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3 Charge carriers in semiconductors

Charge carriers in semiconductors play a central role in so called “structural sensitivity”. Here we have a look at very
general properties of such carriers.

3.1 Effective mass

Whan a Bloch type electron wavefunctionψnk(r) has a dispersion relationEn(k), the group velocity is written as

vn(k) = ~−1∇kEn(k). (2.1)

Hence, the acceleration is given as

dvn

dt
=

dk

~dt
· ∇k(∇kEn(k)) =

∇k

~2
∑

j=x,y,z

∂En(k)

∂kj
Fj . (2.2)

Here,F = dp/dt = ~dk/dt is a vector of a “force”. Now we define theinverse effective mass tensor1/m∗, which is
the inverse matrix of theeffective mass tensorwith(

1

m∗

)
ij

≡ 1

~2
∂2E(k)

∂ki∂kj
. (2.3)

Then (2.2) can be re-written as
dvi(k)

dt
=

∑
j

(
1

m∗

)
ij

Fj , (2.4)

which is equivalent to

Fi =
∑
j

m∗
ij

dvj(k)

dt
. (2.5)

For simplicity, we consider an energy band with an isotropic energy dispersionE(k) = ak2. m∗, in general is a
tensor, becomes a scalar~2/(∂2E(k)/∂k2) = ~2/2a. Let it be more specific. Consider the case of eq. (1.9), where a gap
opens up in the nearly free electron approximation (NFEA). Around∆k ∼ 0,

E± ≈ ϵz ± V0

[
1 +

ϵz
2V0

(
∆k

kg

)2
]
, kg ≡

√
2m0V0
~

, (2.6)

which reads to the effective mass of

m∗ = ±~2

2

2V0
ϵz

2m0

~2
= ±2V0

ϵz
m0 = ±ϵg

ϵz
m0. (2.7)

Hereϵz is the band width，ϵg the band gap. In this naive approximation, the ratio between the band width and the band
gap determines the effective mass, namely, the wider the energy gap in comparison with the band width, the heavier the
effective mass. This is a kind of “toy model” but can predict at least some trend in the effective masses in the same type
of energy bands,i.e., withe the same symmetry at the same point in the reciprocal lattices. For example we can see such
tendency in the effective masses atΓ point of conduction band in GaAs, InP, InAs.

In (2.7), we have a negative effective mass forE−, which means, in this band, an electron is accelerated to the opposite
direction of the force. In particular at the top of the band, the velocity of the electron is zero. So if you apply, say, an
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Figure 2.1: Effective mass calculated from (2.7) in the
cosine band shown in Fig.1.4. It diverges and its sign
is reversed atk = ±π/2a.

electric field to an electron at the top of this band, the electron is accelerated to clime up the electrostatic potential. This
is not a mystery, of course. An electron at the top ofE− band sits still in average, or in the meaning of standing wave.
So acceleration to one of the components is nothing but deceleration to the other. And from the band top, the amplitude
of the accelerated component diminishes with any shift. Hence, the “potential climing up electrons” are consuming their
inner kinetic energy to gain potential energy.
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0
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There is another comment on the effective mass. Figure in the right is a partial
reproduction of Fig.1.2(b), where an energy gap opens at a zone edge in NFEA.
Here we shift the origin of the energy toϵ0 and approximate the energy dispersions
of the first and the second bands (n = 0, 1) with linear ones. After the approxima-
tion we shift the origin of the wavenumber to the zone edgeπ/a.

Ep(k) = c~k, Eq(k) = −c~k.

These are dispersions for massless particles such as photons or phonons with a
velocity c. Now we add the potentialV (x) = 2E0 cos(kwx), then the dispersions
change to

E± = ±
√
(c~k)2 + E2

0 ≈ ±E0

[
1 +

1

2

(
c~
E0

)2

k2

]
,

aroundk ≈ 0. From (2.3), the effective masses are readily obtained as

m∗ = ±E0/c
2 ∴ E0 = ±m∗c2. (2.8)

The double sign corresponds to particle/anti-particle. This result tells us that the mechanism how a Bloch electron gains
an effective mass at zone edges is very general, common with masses of materials in that it is given from a interaction
between the particles which are flying in opposite direcsions.

