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7.2.3 k·p perturbation

k·p perturbation is an adequate method to obtain highly accurate band structures around band edges. Though
in empirical pseudo potential method we can reproduce band structure from very few parameters with com-
paratively simple calculation, in k·p perturbation we need to increase the number of bands included in the
calculation, which increases the dimension of matrices and large scale calculation is required.

The basics of k·p perturbation is eq.(1.4) in the first hour of this lecture. Substituting Bloch function
eikrunk(r) into the original Schr̈odinger equation, we obtain the equation for the lattice periodic partunk(r).
In three dimensional space (1.4) can be written as[

−~2∇2

2m0
+ V (r) +

~2k2

2m0
− i

~2

m0
k ·∇

]
unk(r) = Enkunk(r). (6.1)

Here the Bloch wavenumberk is a parameter (c-number) and not an operator.
Now we redefine the unperturbed HamiltonianH0 andk-dependent eigen energy as

H0 ≡ −~2∇2

2m0
+ V (r), E′

n(k) = Enk − ~2k2

2m0
.

Then the perturbation term can be written as

H ′(k) = −i
~2

m0
k ·∇ =

~
m0

k · p̂, (6.2)

from which we can easily guess the source of the naming “k· p”.
(6.2) is zero fork = 0. Hence we set the unperturbed state ask = 0. Assume that we obtain the exact

eigenstates{uj0(r)} for k = 0, then they form a complete set and an eigenstate for finitek can be expanded as

unk(r) =
∞∑
j=0

cnj(k)uj0(r).

Thesecnj(k) can be obtained from the perturbation ofH ′(k). This is the concept of k·p perturbation.
In the abovek = 0 is taken to the unperturbed point assuming some avoided level crossing due to the

high symmetry. Such avoided level crossing results in∂E/∂k = 0 and the approximation is practically good
around the point becauseH ′(k) is small around it. Similar may occur in other points with high symmetry
and k·p expansions around such points are also available. Also as we have seen so far, physical properties of
semiconductors are determined with band structures around such symmetric points. We cannot perform, of
course, the infinite summation hence cut the summation around the bandn which is under consideration. The
accuracy of the k·p perturbation usually determined by the number of bands taken into account.
(a) the case of non-degenerateui0(r)

uik(r) = ui0(r) +
∑
j ̸=i

⟨j|H ′|i⟩
Ei − Ej

ui0(r), Ei(k) = Ei(0) + ⟨i|H ′|i⟩+
∑
j ̸=i

|⟨i|H ′|j⟩|2

Ei − Ej
(6.3)
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are obtained as the first order perturbation. Here we have used abbreviation|i⟩ for |ui0(r)⟩. From⟨i|j⟩ = δij
and⟨i|∇|i⟩ = 0,

Ei(k) = Ei(0) +
~2k2

2m0
− ~4

m2
0

∑
j ̸=i

⟨i|k ·∇|j⟩⟨j|k ·∇|i⟩
Ei − Ej

. (6.4)

(b) the caseui0(r) has degeneracy
When u00(r) hasn-fold degeneracy, we take an orthogonal basis{uj00(r)} (j = 1, · · · , n) and write
the functions in short form as|0j⟩. Perturbed wavefunction is approximated with the linear combination

|ui0k⟩ =
n∑

j=1

Aij(k)|0j⟩. Substituting this into (6.1) gives[H0 + H ′ − E0(k)]u0k = 0. With taking inner

product with|0i⟩, equation

n∑
j=1

Aij(k)[⟨0i|H0|0j⟩+ ⟨0i|H ′
0 |0j⟩ − ⟨0i|E0(k)|0j⟩]

=

n∑
j=1

Aij(k)[⟨0i|H ′|0j⟩+ (E0 − E0(k))δij ] = 0 (6.5)

is obtained. The secular equation for this simultaneous equation to have non-trivial solution is

|⟨0i|H ′|0j⟩+ (E0 − E0(k))δij | = 0, (6.6)

which gives the dispersion relationE0(k). From the solutionAij(k), we obtain approximate set of eigenfunc-
tions corresponding tok.

