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3.6 Quantum states at impurities

In the beginning of this lecture, the importance of structural sensitivities in semiconductors is emphasized. A representa-
tive in structural sensitivities is the phenomenon that the transport property is dramatically changed with a tiny amount of
impurities which produce carriers. The change also extends to optical and chemical properties. In this section we consider
“shallow” impurity states in semiconductors. What “shallow” or “deep” means for impurities? This is semi-quantitative
description how far is the localized energy level is from the bottom of the conduction band or from the top of the valence
band in a semiconductor. We begin with introduction of a slow-varying potential modulation to a crystal potential.

3.6.1 Envelope function and effective mass approximation

We write a single electron Hamiltonian of a periodic lattice asH0 = T̂ + V (r) and add a potentialU(r) which varies
slowly in space in comparison withV (r). Eigenfunctionsη(r) satisfy

[H0 + U(r)]η(r) = Eη(r). (3.1)

The system has now lost the translational symmetry andη(r) cannot be written in the form of Bloch functions|n,k⟩. We
then expandη(r) with a series of Bloch functions, which is complete.

η(r) =
∑
n,k

f(n,k)|n,k⟩. (3.2)

Substituting (3.2) to (3.1) we take the inner product with⟨n′,k′| to obtain,

[E0(n
′,k′)− E]f(n′,k′) +

∑
n,k

⟨n′,k′|U |n,k⟩f(n,k) = 0. (3.3)

The second term in the left hand side represents the scattering|n,k⟩ → |n′,k′⟩. From (C.5) in Appendix C, this term is
estimated asUk′−kδn′n. HereUq is defined in (C.3) as the Fourier transform ofU(r). This estimation can be understood
as follows. The factorδn′n means there is no interband transition. BecauseU(r) is a slowly varying function in space, the
perturbation tounk(r), which has the lattice periodicity in the Bloch function (1.5) and strong spatial variation, is small.
Hence from the orthogonality ofunk, the interband scattering should be negligible. The other factorUk′−k indicates
that only the plane wave parteikr in (1.5) is taken into account as thek-dependence. In other words, we have ignored
so called Umklapp scattering, which is introduced through the lattice periodic partunk and causes jumps of a reciprocal
lattice vector. The latter approximation is also reasonable from the small spatial derivative ofU(r). Therefore

[E0(k
′)− E]f(n′,k′) +

∑
k

Uk′−kf(n
′,k) = 0. (3.4)

In the summation in (3.2) we only pick up slowly varying term aroundk ∼ 0. From the form of eq. (1.4) we see
thatuk does not depend onk strongly. Then we replaceuk in |n,k⟩ = eikruk(r) with u0(r) and put it in front of the
summation. Also we ignore the interexchange between energy bands and write the equations for each band as

ηn(r) = un0
∑
k

f(n,k)eikr = un0fn(r). (3.5)

Namelyηn(r) is written as a product of a lattice periodic functionun0 andfn(r), which is the inverse Fourier transform
of the expansion coefficient of Bloch wavefunctionf(n,k) and is gradual in space in comparison with the lattice period.
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fn(r) are called asenvelope function, which is a generalization of the plane wave part of Bloch functionseikr.
Just like the wavepacket in the Bloch oscillation simulation in Sec.3.2, with taking summation onk, we can form some
localized states, which is gradually varies in real space.

Now In (3.4) we omitn and assume the effective massm∗ is isotropic. Then we obtain

~2k′2

2m∗ f(k
′) +

∑
k

Uk′−kf(k
′) = Ef(k′). (3.6)

In the inverse Fourier transformation, the second term in the LHS becomes a convolution. Then the equation for real space
is given as [

−~2∇2

2m∗ + U(r)

]
f(r) = Ef(r). (3.7)

This is a Schr̈odinger equation for a particle with the massm∗ in the potentialU(r).
The above derivation indicates that the picture of a particle with an effective mass holds even under introduction of a

potential which breaks the spatial translational symmetry of the lattice, The approximation in which we treat the envelope
function as a wavefunction of a particle with an effective mass, is calledeffective mass approximation. This is natural
if we remember that the effective mass is valid for spatially localized wavepacket in the simulation of Bloch oscillation.
In the field of device application of semiconductors we often adopt so calledrigid band model, in which electric field
inside semiconductors is taken into account by slanting the band structure without changing any parameters. The above
result also suggests that if the slanting by the field is gradual compared with lattice potential, the rigid band model is a
good approximation.

