Lecture on

Semiconductors／半導体

（Physics of semiconductors）

10：25－11：55

Institute for Solid State Physics，University of Tokyo
Shingo Katsumoto
$>$ Aharonov-Bohm effect and quantum transport
$>$ Bunching and anti-bunching of particles (bosons and fermions)
$>$ Waveguide propagation of exciton-polaritons
$>$ Bose-Einstein condensation of exciton-polaritons
$>$ Single electron effect in quantum dots

Review: Single electron effect in transport through quantum dots

Quantum confinement
$H\left(N, V_{\mathrm{g}}\right)$
Zero-dimensional confinement to a quantum dot gives shifts in Coulomb peak positions.

Enthalpy shift by quantum confinement

$$
H(N)=\frac{\left(N e-C_{\mathrm{g}} V_{\mathrm{g}}\right)^{2}}{2 C_{s}}+\epsilon_{N}
$$

Chemical potential shift

$$
\begin{aligned}
\Delta H(N, N+1) & =H(N+1)-H(N) \\
& =\frac{e}{C_{s}}\left\{\left(N+\frac{1}{2}\right) e-C_{\mathrm{g}} V_{\mathrm{g}}\right\}+\Delta \epsilon_{N} \\
& \Delta \epsilon_{N} \equiv \epsilon_{N+1}-\epsilon_{N}
\end{aligned}
$$

Shift in gate voltage

$$
V_{\mathrm{g} X}(N, N+1)=\frac{1}{C_{\mathrm{g}}}\left\{\left(N+\frac{1}{2}\right) e+\frac{C_{s}}{e} \Delta \epsilon_{N}\right\}
$$

Quantum confinement effect in a vertical quantum dot

Two-dimensional harmonic potential
Potential shape: $\quad V(x, y)=\frac{m \omega}{2}\left(x^{2}+y^{2}\right)$
$\begin{aligned} & \text { Easy solutions from } 1 \mathrm{~d} \\ & \text { harmonic potential }\end{aligned} \quad \psi_{n_{x} n_{y}}=A \exp \left[-\frac{m \omega\left(x^{2}+y^{2}\right)}{2 \hbar}\right] H_{n_{x}}\left[\sqrt{\frac{m \omega}{\hbar}} x\right] H_{n_{y}}\left[\sqrt{\frac{m \omega}{\hbar}} y\right]$
Eigen energies: $\quad E\left(n_{x}, n_{y}\right)=\left(n_{x}+n_{y}+1\right) \hbar \omega=\left(n_{t}+1\right) \hbar \omega \quad n_{x}+n_{y} \equiv n_{t}=0,1,2, \cdots$

For fixed $n_{t} \quad n_{x}=0,1,2, \cdots, n_{t} \quad n_{t}+1$ degeneracy
With spin degeneracy: $2,4,6,8, \cdots$

$$
N=2,6,12,20, \cdots,(n+1)(n+2), \cdots
$$

Hamiltonian with $\boldsymbol{B}=(0,0, B)$

$$
\mathscr{H}=\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m}+\frac{m}{2} \omega^{2}\left(x^{2}+y^{2}\right) \quad \boldsymbol{A}=\left(-\frac{B y}{2}, \frac{B x}{2}, 0\right)
$$

Expansion of the kinetic energy term

$$
\begin{aligned}
\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m}=- & \frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \\
& -\frac{i e \hbar B}{2 m}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)+\frac{e^{2} B^{2}}{8 m}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Definition of cyclotron frequency and composite harmonic confinement potential frequency

The Hamiltonian is rewritten as

Fock-Darwin state eigen energies

$$
\omega_{\mathrm{c}}=\frac{e B}{m} \quad \Omega \equiv \sqrt{\omega^{2}+\left(\omega_{\mathrm{c}} / 2\right)^{2}}
$$

$$
\mathscr{H}=\frac{\hbar^{2} \nabla^{2}}{2 m}+\frac{m}{2} \Omega^{2}\left(x^{2}+y^{2}\right)+\frac{\omega_{\mathrm{c}} \hat{L}_{z}}{2}=\mathscr{H}_{\Omega}+\frac{\omega_{\mathrm{c}} \hat{L}_{z}}{2}
$$

$$
E\left(n_{r}, l\right)=\hbar \Omega\left(2 n_{r}+|l|+1\right)+\hbar \omega_{\mathrm{c}} l / 2
$$