7.2.4 Spin-orbit interaction

For rigorous derivation ofspin-orbit interaction we should go back to Dirac equation, for which we do not
have enough time unfortunately. Here without any derivation, we adopt the Hamiltonian for spin-orbit interac-
tion as

Hso = − ~
4m2

0c
2
σ · p× (∇V ). (6.7)

And just discuss the effect on the band structure.σ = (σx, σy, σz) is a vector which has Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (6.8)

as its elements. (6.7) is added to (6.1) and with (1.5), we obtain[
p2

2m0
+ V +

~2k2

2m0
+

~
m0

k · π +
~

4m2
0c

2
p·σ×∇V

]
|nk⟩ = En(k)|nk⟩,

π ≡ p+
~

4mc2
σ ×∇V. (6.9)

We expand the solution, again with the basis of the band bottom|ν0⟩. This time we need to take care of spin
freedom and write|ν, σ⟩ ≡ |ν0⟩ ⊗ |σ⟩ , and expand as|nk⟩ =

∑
ν′,σ′ cn,νσ|ν ′, σ′⟩. With taking inner product

with ⟨ν, σ|, we obtain the eigen equation as∑
ν′,σ′

{[
Eν′(0) +

~2k2

2m

]
δνν′δσσ′ +

~
m
k · P νν′

σσ′ +∆νν′
σσ′

}
cnν′σ′ = En(k)cnνσ. (6.10)

where

P νν′
σσ′ ≡ ⟨νσ|π|ν ′σ′⟩, ∆νν′

σσ′ ≡
~2

4m2c2
⟨νσ|[p · σ × (∇V )]|ν ′σ′⟩. (6.11)

The dispersion relation again is obtained with solving the eigen value problem. In this stage, it is often a good
approximation to drop the spin-orbit part. In such cases it can be written asπ = p，P νν′

σσ′ = δσσ′P νν′ .
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7.2.5 Wavefunctions atΓ-point in fcc semiconductors

In empiricalk · p method, without detailed knowledge of wavefunctions, the parameters required for the band
calculation are extracted theoretically and the values are obtained from experiments. Many of such parameters
are zero around highly symmetrical points making the calculation easier. Hence the knowledges of spatial
symmetries in crystal and in atomic orbitals are important. Though the theory of space group gives systematic
discussion to this problem, again due to the time limitation, we restrict ourselves to the discussion around
Γ-point in fcc semiconductors.

Bravais lattice is fcc for group IV semiconductors with diamond structure and group III-V semiconductors
with zinc blende structure. Here we name them “DZB” semiconductors. As is guessed from the structure in
Fig.5.10(b), in chemical bond theory the crystal formation can be understood along covalent bonding between
neighboringsp3 hybrid orbitals. In the group III-V semiconductors, for each atom to formsp3 hybrid, it needs
to be ionized. Hence the crystals are also formed with the ionic bonding. The most effective atomic orbitals
on the band structures in these semiconductors ares andp. In DZB structure, there are two atoms per a single
lattice point in the simplest fcc structure (Fig.5.10). In Fig.5.9, substituting2 × 4 = 8 into Z, we see that the
energy gap opens around the degeneracy points in the distance around

√
3 from Γ point.

We consider a function|S⟩, which has the lattice translational symmetry though also has the same angular
symmetry ass orbital in the vicinities of nuclei. For that, we first take a linear combination of atomic orbitals
(LCAO) of s orbital |s⟩

|us⟩ =
∑
i,β

aiβ|siβ⟩,

wherei is the index of unit cells,β is the relative index of atoms in a unit cell (as is in the pseudo potential
calculation). Though the above function satisfies the crystal translational symmetry, it is not a solution for the
Schr̈odinger equation with lattice potential. Hence we assume that we can modify the form of|s⟩ to make the
linear combined function a solution for the Schrödinger equation with keeping the rotational symmetry in|s⟩
characteristic to thes-orbital. We write thus obtained LCAO wavefunction as|S⟩, which must satisfy

H0|S⟩ =
[
−~2∇2

2m0
+ V (r)

]
|S⟩ = Ec|S⟩. (6.12)

In the same way we define|X⟩, |Y ⟩, |Z⟩, which have angular symmetries ofpx, py, pz respectively around
nuclei, translational symmetry at the same time.