3.6.2 Donors and acceptors

III IV V
5B
2s22p

6C
2s22p2

7N
2s22p3

13Al
3s23p

14Si
3s23p2

15P
3s23p3

Imagine that we replace a Si atom in a Si crystal, which is a carbon group elementary
semiconductor, with a P atom, which is in group VA (or 15 in IUPAC). Si crystal is
formed from covalent binding throughsp3 hybrid orbitals. And if the P atom obeys this
crystallization rule, the nucleus has an extra+e positive charge. Or the P atom has an
excess electron in the outermost shell. Hence the P atom works as a+e charged center.
From conduction electrons it introduces localized potentialU(r), and if this varies slowly
enough, the approximation in (3.7) holds and a comparatively shallow bound state is expected.1 We call such an impurity
which has a bound state just below the conduction band, adonor. A donor is easily ionized with thermal energy and emits
an electron into the conduction band.

On the other hand when we replace a Si atom in a Si crystal with a B atom, the B atom has deficiency of an electron
and if it forms the covalent bond, the total charge around it becomes−e. Hence a single electron extracted state, that is a
hole, forms a localized state just above the valence band. This also easily absorbs an electron from the valence band and
emits a hole into the valence band. Such an impurity is called anacceptor.

Semiconductors generally have comparatively large dielectric constant due to the electric polarization of covalent elec-
trons. Hence the impurity potential usually becomes much weaker than that of±e potential in the vacuum. Accordingly
the binding energy at impurity potentials is much smaller than that of H-atom, the localized states extend over several
neighboring unit cells. Thus the effective mass approximation is good for many cases. Actually, the accuracy of the
approximation depends on the value of effective mass itself and also varies with matrix semiconductors and species of
impurities.

U( )r

f( )r

u0( )r

Figure 3.1: Schematics of an image of
envelope function. The lower part illus-
trates the overlapping of a slowly vary-
ing potentialU(r) onto a lattice peri-
odic potential. The upper shows a lattice
periodic functionu0(r) is modulated by
the potential and localized in the form of
an envelope wavefunctionf(r).

1In the case of Si:P (we use this notation as P doped Si), the measured ionization energy is 45meV, which is not so small and significantly larger than
the theoretical prediction of 29meV based on the effective mass approximation. In other words, the effective mass approximation is not very good for
impurities in Si.
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With taking the origin at the position of the impurity,U(r) can be written asU(r) = −e2/4πϵ0ϵr and the effective
mass equation becomes [

−~2∇2

2m∗ − e2

4πϵ0ϵr

]
f(r) = Ef(r). (3.8)

This equation has the same form as that for a hydrogen atom other than the effective massm∗ and dielectric constantϵ.
The results for a hydrogen atom can thus be applicable.

Ry∗ =
e2m∗

2(4πϵϵ0)2~2
=
m∗

m

1

ϵ2
Ry, a∗B =

4πϵϵ0~2

m∗e2
=

m

m∗ ϵaB, (3.9)

areeffective Rydberg constantandeffective Bohr radius respectively.
As noted above the accuracy of the effective mass approximation largely depend on the species of semiconductors. In

the case of Si, the effective masses both for conduction band and valence band are comparatively large and six bottoms of
the conduction band exist in the first Brillouin zone. These make the approximation not so good for Si. On the other hand
in the case of GaAs conduction band, the bottom exists atΓ point (k = 0 in the reciprocal lattice space) havingϵ ≈ 11.5,
m∗ ≈ 0.067m, which givesa∗B = 172aB = 91Åmuch larger the the lattice constant 5.65Å. Consequently the effective
mass approximation very well holds giving the binding energy 6.9 meV for1s state, which is close to the experimental
observation of about 6meV.

3.7 Doping and carrier distribution

3.7.1 Chemical doping and types of doped semiconductors

Intentional introduction of impurities into crystals is calleddoping while we call the crystals matrices or hosts. Let us
consider the case we dope donors uniformly with the densityND. At absolute zero all the electrons emitted from the
donors are bound to the donors.2 At finite temperatures some of them are excited to the conduction band and can carry
electric charges. We call them “carriers” or “electrons”. Letn be the density of such electrons andnD be the density of
electrons bounded at the donors. From the charge neutrality condition we getn+ nD = ND.

Now we estimate Helmholtz free energyF = U − TS by considering the number of casesW for assigningnD
electrons toND states. FromS = kB lnW ,

F = EDnD − kBT ln

[
2nD

ND!

nD!(ND − nD)!