Degree of degeneracy at $B=0 \quad 2 n_{r}+|l|+1$

Quantum dot in magnetic field

$$
\begin{aligned}
& \mathscr{H}=\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m}+\frac{m}{2} \omega^{2}\left(x^{2}+y^{2}\right) \quad \boldsymbol{A}=\left(-\frac{B y}{2}, \frac{B x}{2}, 0\right) \\
& \begin{aligned}
& \frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m}=- \frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \\
& \quad-\frac{i e \hbar B}{2 m}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)+\frac{e^{2} B^{2}}{8 m}\left(x^{2}+y^{2}\right) \\
& \omega_{\mathrm{c}}= \frac{e B}{m} \quad \Omega \equiv \sqrt{\omega^{2}+\left(\omega_{\mathrm{c}} / 2\right)^{2}} \\
& \mathscr{H}= \frac{\hbar^{2} \nabla^{2}}{2 m}+\frac{m}{2} \Omega^{2}\left(x^{2}+y^{2}\right)+\frac{\omega_{\mathrm{c}} \hat{L}_{z}}{2}=\mathscr{H}_{\Omega}+\frac{\omega_{\mathrm{c}} \hat{L}_{z}}{2} \\
& E\left(n_{r}, l\right)=\hbar \Omega\left(2 n_{r}+|l|+1\right)+\hbar \omega_{\mathrm{c}} l / 2 \\
& 2 n_{r}+|l|+1
\end{aligned}
\end{aligned}
$$

Level crossing points $\left(\frac{\omega_{\mathrm{c}}}{\omega}\right)^{2}=n_{L}-2+\frac{1}{n_{L}}$

$$
\begin{aligned}
& n_{L}: \text { Landau index } \\
& =1,2, \ldots \\
& =n_{r}+(|l|+l) / 2
\end{aligned}
$$

- : Solutions

Birthday of quantum Hall effect

Notes 4./5.2.1980

$$
-E
$$

$$
5
$$ rotating sample hoپler

Klaus von Klitzing

From Wikipedia

Lorentz force (magnetic field only) $m \frac{d^{2} \boldsymbol{r}}{d t^{2}}=-e \boldsymbol{v} \times \boldsymbol{B}$
Cyclotron motion $\quad \boldsymbol{r}=\boldsymbol{R}+r_{0}\left(\cos \omega_{\mathrm{c}} t, \sin \omega_{\mathrm{c}} t\right)$
$\omega_{\mathrm{c}} \equiv \frac{e B}{m}$: cyclotron frequency, $r_{0} \equiv \frac{v_{0}}{\omega_{\mathrm{c}}}$: cyclotron radius,
\boldsymbol{R} : guiding center
This can be viewed as a motion in harmonic potential.

With electric field $m \frac{d^{2} \boldsymbol{r}}{d t^{2}}=-e(\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B})$
\boldsymbol{R} : Moves vertically to \boldsymbol{E} with constant velocity E / B

Quantum mechanical Hamiltonian (no external electric field)

$$
\mathscr{H}=\frac{m}{2} \boldsymbol{v}^{2}=\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m} \equiv \frac{\boldsymbol{\pi}^{2}}{2 m}=\frac{\pi_{x}^{2}+\pi_{y}^{2}}{2 m} \quad \boldsymbol{\pi} \equiv \boldsymbol{p}+e \boldsymbol{A}
$$

Landau quantization (two-dimensional)

Commutation relation $\left[\pi_{\alpha}, \beta\right]=-i \hbar \delta_{\alpha \beta}(\alpha, \beta=x, y), \quad\left[\pi_{x}, \pi_{y}\right]=-i \frac{\hbar^{2}}{l^{2}}$

$$
\text { Magnetic length } \quad l \equiv \sqrt{\frac{\hbar}{e B}}=\sqrt{\frac{1}{2}} \sqrt{\frac{\phi_{0}}{\pi B}} \quad\left(2 \pi l^{2}\right) B=\phi_{0}=\frac{h}{e}
$$