At Γ-point, the bottom of conduction band is mostly made froms orbitals while the topp orbitals. Hence,
though the approximation is rough, we assume the above defined functions satisfy the unperturbed (k = 0)
equation

H0|ζ⟩ =
[
−~2∇2

2m0
+ V (r)

]
|ζ⟩ = Eb|ζ⟩, (6.13)

whereζ ∈ {S,X, Y, Z}, Eb is Ec for ζ = S andEv for others. It may be a problem whether such functions
as|S⟩, |X⟩, · · · actually exist. The space group theory says we can adopt lattice periodic functions with the
same angular symmetries ass or pα orbitals around the point at which parabola with bottoms at(±1,±1,±1)
degenerate in the empty lattice approximation.1．

For the convenience to take into account the spin-orbit interaction, we transform basis from|X⟩, |Y ⟩, |Z⟩
to

|+⟩ ≡ (|X⟩+ i|Y ⟩)/
√
2, |0⟩ ≡ |Z⟩, |−⟩ ≡ (|X⟩ − i|Y ⟩)/

√
2,

which correspond to eigen functions of angular momentum|p+1⟩, |p0⟩, |p−1⟩ respectively. With the direct
product of these four basis functions for the orbital part and two for the spin part (↑, ↓), eight basis functions in
total, roughestk · p perturbation calculation, in which the orbital degeneracy and the spin-orbit interaction are
taken into account can be performed.

1e.g.see Inui, Tanabe, Onodera, “Applied group theory” (Shokabo, 1976) Chapter 11 (in Japanese).
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The perturbation Hamiltonian to|nk⟩ is taken as

H ′ + HSO = −i
~2

m0
k ·∇− ~

4m2
0c

2
σ · (p×∇V ), (6.14)

in which we have dropped higher order terms from (6.9) and putπ = p. The matrix elements between|S⟩,
|X⟩, · · · are

P ≡ ~
m0

⟨S|px|X⟩ = ~
m0

⟨S|py|Y ⟩ = ~
m0

⟨S|pz|Z⟩, (6.15)

∆ ≡ − 3i~
4m2

0c
2
⟨X|[∇V × p]y|Z⟩ = (cyclic replacement ofxyz) (6.16)

and their conjugate elements. Others are zero due to the symmetries around nuclei.
Hence non-zero matrix elements ofH ′ are

⟨Sα|H ′|0α′⟩ = Pkzδαα′ , ⟨Sα|H ′| ± α′⟩ = ∓P√
2
(kx ± iky)δαα′ , (6.17)

and their conjugate elementsH ′
ji = (H ′

ij)
∗, whereα, α′ are spin coordinates. As forHSO,

⟨± ↑ |HSO|± ↑⟩ = −⟨± ↓ |HSO|± ↓⟩ = ±∆/3,

⟨±α|HSO|0α′⟩ = (1− δαα′)
√
2∆/3,

(6.18)

and others are zero. From (6.13), unperturbed HamiltonianH0 has

⟨Sα|H0|Sα′⟩ = δαα′Ec, ⟨{+, 0,−}α|H0|{+, 0,−}α′⟩ = δαα′Ev. (6.19)

From the above we obtain the secular equation and thus the energy eigen valuesEn(k). H ′ is an 8×8
matrix in the present basis though if we fix the wavenumber vector toz direction,i.e., k = (0, 0, k), it becomes[

Hd 0
0 Hd

]
,

thus is broken down to 4×4 matrices and

Hd =


Ec 0 kP 0

0 Ev −∆/3
√
2∆/3 0

kP ∗ √
2∆/3 Ev 0

0 0 0 Ev +∆/3

 . (6.20)

From this the secular equation to obtain the eigenvalueλ is obtained as

λ = Ev +
∆

3
,

(λ− Ec)

(
λ− Ev +

2∆

3

)(
λ− Ev −

∆

3

)
− |P |2k2

(
λ− Ev +

∆

3

)
= 0.