]
.

ED is the position of the bound state measured from the bottom of the conduction band and2nD is due to the spin
degeneracy. We assume that the Coulomb repulsion prevents double occupation of a localized state with two electrons.
According to Starling approximationlnN ! ∼ N lnN −N , the chemical potential (Fermi energy) is given as

µ = EF =
∂F

∂nD
= ED − kBT ln

[
2(ND − nD)

nD

]
. (3.10)

And from this

nD = ND

[
1 +

1

2
exp

(
ED − EF

kBT

)]−1

(3.11)

is obtained. The factor 1/2 on the exponential function is due to the spin degeneracy.
Similarly, for uniform doping of acceptors with densityNA, the density of electrons bounded to the acceptorsnA is

nA = NA

[
1 + 2 exp

(
EA − EF

kBT

)]−1

. (3.12)

Here we have a factor 2 instead of 1/2 but the density of holes bounded to the acceptors ispA = NA−nA and symmetrical
with nD having a factor 1/2.

From (3.10), if we dope only “shallow” donors, for which the effective mass approximation holds,EF comes toED

at T → 0. ED should be much smaller thanEg. Accordingly from (3.11), the electron concentrationn becomes much
higher than that of the intrinsic semiconductor at finite temperatures. This type of semiconductors are calledn-type.
Similarly doping of acceptors enhances the hole concentrationp. We call themp-type.

When donors and acceptors co-exist, the semiconductor becomes n-type forND ≫ NA and p-type forND ≪ NA. In
the former, some of the electrons emitted from donors are captured to acceptors and almost all the acceptors are ionized.
In the latter, the other way around. In both cases we say such semiconductors arecompensated.

2In so called degenerate semiconductors the following discussion does not hold.
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Figure 3.2: Characteristic four temperature re-
gions of an n-type semiconductor with compen-
sation. Schematical temperature dependence of
carrier concentrationn is plotted versus1/T in
semi-log scale.

Remember the semiconductor equation (2.23) then the productnp does not depend on the doping. If one ofn , p
increases with doping, then the other decreases. In the case of n-type semiconductor underND ≫ NA, n is much higher
thanp by many orders, and we call the electronsmajority carriers and the holesminority carriers . The other way
around in the case of p-type semiconductors.

3.7.2 Majority carriers, minority carriers

Even in the presence of donors and acceptors eq. (2.22a,b) hold and simultaneous satisfaction of them givesn, p andEF.
To obtainEF with knowledge ofn，p approximate expressions

EF ≈ EC + kBT

[
ln

(
n

NC

)
+ 2−3/2

(
n

NC

)]
, (3.13a)

EF ≈ EV − kBT

[
ln

(
p

NV

)
+ 2−3/2

(
p

NV

)]
(3.13b)

are convenient. In the region where (3.11), (3.12) hold the last term can be omitted.
In an n-type semiconductor with compensation,p,nA can be ignored and the electrically neutral condition is

n+N A = ND − nD. (3.14)

Substitution of eq.(3.11) gives
n+NA

ND −NA − n
=

1

2
exp

(
ED − EF

kFT

)
. (3.15)

Equation (2.22) holds for the case of doped semiconductors with shifts ofEF, multiplication of each side of the equation
results in

n(n+NA)

ND −NA − n
=

1

2
Nc exp

(
−∆ED

kBT

)
, ∆ED ≡ Ec − ED. (3.16)

3.7.3 Temperature dependence of carrier concentration

The temperature dependence of carrier concentrationn described by eq.(3.16) has the following four characteristic re-
gions:

1. Impurity (Freeze-out) region I: At very low temperatures and the case ofn≪ NA ≪ ND,

n ≈ NDNc

2NA
exp

(
−∆ED

kBT

)
, (3.17)

wheren decreases with lowering the temperature in an Arrhenius type with an activation energy of∆ED.

2. Impurity (Freeze-out) region II: In middle temperature range, in the case ofNA ≪ n≪ ND,

n ≈
(
NcND

2

)1/2

exp

(
−∆ED

2kBT

)
, (3.18)
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where the temperature dependence shows again an Arrhenius type but with a different activation energy, which is a
half of that in the impurity region I.

3. Exhaustion (Saturation) region: Temperature is higher than∆ED (kBT > ∆ED). The exponential function in
eq.(3.16) is now almost a constant (∼ 1) and

n ≈ ND −NA. (3.19)

Electrons once captured in donors are “exhaustively” excited to the conduction band and work as carriers.