Space coordinate operator $\quad \hat{\boldsymbol{r}}=\hat{\boldsymbol{R}}+\frac{l^{2}}{\hbar}\left(\pi_{y},-\pi_{x}\right)$
Guiding center operator $\quad \hat{\boldsymbol{R}}=(\hat{X}, \hat{Y}), \quad[\hat{X}, \hat{Y}]=i l^{2}$

$$
\text { down/up operator } \quad a=\frac{l}{\sqrt{2} \hbar}\left(\pi_{x}-i \pi_{y}\right), \quad a^{\dagger}=\frac{l}{\sqrt{2} \hbar}\left(\pi_{x}+i \pi_{y}\right)
$$

1-d harmonic oscillator $\quad \frac{\hbar \omega}{2}\left(-\frac{d^{2}}{d q^{2}}+q^{2}\right) \phi=E \phi \quad$ down/up operators $a, a^{\dagger}=\frac{1}{\sqrt{2}}\left(\pm \frac{d}{d q}+q\right), \quad\left[a, a^{\dagger}\right]=1$

$$
\left[a, a^{\dagger}\right]=1, \quad \mathscr{H}=\hbar \omega_{\mathrm{c}}\left(a^{\dagger} a+\frac{1}{2}\right) \quad E_{n}=\hbar \omega_{\mathrm{c}}\left(n+\frac{1}{2}\right) \quad(n=0,1,2, \cdots)
$$

Lev Landau 1908-1968

Remember:

Landau quantization: Landau gauge

Diagonalize X : Landau gauge $\boldsymbol{A}=(0, B x)$
Schrödinger equation $\quad \mathscr{H} \psi=\frac{(\boldsymbol{p}+e \boldsymbol{A})^{2}}{2 m} \psi=-\frac{1}{2 m}\left[\frac{\hbar^{2} \partial^{2}}{\partial x^{2}}-\left(-i \hbar \frac{\partial}{\partial y}+e B x\right)^{2}\right] \psi(\boldsymbol{r})$

$$
=\frac{1}{2 m}\left[-\hbar^{2} \nabla^{2}-2 i \hbar e B x \frac{\partial}{\partial y}+e^{2} B^{2} x^{2}\right] \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

Plane wave solution along $y \quad \psi(\boldsymbol{r})=u(x) \exp (i k y)$

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{(e B)^{2}}{2 m}\left(x+\frac{\hbar}{e B} k\right)^{2}\right] u(x)=\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{m \omega_{c}^{2}}{2}\left(x+l^{2} k\right)^{2}\right] u(x)=E u(x)
$$

Harmonic oscillator solution $\quad \psi_{n k}(\boldsymbol{r}) \propto H_{n}\left(\frac{x-x_{k}}{l}\right) \exp \left(-\frac{\left(x-x_{k}\right)^{2}}{2 l^{2}}\right) \exp (i k y) \quad\left(x_{k} \equiv-l^{2} k\right)$ x-direction Gaussian center $\quad X=x_{k}=-l^{2} k=-l^{2} p_{y} / \hbar$
y-direction group velocity $=0 \quad \frac{d E}{d k}=0$

Landau quantization: forms of wavefunctions

(a)

Diagonalize $X^{2}+Y^{2}$
\leftarrow Symmetric gauge $\boldsymbol{A}=\boldsymbol{B} \times \boldsymbol{r} / 2$

Number of states in $S=W_{x} \times W_{y}$

$$
0 \leq X \leq W_{x} \rightarrow-W_{x} l^{2} \leq k \leq 0
$$

"Distance" of k-values in y-direction: $2 \pi / W_{y}$

$$
\frac{W_{x} / l^{2}}{2 \pi / W_{y}}=\frac{S}{2 \pi l^{2}} \quad \rho_{\mathrm{L}}=\frac{1}{2 \pi l^{2}}=\frac{e B}{h}=\frac{B}{\phi_{0}}
$$

$$
\nu=\frac{\phi_{0} n_{s}}{B} \quad: \text { Filling factor (number of Landau levels filled with electrons) }
$$

$$
n=\frac{2}{\phi_{0} \Delta(1 / B)}=\frac{4.83 \times 10^{14}}{\Delta(1 / B)}\left(\mathrm{m}^{-2}\right)
$$

Localization/delocalization of wavefunctions

Numerical simulation $s=2$ for $N=0$

Aoki \& Ando, PRL 54, 831 (1985).