3.2 Bloch oscillation

We write the dispersion relation in the tight-binding approximation (1.15) asE(k) = E0(1 − cos ka) and the effective
mass given in (2.7) ism∗(k) = ~2(E0L

2 cos ka)−1. As shown in Fig.2.1, the mass diverges and changes its sign at
k = ±π/2a. If we putk = 0 at t = 0, the acceleration equation givesk = Ft/~. Accordingly the expectation value of
the electron position in real space coordinate⟨x⟩ oscillates as

⟨x⟩ = E0

F

(
1− cos

Fa

~
t

)
=
E0

F
(1− cosωBt) , ωB ≡ Fa

~
. (2.9)

The oscillation is called “Bloch oscillation”.
A Bloch oscillating state has an oscillation in the kinetic energy, hence is not an energy eigenstate. Here we treat

the system as a potential problem. The external force can be a consequence of a slanted potentialϕ = −Fx added
to the lattice potential, where the forceF is given byF = −dϕ/dx. Let us apply the tight-binding approximation, in
which an energy band is formed through the tunneling between neighboring localized states. Now the potentialϕ gives
an energy difference∆E = Fa to neighboring sites and an extended energy eigenstate cannot be formed. Instead, even
with tunneling, each site has a localized energy eigen state. The system has a modulated translational symmetry, in that
the potential structure remains the same but a constant shift after a spatial translation. Hence the energy eigenvalues of
the localized states are in series with an equidistance in energy. Such localized states are called Stark ladder state. From
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Figure 2.2: (a) Schematic of Stark ladder staes, which appear in superlattices under electric fields and are localized along
the direction perpendicular to the ultra-thin films. Horizontal thick solid lines indicate the energy levels of Stark ladder
states. And the length of the lines indicate the regions where the states exist. (b) Time evolution of a wave packet
under Bloch oscillation, which is obtained through the motions of plane waves forming the packet. The absolute value
of wavefunction|ψ| is plotted in gray scale (the darder the larger in amplitude). In the upper panel a wave packet in a
cosine band is under an electric field and showing a Bloch oscillation. The lower panel shows an ordinary time evolution
of a wave packet with a parabolic energy dispersion. In the lower the packet spreads with time due to the different phase
velocities in different wavenumber while in the upper, all the components in the packet experiences wavenumbers in
the first Brillouin zone and the packet re-focuses. In the actual oscillation the electrons interacts with electromagnetic
environment and such forcusing does not occur.

eq.(2.9) the spatial size of the localized states is aboutE0/F . In the energy diagram in Fig.2.2(a), we see that the size
corresponds to the region in which a state with a constant energy can exist (the length of the solid horizontal bars in the
figure).

The frequency of Bloch oscillation is given asωB = ∆E/~, from which we can see that the Bloch oscillation
is a quantum coherence oscillation between neighboring Stark ladder states. Even forF = 0, if we take a localized
state as an initial state, we observe a coherence oscillation as we see in Appendix A for a double well potential. The
frequency isωt = |T |/~ whereT is the tunneling matrix element. Hence the total coherence oscillation has the frequency
ω = (1/2)(ωB ±

√
ω2
B + ω2

t ).
Fig.2.2(b) simulates a motion of a wave packet under a constant electric field with assumption that each plane wave

component of the packet has its own Bloch oscillation in a cosine band. Interestingly, in this approximation with no
interaction with electromagnetic field other than the static force, the wave packet does not show dispersion because every
plane wave component experiences the whole wavenumber within a period of Block oscillation.

3.3 Experiment on Bloch oscillation

As seen above, the concepts of Bloch oscillation, Stark ladder state stem from a very naive band picture though the
experimental realization had many big difficulties. Usually the widths of energy bands in semiconductors exceed 1eV,
which is about104 K in thermal energy, accelerated electrons thus get scattering from phonons or other perturbations and
relax in energy far before they reach the band top. Coherent acceleration hence seemed to be hopeless. On the other hance,
there is a group of materials, which have narrow bands though the effective masses are very heavy and the acceleration is
very difficult.

The realization was accomplished withsuperlattice, comprehension of which requires those of epitaxial crystal
growth and heterojunctions. Here we take a shortcut and introduce the very essence of them. Then intoduce an ex-
periment, which utilized many modern sophisticated experimental techniques. In the lecture I use PowerPoint.

