Lecture on

Semiconductors / 半導体

(Physics of semiconductors)

2021.6.16 Lecture 10 10:25 – 11:55

Institute for Solid State Physics, University of Tokyo

Shingo Katsumoto

Band discontinuity at heterojunction

Chapter 7 Quantum Structure (Quantum wells, wires, dots)

Quantum wells

Excitons in quantum wells

Quantum barriers

Modulation doping and 2-dimensional electrons

 $\Psi(\boldsymbol{r}) = \psi(x, y)\zeta(z)$ Electric field of sheet charge at z' $-\frac{4\pi e^2}{\epsilon\epsilon_0}n_{2d}|\zeta(z')|^2|z-z'|$ $V_{2d}(z) = -\frac{4\pi e^2}{\epsilon\epsilon_0} n_{2d}(E_z) \int_{-\epsilon}^{\infty} |\zeta(z')|^2 |z - z'| dz'$

 $V_h(z) = \Delta E_c[1 - H(z)]$

Electron mobility in MODFET

Matthiessen's rule (series connection of scattering)

Formation of quantum wires: split gate

Two-dimensional electrons are pinched with depletion layers from Schottky gates to a one-dimensional system.

Electric field along z-axis can be approximated as
$$\mathcal{E}_z(d) = \frac{-\sigma}{2\pi\epsilon\epsilon_0} \left[\pi + \arctan\frac{x-w/2}{d} - \arctan\frac{x+w/2}{d}\right]$$

The bottom part of the confinement potential can be approximated by harmonic potential.

Self-assembled nano-wires

G. Zhang et al. NTT technical Review

http://iemn.univ-lille1.fr/sites_perso/ vignaud/english/35_nanowires.htm

Core-shell nanowire transistor

L. Chen *et al.*, Nano Letters **16**, 420 (2016).

Carbon nanotube

Quantum dots: zero-dimensional system

Quantum dots with nano-fabrication techniques

split gate

with charge detector

μm0.5 μmvertical type

MBE growth modes

Formation of quantum dots: Colloidal nano-crystals

Shell — ZnS, CdS, ZnSe Amphiphilic surface Se/S Zn/Cd S/Se

Optical devices with minority carrier confinement

Light emitting diodes (LEDs)

The Nobel Prize in Physics 2014

Emission spectrum
$$I(\nu) \propto \nu^2 (h\nu - E_g)^{1/2} \exp\left[\frac{-(h\nu - E_g)}{k_B T}\right]$$

Minority

diffusion

carrier

$$\eta_{\rm q} \equiv \frac{R_{\rm r}}{R} = \frac{\tau_{\rm nr}}{\tau_{\rm nr} + \tau_{\rm r}} = \frac{\tau_{\rm tot}}{\tau_{\rm r}}, \quad \frac{1}{\tau_{\rm tot}} \equiv \frac{1}{\tau_{\rm nr}},$$

$$j_e + j_h = e \left[\frac{D_e n_{p0}}{L_e} + \frac{D_h p_{n0}}{L_h} \right] \left[\exp \left(\frac{eV}{k_{\rm B}T} \right) \right]$$

Carrier recombination in depletion layer

$$j_{\rm R} = \frac{en_i w_d}{2\tau_0} \left[\exp\left(\frac{eV}{2k_{\rm B}T}\right) - 1 \right]$$

injection efficiency

$$\gamma = \frac{j_e}{j_e + j_h + j_R}$$

Internal quantum efficiency
$$\eta_{
m iq}=\gamma\eta_{
m q}$$

© Nobel Media AB. Photo: A. Mahmoud Isamu Akasaki Prize share: 1/3

 $au_{
m r}$

© Nobel Media AB. Photo: A. Mahmoud Hiroshi Amano Prize share: 1/3

Nick Holonyak Jr.

External quantum efficiency

Device example

Windisch *et al.*, APL **74**, 2256 (1999).

Textured surface AlGaAs/GaAs $\eta_{exq} > 30 \%$

Double heterojunction (DH) LED

Advantages of DH LED

High internal quantum efficiency

- > Narrow active region \rightarrow high *np* product
- ➤ No need for doping in active layer → less concentration of non-radiative recombination center
- Diffusion of minority carrier to surface, recombination centers is reduced.

Low absorption loss

Energy of emitted photons is lower than the band gaps of the top and the bottom layers.

Laser diode

LASER: Light Amplification with Stimulated Emission of Radiation

 $\begin{vmatrix} b \\ & \hbar \omega_0 \\ & & & \\ & & & \\ & & & \\ a \\ \end{vmatrix}$

Coherent state: Classical oscillating electromagnetic field

(c) stimulated emission P Probability of stimulated emission P

$$P_{ba}(t) = \frac{\omega_{\lambda}}{\epsilon\epsilon_0 \hbar V} |\langle a|\vec{e} \cdot \boldsymbol{\mu}|b\rangle|^2 n_{\lambda} \frac{t^2}{2}$$

 $\boldsymbol{p} = m\omega_{\lambda}\boldsymbol{r}_{0}\cos(\omega_{0}t)$

 $\vec{e} \cdot \boldsymbol{p} = \frac{\omega_{\lambda} m}{m} \vec{e} \cdot \boldsymbol{\mu}$