Edge mode explanation of IQHE

In an edge mode, the group velocity appears because the energy levels varies with x.

$$
\left\langle v_{y}\right\rangle=\frac{d E}{\hbar d k}=-\frac{l_{B}^{2}}{\hbar} \frac{d E}{d X}
$$

Current brought by a Landau edge mode

$$
J=\int_{X_{0}}^{X_{\mu}} \frac{L_{y} d X}{2 \pi l_{B}^{2}} \frac{e}{L_{y}}\left\langle v_{y}\right\rangle=\frac{e}{h} \int \mathrm{~d} X \frac{\mathrm{~d} E}{\mathrm{~d} X}=\frac{e}{h}\left(\mu-E_{0}\right)
$$

One dimensional system:
Landauer formula is applicable

$$
\sigma_{x y}=\frac{J_{y}}{V_{x}}=\frac{e\left(J_{\mathrm{A}}-J_{\mathrm{B}}\right)}{\mu_{\mathrm{A}}-\mu_{\mathrm{B}}}=\frac{e^{2}}{h}
$$

Chiral edge mode: No backscattering!

Bloch electrons under magnetic field: tight binding model
Translational operator: $T_{\boldsymbol{R}} f(\boldsymbol{r})=f(\boldsymbol{r}+\boldsymbol{R}), \quad T_{\boldsymbol{R}}=\exp \left(\frac{i}{\hbar} \boldsymbol{R} \cdot \boldsymbol{p}\right)$
Hamiltonian: $\quad \mathscr{H}_{0}=-\frac{\hbar^{2} \nabla^{2}}{2 m}+V(\boldsymbol{r})$
\rightarrow simultaneous diagonalization \rightarrow Bloch states

$$
\begin{aligned}
& \mathscr{H}=\frac{1}{2 m}(\boldsymbol{p}+e \boldsymbol{A})^{2}+V(\boldsymbol{r}) \\
& \qquad \boldsymbol{A}(\boldsymbol{r})=\boldsymbol{A}(\boldsymbol{r}+\boldsymbol{R})+\boldsymbol{\nabla} g(\boldsymbol{r}) \text { does not have translational symmetry }
\end{aligned}
$$

Magnetic translation operator

$$
\boldsymbol{p} \rightarrow \boldsymbol{p}+e \boldsymbol{A}
$$

Symmetric gauge $\boldsymbol{A}=\boldsymbol{B} \times \boldsymbol{r} / 2$

$$
\begin{gathered}
T_{B \boldsymbol{R}} \equiv \exp \left\{\frac{i}{\hbar} \boldsymbol{R} \cdot\left[\boldsymbol{p}+\frac{e}{2}(\boldsymbol{r} \times \boldsymbol{B})\right]\right\}=T_{\boldsymbol{R}} \exp \left[\frac{i e}{\hbar}(\boldsymbol{B} \times \boldsymbol{R}) \cdot \frac{\boldsymbol{r}}{2}\right] \\
{\left[\mathscr{H}, T_{B \boldsymbol{R}}\right]=0}
\end{gathered}
$$

However $\quad T_{B \boldsymbol{R} a} T_{B \boldsymbol{R} b}=\exp (2 \pi i \phi) T_{B \boldsymbol{R} b} T_{B \boldsymbol{R} a}, \quad \phi=\frac{e B}{h} a b$ $\phi=p / q$: rational number
Magnetic unit cell: unit vectors $(\boldsymbol{a}, \boldsymbol{b}) \rightarrow$ magnetic unit vectors ($q \boldsymbol{a}, \boldsymbol{b}$)
Lattice vector: $R^{\prime}=n(q \boldsymbol{a})+m \boldsymbol{b} \quad T_{B R^{\prime}}$: elements commute ψ : simultaneously diagonalizes \mathcal{H} and $T_{B R}$,

Magnetic Brillouin zone: $0 \leq k_{1}<2 \pi / q a, 0 \leq k_{2}<2 \pi / b$

$$
T_{q \boldsymbol{a}+\boldsymbol{b}} \psi=\exp \left[i\left(k_{x} q a+k_{y} b\right)\right] \psi
$$

