos ^{2}(\varphi+k W)}
\end{array}\right.
$$

Double barrier transmission

Resonant transmission condition: zero points of cosine term

$$
\varphi+k W=\left(n-\frac{1}{2}\right) \pi \quad(n=1,2, \cdots) \quad \varphi=\arctan \left[\frac{k^{2}-\kappa^{2}}{2 k \kappa} \tanh (\kappa L)\right]
$$

Transport experiment of double barrier conduction

Sample structure

STEM image

Measurement scheme

Source $\xrightarrow[\text { Drain }]{\longrightarrow}$

Calculated transmission coefficient

Result at 4.2 K

Application of T-matrix (2): Semiconductor superlattice

Schrödinger equation

$\left[-\frac{\hbar^{2} d^{2}}{2 m d x^{2}}+V_{\mathrm{KP}}(x)\right] \psi(x)=E \psi(x), \quad V_{\mathrm{KP}}(x)=V_{\mathrm{KP}}(x+d)$
Bloch theorem
Kronig-Penny potential: $V_{K P}(x)$

$$
\begin{aligned}
\psi_{K}(x)=u_{K}(x) e^{i K x}, \quad u_{K}(x+d)=u_{K}(x), \quad K \equiv \frac{\pi s}{N d} \\
s=-N+1, \cdots, N-1
\end{aligned}
$$

Unit cell transfer matrix $\quad M_{d}(k)=\left(\begin{array}{cc}e^{i k W} & 0 \\ 0 & e^{-i k W}\end{array}\right)\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)=\left(\begin{array}{cc}m_{11} e^{i k W} & m_{12} e^{i k W} \\ m_{21} e^{-i k W} & m_{22} e^{-i k W}\end{array}\right)$

$$
\begin{array}{c:c}
a_{i} \longrightarrow \\
b_{i} \longleftarrow & \longleftrightarrow a_{i+1} \\
\longleftrightarrow b_{i+1}
\end{array} \quad\binom{a_{i+1}}{b_{i+1}}=M_{d}\binom{a_{i}}{b_{i}}=\underline{e^{i K d}}\binom{a_{i}}{b_{i}} \quad \text { Eigenvalues } e^{ \pm K d}\left(M_{d}: \text { unitary }\right)
$$

Theorem: $\operatorname{Tr}(A)=\sum$ (eigenvalue) $\longrightarrow e^{i K d}+e^{-i K d}=2 \cos K d=\operatorname{Tr} M_{d}=2 \operatorname{Re}\left(e^{-i k W} m_{11}^{*}\right)$

$$
\cos [K(L+W)]=\cosh (\kappa L) \cos (k W)-\frac{k^{2}-\kappa^{2}}{2 k \kappa} \sinh (\kappa L) \sin (k W)
$$

The relation between k (free electron wavenumber) and K (crystal wavenumber)
$\cos [K(L+W)]=\cosh (\kappa L) \cos (k W)-\frac{k^{2}-\kappa^{2}}{2 k \kappa} \sinh (\kappa L) \sin (k W)$

$$
\left.L \rightarrow 0(W \rightarrow d), V_{0} \rightarrow+\infty \text { with } V_{0} L=C \text { (constant }\right)
$$

δ-function series with the coefficient C.

$$
\cos (K d)=\cos (k d)+\frac{m C}{\hbar^{2} k} \sin (k d)
$$

effect of superlattice potential

Raphael Tsu and Leo Esaki, 1975

$$
\left|\cos (k d)+\frac{m C}{\hbar^{2} k} \sin (k d)\right|>1
$$

:no solution \rightarrow band gap
Around $k d=n \pi(n=1,2, \cdots)$

STEM image of
AlAs (30 nm)/GaAs (30nm) superlattice

Donor potential $\quad V_{D}(z)=\frac{4 \pi e^{2}}{\epsilon \epsilon_{0}} N_{\mathrm{dep}} z \quad z>0$