Energy absorption of media from the light (coherent state): $\mathcal{E} = (N_a - N_b)P_{ba}(\tau)\hbar\omega_{\lambda}$

This means if a state with $N_b > N_a$ is realized, $\varepsilon < 0$, *i.e.*, the energy is absorbed from the media to light

Increase of amplitude of the coherent state: Bosonic stimulation

ADL-65074TL-1 - Laser Diode 655nm 7mW

Chapter 8

Basics of Quantum Transport

M. A. Topinka et al. Science 2000;289:2323-2326

Quantum entanglement

$$\psi \rangle = |A\rangle + |B\rangle \qquad |\varphi\rangle = |1\rangle + |2\rangle$$
$$\frac{|A\rangle}{|A\rangle|1\rangle} \qquad |B\rangle \qquad |1\rangle$$
$$|B\rangle|2\rangle \qquad |2\rangle$$

Direct product
$$|\Psi\rangle = |\psi\rangle \otimes |\varphi\rangle = |A\rangle |1\rangle + |A\rangle |2\rangle + |B\rangle |1\rangle + |B\rangle |2\rangle$$

Maximally entangled state $|\Phi\rangle = |A\rangle|1\rangle + |B\rangle|2\rangle$

Quantification of Entanglement?

von Neumann entropy (entanglement entropy) Density matrix $\rho = \sum |\psi\rangle\langle\psi|$ $S = tr(\rho \ln \rho)$

Boundary between classical and quantum

 $|\psi|^2 = |\psi_1 + \psi_2|^2 = |\psi_1|^2 + |\psi_2|^2 + 2|\psi_1||\psi_2|\cos\theta$

Environment wavefunction: χ

should associate with electron paths

 $\psi_1 \to \psi_1 \otimes \chi_1, \quad \psi_2 \to \psi_2 \otimes \chi_2$

Then the interference term is $2|\psi_1||\psi_2|\cos\theta\langle\chi_1|\chi_2\rangle$

 $\langle \chi_1 | \chi_2 \rangle = 1$: Full interference

 $\langle \chi_1 | \chi_2 \rangle = 0$: No interference Particle-Environment maximally entangled

Electron transport: Electron – Phonon inelastic scattering Electron – Electron inelastic scattering Electron – Localized spin scattering

Length limit quantum coherence (Coherence length)

Diffusion length: $l = \sqrt{D\tau}$ Monochromaticity: Thermal length Energy width: $\Delta E = k_{\rm B}T$ $2\pi\Delta f\tau = 2\pi \frac{\Delta E\tau}{h} = 2\pi \frac{k_{\rm B}T\tau}{h} \qquad \rightarrow 2\pi: \quad \tau_{\rm c} = \frac{h}{k_{\rm B}T}$ Phase width: $l_{\rm th} = \sqrt{\frac{hD}{k_{\rm B}T}}$ Thermal diffusion length $l_{\rm th} = \frac{hv_{\rm F}}{k_{\rm B}T}$ Ballistic thermal length

(Some) inelastic scattering time: τ_{inel}

Ballistic transport: $l_{\rm inel} = v_{\rm F} \tau_{\rm inel}$ Diffusive transport: $l_{\rm inel} = \sqrt{D \tau_{\rm inel}}$

Conductance quantum

L, R : Particle reservoirs Thermal equilibrium: well defined chemical potentials Instantaneous thermalization: particles loose quantum coherence

 $j(k) = \frac{e}{L} v_{\rm g} = \frac{e}{\hbar L} \frac{dE(k)}{dk} \qquad L: \text{ wavefunction normalization length}$ $J = \int_{k_{\rm R}}^{k_{\rm L}} j(k) \frac{L}{2\pi} dk = \frac{e}{h} \int_{\mu_{\rm R}}^{\mu_{\rm L}} dE = \frac{e}{h} (\mu_{\rm L} - \mu_{\rm R}) = \frac{e^2}{h} V$ $G = \frac{J}{V} = \frac{e^2}{h} \equiv G_{\rm q} \quad \text{Conductance quantum} \quad \left(\frac{2e^2}{h} \equiv G_{\rm q} \quad \text{spin freedom}\right)$

Conductance quantum as uncertainty relation

Wave packet:
$$\Delta k \to \Delta x = \frac{2\pi}{\Delta k}, \quad v_{g} = \frac{\Delta E}{\hbar \Delta k}$$

Fermion statistics: electron charge concentration $= \frac{e}{\Delta x} = \frac{e\Delta k}{2\pi}$
 $J = \frac{e}{\Delta x} \frac{\Delta E}{\hbar \Delta k} = \frac{e^{2}}{h}V$
Energy width: $\Delta E = eV$ Wave packet width in time: $\Delta t = \frac{h}{\Delta E} = \frac{h}{eV}$
 $J = \frac{e}{\Delta t} = \frac{e^{2}}{h}V$

Conductance quantum comes from fermion statistics of electrons

Quantum point contact (QPC)

Transmissible one-dimensional system: Conductance Channel