Magnetic Bloch function: $\psi_{n \boldsymbol{k}}(\boldsymbol{r})=e^{i \boldsymbol{k} \boldsymbol{r}} u_{n \boldsymbol{k}}(\boldsymbol{r})$

$$
\begin{aligned}
& u_{n \boldsymbol{k}}(x+q a, y)=\exp \left(i \frac{\pi p y}{b}\right) u_{n \boldsymbol{k}}(x, y) \\
& u_{n \boldsymbol{k}}(x, y+b)=\exp \left(-i \frac{\pi p x}{q a}\right) u_{n \boldsymbol{k}}(x, y) \\
& u_{n \boldsymbol{k}}(\boldsymbol{r})=\left|u_{n \boldsymbol{k}(\boldsymbol{r})}\right| \exp \left[i \theta_{\boldsymbol{k}}(\boldsymbol{r})\right] \quad p=-\frac{1}{2 \pi} \oint d \boldsymbol{l} \cdot \frac{\partial \theta_{\boldsymbol{k}}(\boldsymbol{r})}{\partial \boldsymbol{l}}
\end{aligned}
$$

Remember k.p approximation $\boldsymbol{p} e^{i \boldsymbol{k r}}=e^{i \boldsymbol{k r}}(\hbar \boldsymbol{k}+\boldsymbol{p})$

$$
(\boldsymbol{p}+e \boldsymbol{A})^{2} e^{i \boldsymbol{k} \boldsymbol{r}} u_{n \boldsymbol{k}}(\boldsymbol{r})=e^{i \boldsymbol{k} \boldsymbol{r}}(\hbar \boldsymbol{k}+\boldsymbol{p}+e \boldsymbol{A})^{2} u_{n \boldsymbol{k}}(\boldsymbol{r})
$$

Schrodinger-like equation for $u_{n k}(\boldsymbol{r})$

$$
\mathscr{H}_{\boldsymbol{k}} u_{n \boldsymbol{k}}(\boldsymbol{r})=E_{n \boldsymbol{k}} u_{n \boldsymbol{k}}(\boldsymbol{r}), \quad \mathscr{H}_{\boldsymbol{k}}=\frac{1}{2 m}(-i \hbar \boldsymbol{\nabla}+\hbar \boldsymbol{k}+e \boldsymbol{A})^{2}+V(\boldsymbol{r})
$$

Electric field along y-axis: E

Unperturbed state $\longleftarrow \beta \neq \alpha E_{\alpha}-E_{\beta}$

$$
\begin{aligned}
& j_{x}=\frac{1}{L^{2}} \sum_{\alpha} f\left(E_{\alpha^{\prime}}\right)\left\langle\alpha^{\prime}\right| \hat{j}_{x}\left|\alpha^{\prime}\right\rangle=\frac{1}{L^{2}} \sum_{\alpha} f\left(E_{\alpha}\right) \sum_{\beta \neq \alpha} \frac{\langle\alpha|\left(-e v_{x}\right)|\beta\rangle\langle\beta| e E y|\alpha\rangle}{E_{\alpha}-E_{\beta}}+\text { c.c. } \\
& \langle\beta| v_{y}|\alpha\rangle=\langle\beta| \dot{y}|\alpha\rangle=-\frac{i}{\hbar}\langle\beta|[y, \mathscr{H}]|\alpha\rangle=-\frac{i}{\hbar}\left(E_{\alpha}-E_{\beta}\right)\langle\beta| y|\alpha\rangle \\
& \sigma_{x y}=\frac{j_{x}}{E}=\frac{e^{2} \hbar}{i L^{2}} \sum_{\alpha} f\left(E_{\alpha}\right) \sum_{\beta} \frac{\langle\alpha| v_{x}|\beta\rangle\langle\beta| v_{y}|\alpha\rangle}{\left(E_{\alpha}-E_{\beta}\right)^{2}}+\text { c.c. }
\end{aligned}
$$