4. Intrinsic region: At higher temperatures where direct thermal excitation for the valence band to conduction band
cannot be ignored in comparison withND, the temperature dependence of the carrier concentration asymptotically
approaches to that in an intrinsic semiconductor described as eq.(2.20), (2.24).

4 Electric transport

Electric transport is a most important response of materials together with optical responses. They are responses to some
external perturbations and the treatments should be more or less on non-equilibrium physics. Here we have a look at very
elementary part of linear response of classical electric transport. We will visit quantum transport in later sections.

4.1 Classical electric transport

We have already seen the Bloch oscillation as a motion of carrier under the application of external electric field, in
which the electrons have been treated as coherent quantum waves without scattering from some imperfection or from
electromagnetic interaction with vacuum. In real semiconductors, the carriers suffered from frequent scattering by various
mechanisms and in a snapshot the sizes of wavefunctions for carriers are very small in real space, which fact allows us
to treat the carriers as classical charged particle. Here we consider the electric conductions in which we can consider the
carriers as classical particles other than that they obey the Fermi-Dirac statistics.

4.1.1 Boltzmann equation and Drude conductivity

Let us express a dynamic system consisted of classical particles of the same kind as a set of points in a six dimensional
phase spaceof r (real coordinate) andp (momentum). We write the ratio of particles that are contained in an infinitesimal
volumedrdp at the position of(r,p) at timet, asf(r,p, t)drdp. f is called adistribution function and according to
the definition, the integral over the whole phase space should be 1. In the equilibrium or a steady state, the time derivative
of f is zero, in other cases non-zero. We put it asを ∂f/∂t. When a uniform external forceF is applied to each particle
(e.g. through an electric field),

dr/dt = p/m, F = dp/dt,

wherem is the (effective) mass of the particles. First we ignore the scatterings which causes jumps in the phase space and
the particles in the infinitesimal volumedrdp at (r,p) obey the above equation of motion and because they have almost
the same spatial positions and momentums initially, they move in the phase space almost in parallel. Hence if we fix our
eyes on them also in parallel, there is no extra variation inf due toF .

f(r + (p/m)dt,p+ F dt, t+ dt) = f(r,p, t).

(There is a time evolution due to the movements of particles in real space but that is accounted in the above in the firstdt
term and to the first order indt, this equality holds.) Then we consider scatterings, which introduce in/out of particles to
this volume and result in variations off . Let us write the variation as(∂f/∂t)cdt, thus

f
(
r +

p

m
dt,p+ F dt, t+ dt

)
− f(r,p, t) =

(
∂f

∂t

)
c

dt.

We obtain the followingBoltzmann equationwith taking the terms to the first order ofdt as

∂f

∂t
+

p

m
· ∂f
∂r

+ F · ∂f
∂p

=

(
∂f

∂t

)
c

. (3.20)

(∂f/∂t)cdt is calledcollision term, the simplest approximation of which is therelaxation time approximation.
Here we consider a relaxation timeτ , with which the system relaxes to the equilibrium distributionf0. Namely the
collision term is written as

(∂f/∂t)c = −(f − f0)/τ. (3.21)
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Figure 3.3: Schematic diagram illustrating a Fermi degenerate
electron gas is accelerated in the wavenumber space and the dis-
tribution f(k) shifts from the equilibrium with the small arrow in
the figure. The lower panel shows the shift of “Fermi circle” in the
case of two-dimensional system. The shift is very much exagger-
ated from a realistic sketch.

Macroscopic “currents” in the system are caused as a result of some shifts inf from f0 in thep space orr space. We
call a current driven by the former shiftdrift current whereas the latterdiffusion current .

First we consider the drift current in a uniform system under uniform external electric fieldE and dropr dependence
as

−eE · ∂f
∂p

= −f − f0
τ

, namely f = f0 + eτE · ∂f
∂p

.

As a first order approximation, we replacef in the second term of RHS withf0 to get

f ≈ f0 + eτE · ∂f0
∂p

≈ f0(p+ eτE). (3.22)

This form off is obtained with the parallel translation in thep space as−eτE. If the system in isotropic inp space and
has a simple Fermi sphere, the distribution withf becomes a shifted Fermi sphere as illustrated in Fig.3.3.