3.3.1 Photon emission and Bloch oscillation

The results of experiment are shown in Fig.2.3. In Fig.2.3(b), they applied static electric fields to a GaAs/Al0.3Ga0.7As
and irradiated a light of energyhν and measured the photocurrentIph through the specimen. In GaAs/Al0.3Ga0.7As
superlattices the energy barrier in the valence side is low and the Stark ladder in the hole side can be ignored. Whenhν
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Figure 2.3: (a) Schematic picture of a superlattice potential with an electric field. The arrows indicate excitation processes
to Stark ladder states in a quantum well. (b) PhotocurrentIph through a GaAs/Al0.3Ga0.7As superlattice under electric
fields. In order to emphasize the peak structures, the delivative ofIph to the energy of incident lighthν, dIph/hdν is
plotted in gray scale. With increasing the electric field, the peak positions spread like a fan from the position indicated
by an arrow. (c) Amplitude of electric field in THz electromagnetic wave emitted from the superlattice is 3D gray scale
plotted againt the plane of time and the strength of applied statice electric field. Fromt = 0 clear damping oscillations
appear, the frequency of which increases with applied electric field while the amplitude diminishes. The lower panel
shows the data for 25kV/cm. Courtesy of Prof. Kaz Hirakawa, Institute of Industrial Science, Universty of Tokyo (Phys.
Rev. Lett.90, 046806 (’03),ibid. 94, 057408 (’05))．

coinsides with the energy between the bottom of the hole miniband and the Stark ladder states in the conduction side, the
photon is absorbed, creating an electron-hole pair and contributes toIph as illustrated in Fig.2.3(a). HenceIph forms peak
structures versushν under electric fieldEm at

hνn = E∗
g + n~ωBO = E∗

g + nedEm (n = 0,±1,±2, · · · ). (2.10)

The intrinsic band gap and the hole miniband are represented byE∗
g . Equation(2.10) predicts that the peak positions

spread as a fan versus the electric field and we see the behavior in Fig.2.3(b).
Now an off-peak light with high intensity excites a linear combination of two Stark ladder states and a Bloch oscillation

begins. A Bloch oscillation of an electron is that of a charged particle hence emits an electromagnetic wave. By using a
high-tech laser technique, they measured such emission in Thz frequency region. The amplitude of the emission is plotted
as a function of duration in Fig.2.3(c). A clear damping oscillation appers directly indicating the excitation and damping
of a Bloch oscillation. Increase of the oscillation frequency according to (??) with increasing applied electric field is also
observed.

3.4 Concept of holes

A semiconductor is not a metal then the Fermi level exists in a bandgap not in an energy band. We call the energy band
just below the Fermi level thevalence bandwhile the one just above the Fermi level, theconduction band. In the ground
state, the valence band is full while the conduction band is empty.

A wavefunction which describes a many-electron state should be anti-symmetric, that is, it should change its sign
with an interexchange of two electrons. Ignoring the mutual Coulomb interaction between the electrons, the eigenstate of
many-electron state can be written as a Slater determinant

ψ(x1, x2, · · · , xN ) =
1√
N !

∣∣∣∣∣∣∣
ϕ1(x1) · · · ϕ1(xN )

...
.. .

...
ϕN (x1) · · · ϕN (xN )

∣∣∣∣∣∣∣ , (2.11)

whereϕi are one electron energy eigenstates of the lattice potential,N the total number of electrons. The effect of
Coulomb interaction can be taken into account within the Hartree-Fock (mean field) approximation with replacing the
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Figure 2.4: Schematic diagram of dispersion relation in a valence band. The
origin of energy is taken at the top of the band. The open circle indicates an
emptied state atk = kv in the valence band. In this “hole state” the total
energy has decreased from the band-full state byE(kv) (hence the energy is
−E(k)), and the total momentum iskh = −kv because the band-full state
has zero momentum in total (

∑
k = 0) due to the symmetry of valence

band. Hence we should plot the “hole state” in this diagram at the position of
the black bullet though we often describe “hole” with the open white circle
particularly in optical absorption or emission. We should thus be careful in
the treatment of “holes” in suchk-space energy diagrams.

single-electron wavefunctionϕi in (2.11) with the solution of equation for mean field approximation (Single electron
approximation of Coulomb interaction).

We further assume that this single-electron wavefunctions can be written in the Bloch form of (1.5) and they do
not change with the total electron numberN .1. Then we can identify a many electron states with a single electron band
diagram like Fig.1.3 by indicating occupied and unoccupied states. We need to be careful, though, in labeling of electrons.
For example there are many ways to createN − 1- electron state fromN -electron state and emptying ak state is just one
of them. You may be need to describe an “emptied state” with a superposition of many suchk-emptied states. This is just
like we need to describe a wave packet with a superpositon of manyk-states.