Velocity operator: $\boldsymbol{v}=(-i \hbar \boldsymbol{\nabla}+e \boldsymbol{A}) / m$

$$
u_{n \boldsymbol{k}}(\boldsymbol{r}) \rightarrow|n, \boldsymbol{k}\rangle
$$

$\langle n, \boldsymbol{k}| \boldsymbol{v}\left|m, \boldsymbol{k}^{\prime}\right\rangle=\delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}} \int_{0}^{q a} d x \int_{0}^{b} d y u_{n \boldsymbol{k}}^{*} \boldsymbol{v} u_{m \boldsymbol{k}^{\prime}} \equiv \delta_{\boldsymbol{k} \boldsymbol{k}^{\prime}}\langle n| \boldsymbol{v}|m\rangle$
Normalization: $\quad \int_{0}^{q a} d x \int_{0}^{b} d y\left|u_{n \boldsymbol{k}}(\boldsymbol{r})\right|^{2}=1$
$\langle n| v_{x}|m\rangle=\frac{1}{\hbar}\langle n| \frac{\partial \mathscr{H}_{\boldsymbol{k}}}{\partial k_{x}}|m\rangle, \quad\langle n| v_{y}|m\rangle=\frac{1}{\hbar}\langle n| \frac{\partial \mathscr{H}_{\boldsymbol{k}}}{\partial k_{y}}|m\rangle$.
$\langle n| \frac{\partial \mathscr{H}_{k}}{\partial k_{j}}|m\rangle=\left(E_{m}-E_{n}\right)\left\langle n \left\lvert\, \frac{\partial u_{m}}{\partial k_{j}}\right.\right\rangle=-\left(E_{m}-E_{n}\right)\left\langle\left.\frac{\partial u_{n}}{\partial k_{j}} \right\rvert\, m\right\rangle$,

$$
j=x . y
$$

$$
\begin{aligned}
\sigma_{x y} & =-i \frac{e^{2}}{\hbar} \sum_{k} \sum_{n} f\left(E_{n \boldsymbol{k}}\right) \sum_{m(\neq n)}\left[\frac{\langle n \boldsymbol{k}| \partial \mathscr{H}_{\boldsymbol{k}} / \partial k_{x}|m \boldsymbol{k}\rangle\langle m \boldsymbol{k}| \partial \mathscr{H}_{\boldsymbol{k}} / \partial k_{y}|n \boldsymbol{k}\rangle}{\left(E_{n \boldsymbol{k}}-E_{m \boldsymbol{k}}\right)^{2}}-\text { c.c. }\right] \\
& =-i \frac{e^{2}}{\hbar} \sum_{k} \sum_{n} f\left(E_{n \boldsymbol{k}}\right) \sum_{m(\neq n)}\left[\left\langle\left.\frac{\partial u_{n}}{\partial k_{x}} \right\rvert\, m\right\rangle\left\langle m \left\lvert\, \frac{\partial u_{n}}{\partial k_{y}}\right.\right\rangle-\left\langle\left.\frac{\partial u_{n}}{\partial k_{y}} \right\rvert\, m\right\rangle\left\langle m \left\lvert\, \frac{\partial u_{n}}{\partial k_{x}}\right.\right\rangle\right] \\
& =\frac{e^{2}}{h} \frac{2 \pi}{i} \sum_{k} \sum_{n} f\left(E_{n k}\right)\left[\left\langle\left.\frac{\partial u_{n}}{\partial k_{x}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{y}}\right\rangle-\left\langle\left.\frac{\partial u_{n}}{\partial k_{y}} \right\rvert\, \frac{\partial u_{n}}{\partial k_{x}}\right\rangle\right] .
\end{aligned}
$$

Vector field: $\quad \boldsymbol{A}_{n \boldsymbol{k}}=\int d^{2} \boldsymbol{r} u_{n \boldsymbol{k}}^{*} \boldsymbol{\nabla}_{\boldsymbol{k}} u_{n \boldsymbol{k}}=\left\langle u_{n \boldsymbol{k}}\right| \boldsymbol{\nabla}_{\boldsymbol{k}}\left|u_{n \boldsymbol{k}}\right\rangle \quad$ Berry connection

$$
\sigma_{x y}=\frac{e^{2}}{h} \frac{1}{2 \pi i} \sum_{E_{n}<E_{\mathrm{F}}} \int_{\mathrm{MBZ}} d^{2} k\left[\boldsymbol{\nabla}_{\boldsymbol{k}} \times \boldsymbol{A}_{n \boldsymbol{k}}\right]_{k_{z}}=\frac{e^{2}}{h} \frac{1}{2 \pi i} \sum_{E_{n}<E_{\mathrm{F}}} \int_{\mathrm{MBZ}} d^{2} k\left[\operatorname{rot}_{\boldsymbol{k}} \boldsymbol{A}_{n \boldsymbol{k}}\right]_{k_{z}}
$$