In the second equation we approximate that the term of|P |2k2 is small then obtain the energies for the conduc-
tion bandEc(k), and the valence bandEvj(k) as

Ec(k) = Ec +
~2k2

2m
+

|P |2k2

3

[
2

Eg
+

1

Eg +∆

]
, (6.21)

Ev1(k) = Ev +
∆

3
+

~2k2

2m0
, (6.22)

Ev2(k) = Ev +
∆

3
+

~2k2

2m0
− 2|P |2k2

3Eg
, (6.23)

Ev3(k) = Ev −
2∆

3
+

~2k2

2m0
− |P |2k2

3(Eg +∆)
. (6.24)
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Figure 6.1: Band structure for diamond and zinc blende semi-
conductors calculated from the lowest order k·p perturbation
with adopting onlyS andP orbitals. Spin-orbit splitting ex-
ists though the heavy hole mass is the same as that of the
vacuum electron, that is, the hole mass is negative in this cal-
culation.

The band structure aroundk = 0 thus far obtained is displayed in Fig.6.1. Small mass of the conduction
band, two different masses at the top of the valence band, and lowered energy of spin split-off band due to the
spin-orbit coupling in the valence band, which properties are well known from optical measurements, cyclotron
measurements, etc, are reproduced qualitatively though in particular, the heavier valence band mass is that of
the vacuum electron, that is, the hole effective mass is predicted to be negative apparently different from the real
band structure. This is, of course, due to the coarse approximation, which is to the first order perturbation based
on the degenerate four bands. The accuracy is enhanced by enhancing the order of perturbation to second, and
by taking the surrounding bands into account. At present front of calculation, due to algorithm developments,
and enhancement in computational performance have made it possible to perform calculations including over
20 bands and results with high accuracy which can be even used at comparatively highk[1].

Another way to utilize the result of k·p “empirically” is, as is in the pseudo potential method, to represent
the results of second order k·p perturbation with a small number of parameters (e.g. Luttinger parameters)
and to determine them fitting to the experiments. In the case of valence band in diamond and zinc blende
semiconductors, the energies can be expressed as

Ev(k) = Ev +
∆

3
+Ak2 ±

√
B2k4 + C2(k2xk

2
y + k2yk

2
z + k2z + k2x), (6.25)

Evsp(k) = Ev −
2∆

3
+Ak2, (6.26)

andA, B, C are obtained from,e.g.cyclotron resonance.

8 Electronic states in organic semiconductors

Knowledges on general properties of inorganic semiconductors were rapidly established from around 1950s due
to the development in synthesis and theories and have been expanded so far. Despite developments of many new
concepts and novel experimental methods, what had been once established have not received fatal corrections.
On the other hand in the case of organic semiconductors, it is very difficult to make definitive statements on
many important physical properties. Because the qualities of materials in the initial stage for the usage of
organics as semiconductors were so low, many oversimplification has been made to explain many mysterious
results. Some successes had been attained though many of them were rewritten or discarded when there were
significant improvement in the quality of materials. And the qualities or the methods for the synthesis are still
not satisfactory, in other words, there is still a big room for the improvement.
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Figure 6.2: Schematic view of electronic states in bulk organic semiconductors

For example, many textbooks on organic semiconductors say “it is impossible, generally, to control p-type
or n-type in organic semiconductors with chemical doping”[2] though very recently, it has been found that with
a simple method called “co-evaporation”, n- and p-types can be freely controlled. Or it has also been said that
ionization energies can be accurately measured with photoelectron emission spectroscopy but it is very difficult
to determine the spatial modulation of electronic bands. (Even the former statement had not been common
sense until the photoelectron emission spectroscopy had become so common method.) However in these one,
two years, it has become possible to measure the spatial modulation of band edges with so called Kelvin probe
method, which is an application of the STM technique.

Hence, here we have a coarse look at “present” concepts on the electronic states in organic semiconductors.

8.1 Organic semiconductor materials

Many of the organic semiconductors are ensembles of molecules loosely coupled with van der Waals force,
which are so called molecular crystals. Inside the molecules, the atoms are tightly bound with covalent bonding
and electrovalent bonding. When the size of molecules is huge as polymers, the potentials inside the molecules
can be treated as spatially periodic ones, and thus the energy band theory for periodic crystal lattices is appli-
cable. In the case of middle size molecules,molecular orbitals can be defined inside the molecules and the
intra-molecule transfer of electrons occurs through the molecular orbitals.