Now we introduce the concept ofholes. Again consider a ground state of a valence band filled withN electrons. We
create anN − 1 state by putting out an electron from the ground state and call it a single hole state. Further extraction
creates two, three,· · · hole states. Now consider a hole state that is created from extraction of an electron labeled with
kv. The energy is decreased byE(kv) from the ground state and the total momentum is−kv because in the ground state
the total momentum is zero (

∑
k = 0) due to the symmetry of valence bands (otherwise the valence band has a flow in a

symmetrical lattice). We call this state “a hole state with a wavenumber of ”, the energy of which is−E(kv) = −E(−kh)
(Fig.2.4).

We test the concept of holes by applying an electric fieldE to a hole state with a wavenumberkh = −kv. The
acceleration equation

−eE = F =
dp

dt
= ~

dk

dt
, (2.12)

is applicable to the electrons filling thek-states in the valence band other thankv. The electrons shift in thek-space in
parall with a (k-space) velocity of Therefore the emptied state is reserved as an emptied state in thek-space and shift
also with a velocity of−eE/~. We write down the situation asdkv/dt = −eE/~．Now dkh/dt = −dkv/dt, so the
acceleration equation for a hole is described as if the hole has a positive charge of+e. It may be a bit confusing but the
acceleration equation for the emptied state is still for a particle with a negative charge of−e.

Next we form a wave packet of a hole with superposing manykv states and consider the group velocityvv. The motion
of this hole wave packet in real space should be the same as that of emptied electrons. If we adopt the effective mass in
NFEA (2.7),m∗ = −(ϵg/ϵz)m0,

dvv
dt

= −ϵz
ϵg

−eE
m0

=
ϵz
ϵg

eE

m0
=
dvh
dt

. (2.13)

Now the wavepacket of emptied states is in real space and at the position of the packet the charge increased by+e from
the valence band filled ground state. Hence it is the hole wavepacket itself.

The above discussion tells that a hole state has+e charge, and the effective mass ism∗
h = −m∗

e. Becausem∗
e is

negative at the top of valence band, a hole behaves as a particel with a positive charge and a positive effective mass. As
we saw a hole is a quasi-particle description of many electron states in a valence band.

1This is a kind ofrigid band model in that the single-electron band does not change with the electron-electron interaction. Though this seems to be
a very coarse approximation, it has been proven to be good in many cases and they often widely expand this toe. g., the case in which an electric field
is applied.
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Figure 2.5: Schematic diagrams of density of states for 1 to 3 dimensional systems in eq.(2.14).

3.5 Intrinsic semiconductors

When a semiconductor has a perfect, defect-free crystal structure and no impurity, we call it an intrinsic semiconductor.
An intrinsic semiconductor is, of course, an approximation, which holds when we can igore the effect of imperfections.
The concept of intrinsic semiconductor has two important roles; 1) the approximation actually holds at finite temperatures
when the thermal energy exceeds characteristic energy scales for electron scattering by imperfections; 2) an intrinsic
semiconductor can be a starting point of approximations for impure, non-uniform semiconductors.

3.5.1 Density of states

We consider a simple lattice system which has a state per a unit cell with an edge length ofa. We take the system size as
L = Na in one dimension. For ann-dimensional system, the volume(2π/L)n contains a single state ink-space. Given
the kinetic energy asE(k) = ~2k2/2m, the number of states per volume betweenE andE + dE devided bydE is

D(E) =
1

Ld

(
L

2π

)d
dVd(k)

dE
=

1

(2π)d
dVd(k)

dk

dk

dE
=

1

(2π)d
m

~2
dVd(k)

kdk
,

whereVd(k) is the volume ofd-dimensional sphere with the radius ofk.
ThisD(E) is calledenergy density of state. BecauseV1 = 2k，V2 = πk2，V3 = 4πk3/3,

d = 1 : D
(0)
1d =

1

π~

√
2m

E
, d = 2 : D

(0)
2d =

m

π~2
, d = 3 : D

(0)
3d =

√
2m3

π2~3
√
E. (2.14)

Here we put the factor two from the freedom of spin.
In the case of electrons in crystals, the above expressions for density of states are applicable with replacing the mass

with the effective mass where non-parabolicity of the band is ignorable,e.g., around tops and bottoms of the bands. Where
we cannot apply the parabolic approximation, we need to go back to the definition of the density of states. For a three
dimensional system it is given from

D(E) =

∫
E(k)=E

dSk

(2π)3
2

∇kE(k)
. (2.15)

The integral is over the equi-energy surfaceE(k) = E in k-space.