In order to obtain the current due to the shift, we need to calculate the integral ofv(k)f(k) over thek space. Without
loosing generality we writeE = (Ex, 0, 0). Then within the above approximation of shifted Fermi sphere, onlyx-
component of the drift current survives and others vanish with symmetrical integration of functions with the odd parity.
Now the integration results in∫

d3k

(2π)3
v(k)

(
f0 + eτE · ∂f0

~∂k

)
=

∫
d3k

(2π)3
~kx
m

eτEx
∂f0
~∂kx

=
eEx
m

∫
D(E)τ(E)

~2k2x
m

∂f0
∂E

dE. (3.23)

Here we assume the relaxation timeτ only depends on the energyE. ~2k2x/2m is the kinetic energy alongx-direction
and isE/3 due to the equivalent partition law.

If the system is a metal and Fermi-degenerated,∂f0/∂E can be approximated as−δ(E − EF). From eq.(2.19a)
D(E) = A

√
E (A is a material dependent constant and we take the origin of energy at the band edge) and (3.23) is

rewritten as

⟨vx⟩ = −AeEx
m

2τ(EF)

3
E

3/2
F .

The total particle concentrationn is given by

n =

∫ EF

0

D(E)dE = A
2

3
E

3/2
F ,

and hence we obtain the electric conductivityσ = j/E = −e⟨vx⟩/Ex as

σ =
e2nτ(EF)

m
. (3.24)

Equation (3.24) is the well known expression ofDrude conductivity.

Appendix B: Reciprocal lattice

Consider a one-dimensional periodic potentialV (x) = V (x+Na). Because this is a periodic function, we can expand it
in a Fourier series with a discrete set of wavenumber as

V (x) =
∑
n

Vne
iknx, kn = n

2π

a
.
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These discrete wavenumberskn form a one-dimensionalreciprocal lattice.
Extension to a three dimensional lattice is written as

V (r) =
∑
G

VGe
iGr. (B.1)

A three dimensional crystal potential is invariant under parallel transformations by lattice vectors. Thus, writing basic
lattice vectors asa1, a2, a3,

V (r) = V (r + rn), rn(lattice vector) = n1a1 + n2a2 + n3a3, (B.2)

wheren = (n1, n2, n3) is an arbitrary set of three integers. The condition for (B.1) to fulfill (B.2) is as follows;

G · rn = 2πm (m is an integer). (B.3)

Now let us try to expressG in the form of linear combination of basis vectorsg1，g2，g3 as

G = h1g1 + h2g2 + h3g3, (B.4)

with a set of integers(h1, h2, h3) just like the lattice vectors (or in analogy with one-dimension). For this to hold (B.1),
we need to takegi to satisfy

gi · aj = 2πδij . (B.5)

Then it is clear thatG in (B.4) satisfy the condition (B.3).
Let Va be the volume of the parallelepiped formed byaj , i.e., |a1a2a3| = a1 · (a2 × a3) and write as

g1 = 2πV −1
a a2 × a3, (B.6)

thisg1 actually satisfies (B.5) and circulations between 1, 2, 3 give other two.

Appendix C: Scattering matrix elements

Let us estimate the second term in the left hand side of (3.3). By using the form in eq.(1.5) for|n,k⟩, u∗n′k′(r)unk(r) is
a lattice periodic function and thus can be expanded just like (B.1) with reciprocal lattice vectorsG as

u∗n′k′(r)unk(r) =
∑
G

hn′k′nk(G)eiGr. (C.1)

We express the coefficienthn′k′nk as

hn′k′nk(G) =

∫
Ωu

d3r

Vu
e−iGru∗n′k′(r)unk(r), (C.2)

with inverse Fourier transform of (C.1).Ωu indicates that the integration is performed in a unit cell andVu is the volume
of a unit cell.

On the other hand becauseU(r) does not have the lattice periodicity, we expand it on a continuous variable as

U(r) =

∫
dqUqe

−iqr. (C.3)

From (C.1) and (C.3), the matrix element can be transformed into

⟨n′,k′|U |n,k⟩ =
∫
dqUq

∑
G

hn′k′nk(G)

∫
drei(k−k′+q+G)r

=

∫
dqUq

∑
G

hn′k′nk(G)(2π)3δ(k − k′ + q +G) = (2π)3
∑
G

Uk′−k−Ghn′k′nk(G). (C.4)