Existence of zero or anomaly

$$
I=\frac{1}{2 \pi i}\left[\int_{\mathrm{I}} d^{2} k[\operatorname{rot} \boldsymbol{A}]_{k_{z}}+\int_{\mathrm{II}} d^{2} k[\operatorname{rot} \boldsymbol{A}]_{k_{z}}\right]=\oint_{\partial H}\left(\boldsymbol{A}^{\mathrm{II}}-\boldsymbol{A}^{\mathrm{I}}\right) \cdot \frac{d \boldsymbol{k}}{2 \pi i}
$$

On the boundary $\partial H \quad u_{\boldsymbol{k}}^{\mathrm{I}}=u_{\boldsymbol{k}}^{\mathrm{II}} e^{i \theta(\boldsymbol{k})}$

$$
\begin{gathered}
I=\oint_{\partial H}\left[\left\langle u_{\boldsymbol{k}}^{\mathrm{II}}\right| \nabla_{\boldsymbol{k}}\left|u_{\boldsymbol{k}}^{\mathrm{II}}\right\rangle+\left(i \boldsymbol{\nabla}_{\boldsymbol{k}} \theta\right)\left\langle u_{\boldsymbol{k}}^{\mathrm{II}} \mid u_{\boldsymbol{k}}^{\mathrm{II}}\right\rangle-\left\langle u_{\boldsymbol{k}}^{\mathrm{II}}\right| \nabla_{\boldsymbol{k}}\left|u_{\boldsymbol{k}}^{\mathrm{II}}\right\rangle\right] \cdot \frac{d \boldsymbol{k}}{2 \pi i} \\
=\frac{\Delta_{\partial H} \theta}{2 \pi}=\nu_{\mathrm{C}} \quad \begin{array}{c}
\text { Chern number (integer) } \\
\text { Topological invariant }
\end{array} \\
\sigma_{x y}=\nu_{\mathrm{C}} \frac{e^{2}}{h}
\end{gathered}
$$

Thouless-Kohmoto-Nightingale-den Nijs (TKNN) Formula

Laughlin's discussion

Robert Laughlin

Landau gauge $\quad \boldsymbol{A}=\left(0, B x-\Phi / L_{y}\right)=\left(0, B\left(x-\Phi / L_{y} B\right)\right)$
Magnetic flux $\Phi: X$ shift $\quad X \rightarrow X+\frac{\Phi}{L_{y} B}: \frac{\Phi}{\phi_{0}} \frac{L_{x}}{N_{\mathrm{L}}}\left(N_{\mathrm{L}} \equiv n_{\mathrm{L}} L_{x} L_{y}\right)$
$j_{y}=\frac{J_{y}}{L_{x}}=\frac{1}{L_{x}} \frac{\partial E_{L_{x}}}{\partial \Phi} \quad\left(c f . E=\frac{L}{2} J^{2}, \Phi=L J\right)$
$=\frac{1}{L_{x}} \frac{\Delta E_{L_{x}}}{\Delta \Phi}=\frac{1}{L_{x}}\left(-e \mathcal{E}_{x} \frac{L_{x}}{N_{\mathrm{L}}}\right) \frac{N_{e}}{\phi_{0}}=\nu \frac{e^{2}}{h} \mathcal{E}_{x} \quad$ Chern number $=1$
(a) In 2D system under magnetic field: magnetic Bloch functions, magnetic Brillouin zone
(b) Kubo formula for Hall conductivity: matrix elements of velocity operator
(c) From (a) and (b) Hall conductivity is obtained as the integration of Berry curvature over magnetic Brillouin zone
(d) TKNN formula: Chern number (topological invariant) times quantum conductance
(e) Chern number is integer (due to single-valuedness of atomic part) and non-zero in quantum Hall system (Laughlin's discussion)
(a) Insulating State

(b)

(c)

(d)

Hasan \& Kane, Rev. Mod. Phys. 82, 3045 (2010).
Transition between bands with different Chern number only can attained through energy gap collapse.