3.5.2 Carrier distribution in thermal equilibrium

Electrons are fermions, that is a single quantum state can be occupied only with a single electron, hence they obey the
Fermi-Dirac distribution function

fF(E) =
1

exp((E − EF)/kBT ) + 1
(2.16)

in a thermal equilibrium at temperatureT . EF is the Fermi energy,kB the Boltzmann constant.
Let us see how electrons and holes distribute in energy space at a finite temperature obeying (2.16). The numbers of

electrons and holes which exist inE ∼ E + dE are

ge(E)dE = De(E)f(E)dE, (2.17a)

gh(E)dE = Dh(E)[1− f(E)]dE ≡ Dh(E)fh(E)dE, (2.17b)

respectively. Here we have introduced the distribution function for holes as (see Fig.2.6(c))

fh(E) = 1− f(E) =
1

1 + exp(EF − E)/kBT )
. (2.18)
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Figure 2.6:(a) Schematic chart of a conduc-
tion band and a valence band for an intrin-
sic semiconductor. (b) Density of states corre-
sponding to the chart in (a). The electron distri-
butionn(E) is plotted in gray and the hole dis-
tribution p(E) in white. (c) Distribution func-
tions for electrons (f(E), solid line), and for
holes (fh(E), broken line).

For the density of states, we here adopt parabolic approximation. From (2.14),

De(E) =

√
2m∗3

e

π2~3
√
E − Ec (conduction band), (2.19a)

Dh(E) =

√
2m∗3

h

π2~3
√
Ev − E (valence band). (2.19b)

HereEc，Ev are the bottom of the conduction band and the top of the valence band as indicated in Fig.2.6(a).
Now we can obtain the thermal distribution of electrons and holes as shown in Fig.2.6(b). The total densities of

electronsn and holesp are given as

n =

∫ ∞

Ec

ge(E)dE =

√
2m∗3

e

π2~3

∫ ∞

Ec

√
E − EcdE

1 + exp(E − EF)/kBT
, (2.20a)

p =

∫ Ev

−∞
gh(E)dE =

√
2m∗3

h

π2~3

∫ Ev

−∞

√
Ev − EdE

1 + exp(EF − E)/kBT
. (2.20b)

In the case offF(E) ≪ 1(E ≥ Ec)，fh(E) ≪ 1(E ≤ Ev), we can apply the approximation with the Maxwell
distribution as

fF(E) ∼ exp(EF − E)/kBT, fh(E) ∼ exp(E − EF)/kBT, (2.21)

puttingx = (E − EF)/kBT and use an identity of a definite integral∫ ∞

0

√
xe−xdx =

√
π/2,

to obtain

n = 2

(
m∗

ekBT

2π~

)3/2

exp

(
EF − Ec

kBT

)
≡ Nc exp

(
EF − Ec

kBT

)
, (2.22a)

p = 2

(
m∗

hkBT

2π~

)3/2

exp

(
Ev − EF

kBT

)
≡ Nv exp

(
Ev − EF

kBT

)
. (2.22b)

Nc，Nv are the kind of fake but convenient density of states, which gives the numbersn, p when one calculate them as
if one has these numbers of state atEc, Ev respectively.Nc，Nv are thus called effective density of states.

From (2.20a)，(2.20b)

np = NcNv exp

(
Ev − Ec

kBT

)
= NcNv exp

(
− Eg

kBT

)
. (2.23)

Eg ≡ Ec − Ev is the energy gap, which is one of the most important parameters in semiconductor physics. As we will
see (2.23) also holds for doped semiconductors.
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In an intrinsic semiconductor, only electrons and holes have electric charges (when the concept of holes is introduced,
the positive charges at nuclei are included into holes) and from the electrical neutralityn = p. Then the position of the
Fermi energyEF is given from

EF =
Ec + Ev

2
+
kBT

2
ln
Nv

Nc
=
Ec + Ev

2
+

3kBT

4
ln
mh

me
. (2.24)

At low temperatures the second term is small andEF comes close to the center of the band gap.
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