Because we have assumed thatU is much more gradual function than the lattice periodic potential, the Fourier com-
ponentq of U should not contain a vector as large as a reciprocal lattice vectorG. That isk′−k−G ≪ G. Furthermore
the change in the momentum due to the scattering byU(r) is smaller than that by lattice potential. As a result in the
expansion onlyG = 0 is allowed. From (C.2),

⟨n′,k′|U |n,k⟩ = Uk′−khn′k′nk(0) = Uk′−k

∫
Ωu

d3r

Vu
u∗n′k′(r)unk(r) ≈ Uk′−kδn′n. (C.5)

At the last line, we have used the approximation that the interband mixing is ignorable. This is justified becauseun are
the solutions of (1.4) and hence orthogonal to each other, normalized in the unit cell andk ≈ k′.
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Appendix D: Wannier function

In Sec.3.6.1, we have introduced the effective mass approximation with expanding the eigenstates with the basis of Bloch
wave functions. The same can be done withWannier functions, which are given from the tight-binding approach. Here
we roughly draw the senario.

Wannier functionswn(r −Ri) (n is the band index,Ri are the lattice vector) is defined as follows and related with
Bloch functions with the Fourier transform.

wn(r −Ri) = N−1/2
∑
k

e−ikRiψnk(r), (D.1a)

ψnk(r) = N−1/2
∑
Ri

eikRiwn(r −Ri). (D.1b)

They have the following orthogonality (the proof is skipped).∫
d3rw∗

n′(r −R′
j)wn(r −Rj) = δjj′δnn′ . (D.2)

wn(r −Ri) is spatially localied at the siteRi, which can be confirmed as follows. We approximate the Bloch function
in (D.1a) with neglecting thek-dependence of the lattice periodic partunk(r). Then

wn(r −Ri) = N−1/2un0(r)
∑
k

eik(r−Ri).

The summation overk clearly indicate the localization aroundr = Ri.
Let us consider the problem in (3.1). The expansion ofη(r) with Wannier functions is written as

η(r) = N−1/2
∑
j

F (Rj)w(r −Rj), (D.3)

where the band index is dropped for simplicity. Substituting the above to (3.1) and taking the inner product withw(r−Rl)
just as in the case of Bloch function expansion, we obtain∑

j

∫
d3rw∗(r −Rl)[H0 + U(r)− E]F (Rj)w(r −Rj). (D.4)

Due to the localized nature ofw(r −Rl) the integration region can be done just aroundRl. Because we have assumed
the slow variation ofU(r) in space, we replace it withU(Rl) and put it out from [ ] together with the third term from the
integral. They give the term[U(Rl)− E]F (Rl). Now we evaluate the term ofH0 by using (D.1a) as

∑
j

∫
d3rw∗(r −Rl)H0F (Rj)w(r −Rj) =

∑
j,k,k′

N−1F (Rj)e
i(k′Rl−kRj)

∫
ψ∗
k′(r)H0ψk(r)

=
∑
j,k

N−1F (Rj)E0(k)e
ik(Rl−Rj) =

∑
m,k

N−1F (Rl −Rm)E0(k)e
ikRm . (D.5)

The energy band dispersion relationE0(k) is a reciprocal lattice periodic function and can be Fourier expanded with
the lattice vectorsRj as

E0(k) =
∑
j

A(Rj)e
−ikRj . (D.6)

Substitution of the above to (D.5) results in

(D.5)=
∑
m,j,k

N−1F (Rl −Rm)A(Rj)e
ik(Rm−Rj)

=
∑
k,j

N−1F (Rl −Rm)A(Rj)NδRmRj =
∑
m

A(Rm)F (Rl −Rm).

exp(r ·∇) is a creation operator of spatial translation byr and henceF (Rl−Rm) = exp(−Rm ·∇)F (Rl). Substitution
of this into the above equation results in

(D.5)=
∑
m

A(Rm) exp(−Rm · ∇)F (Rl). (D.7)
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The operator part onF (Rl) in this equation is formally the same as (D.6) if we replacek → −i∇. Hence we can write

(D.5)= E0(−i∇)F (Rl). (D.8)

With the above results eq.(D.4) is expressed as

[E0(−i∇) + U(Rl)]F (Rl) = EF (Rl). (D.9)

We approximateE0 with ~2k2/2m∗ by using the effective massm∗ and replace the lattice vectorRl with a continuous
variabler. Finally [

−~2∇2

2m∗ + U(r)

]
F (r) = EF (r) (D.10)

is obtained, which is an Schrödinger type equation in the same form of (3.7).
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