$$
\Psi(\boldsymbol{r})=\psi(x, y) \zeta(z)
$$

$\begin{aligned} & \text { Electric field of } \\ & \text { sheet charge at } z,\end{aligned} \quad-\frac{4 \pi e^{2}}{\epsilon \epsilon_{0}} n_{2 d}\left|\zeta\left(z^{\prime}\right)\right|^{2}\left|z-z^{\prime}\right|$
$V_{2 d}(z)=-\frac{4 \pi e^{2}}{\epsilon \epsilon_{0}} n_{2 d}\left(E_{z}\right) \int_{-\xi}^{\infty}\left|\zeta\left(z^{\prime}\right)\right|^{2}\left|z-z^{\prime}\right| d z^{\prime}$
Heterointerface $\quad V_{h}(z)=\Delta E_{\mathrm{c}}[1-H(z)]$ potential

Poisson-Schrödinger scheme

$$
\longrightarrow \text { potential } V(z)=V_{h}(z)+\frac{4 \pi e^{2}}{\epsilon \epsilon_{0}}\left[N_{\mathrm{dep}} z-n_{2 d}\left(E_{z}\right) \int_{-\xi}^{\infty}\left|z-z^{\prime} \| \zeta\left(z^{\prime}\right)\right|^{2} d z^{\prime}\right]
$$

$\rightarrow\left\{\begin{array}{l}\text { Schrödinger equation } \\ \text { Boundary condition }\end{array}\right.$

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 m^{*}(z)} \frac{\partial^{2}}{\partial z^{2}}+V(z)\right] \zeta(z)=E_{z} \zeta(z)} \\
& \zeta(0)^{(\mathrm{A})}=\zeta(0)^{(\mathrm{B})}, \quad \frac{1}{m_{\mathrm{A}}^{*}} \frac{d \zeta^{(\mathrm{A})}}{d z}\left|=\frac{1}{m_{\mathrm{B}}^{*}} \frac{d \zeta^{(\mathrm{B})}}{d z}\right|
\end{aligned}
$$

Matthiessen's rule (series connection of scattering)

$$
\frac{1}{\tau_{\text {total }}}=\sum_{\beta} \frac{1}{\tau_{\beta}}=\frac{1}{\tau_{\text {defects }}}+\frac{1}{\tau_{\text {cattier }}}+\frac{1}{\tau_{\text {lattice }}}+\cdots \quad \frac{1}{\mu_{\text {total }}}=\sum_{\beta} \frac{1}{\mu_{\beta}}=\frac{1}{\mu_{\text {defects }}}+\frac{1}{\mu_{\text {cattier }}}+\frac{1}{\mu_{\text {lattice }}}+
$$

Fletcher et al., J. Phys. C 5, 212 (1972)

Reduction of impurity scattering by modulation doping structure

Walukiewicz et al. Phys. Rev. B 30, 4571 (1984).

Formation of quantum wires: split gate

Two-dimensional electrons are pinched with depletion layers from Schottky gates to a one-dimensional system.
Electric field along z-axis can be approximated as $\quad \mathcal{E}_{z}(d)=\frac{-\sigma}{2 \pi \epsilon \epsilon_{0}}\left[\pi+\arctan \frac{x-w / 2}{d}-\arctan \frac{x+w / 2}{d}\right]$

The bottom part of the confinement potential can be approximated by harmonic potential.

Self-assembled nano-wires

http://iemn.univ-lille1.fr/sites_perso/ vignaud/english/35_nanowires.htm

|
保

L．Chen et al．，
Nano Letters 16， 420 （2016）． － \qquad

Core－shell nanowire transistor

top contact

正

Ch
ano
$2016)$

$$
420
$$

\qquad

\square （ ）

Carbon nanotube

Quantum dots: zero-dimensional system

Quantum dots with nano-fabrication techniques

(a)

wrap gate

(b)

split gate
with charge detector

(c)

Formation of quantum dots: self assemble
MBE growth modes

Frank-van der Merve
Stranski-Krastanow

RHEED

Formation of quantum dots: Colloidal nano-crystals

A)
A) Monodisperse Colloid Growth (LaMer)

Coordinating solvent Stabilizer at $150-350{ }^{\circ} \mathrm{C}$

[^0]: R. L. Anderson, IBM J. Res. Dev. 4, 283 (1960).