The molecules are of the same species inside the materials, so are the molecular orbitals. Due to the finite
size of molecules, the energy spectra are discrete. At absolute zero, the orbital levels below the Fermi level,EF

of each molecule, are occupied with electrons and those aboveEF are empty. The molecular orbital that has the
highest energy among the occupied levels, is calledHOMO in the abbreviation of highest occupied molecular
orbital, and the one that has the lowest among the empty levels, is calledLUMO in the abbreviation of lowest
unoccupied molecular orbital2.

On the other hand, the couplings between the molecules are weak and the periodicities are often greatly
disordered though some of the materials still have good spatial periodicity. In the materials with spatial period-
icity, HOMO and LUMO form energy band though the widths are so narrow due to the small hopping integral
(1.14). Summing up the above, the diagrams like displayed in Fig.6.2 are often adopted for the representation
of electronic states in organic semiconductors.

8.2 Electronic transport in organic semiconductors

From Fig.6.2, we can deduce that the organic semiconductors, as are in non-organic ones, are generally insulat-
ing. Furthermore, we suspect that even we have some extra electrons in LUMO withe.g.chemical doping, the
electric conduction would be dominated byhopping conduction, in which the electrons go over the potentials
between the moleculesVb(r) with thermal activation, in other words, we cannot expect metallic transport.

2These terms were introduced by Ken-ichi Fukui[3]
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However, in actual cases, in some organic materials, the electric conductivities go up with orders of mag-
nitude with doping. A well known example is, polyacetylene, the main finding of Hideki Shirakawa to which
the Nobel prize of chemistry was given. In this case, a polyacetylene is made of polymers and one-dimensional
bands are formed inside the molecules and a kind of “impurity bands” should be formed even inside the
molecules because they contact each other with very long distances though the couplings themselves are weak.
These properties result in such metallic conduction. The academic interests in polyacetyle lie mainly in one di-
mensional conduction through the polymers as are in the cases of TTF-TCNQ or (TMTSF)2PF6, which shows
superconductivity,3 such as the transport of topological solitons[5]. These materials show many interesting
phenomena concerning with so called strongly correlated physics, such as charge density waves (CDWs) or
orbital ordering.

E0
dE

-eFx

x

V x( )

Figure 6.3: Illustration of an energy
diagram, in which an external electric
field is applied to a trap potential of
electrons. The effective activation en-
ergy is lowered by the field.

Besides such metallic examples, as we first expected in many or-
ganic semiconductors, the weak couplings between the molecules de-
termine the transport characteristics. We thus need to treat electric
transport of such “half-localized” electrons. A simplest traditional
model for such conduction in insulators under finite electric field is
Poole-Frenkel model, which is illustrated in Fig.6.3. When a carrier is
trapped in a potential with the activation energyE0, the applied field
F lowers the energy byδE for the direction along the field.

In Fig.6.3 we assume a Coulomb type trapping potential,

V (r) = − e2

4πϵϵ0r
− eFx. (6.27)

E0 can be estimated as the Rydberg constant with dielectric constant
ϵ andδE is obtained from the condition of inflection point as

δE =

√
e3F

πϵϵ0
. (6.28)

When the thermally activated mobility at zero electric field is
given asµ(0) = µ0 exp(−E0/kBT ), it changes with electric fieldF due to the shift of the activation energy to
E0 − δE as

µ(F ) = µ0 exp

[
−E0 − δE

kBT

]
= µ(0) exp

[
δE

kBT

]
≡ µ(0) exp(β(T )F 1/2), (6.29)

whereβ(T ) is called Poole-Ferenkel coefficient written as

β(T ) = (e3/πϵϵ0)
1/2/kBT. (6.30)

Equation (6.29) well explains some experimental results. This model is, however, based on the hypoth-
esis that the trap potentials distribute with complete randomness,i.e. the coherence is completely lost. The
mobilities in organic semiconductors have risen by 5 orders of magnitude though the rate has a bit fallen in
these 8 years. And in near future we may be released from the Poole-Frenkel model or the polarons in the bulk
transport.

3Seee.g[4], to know the molecular structure of these organic materials.
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Ch. 3 Semiconductor electronic devices

In this chapter we begin the discussion on physical phenomena in spatially non-uniform structures of semicon-
ductors and see how they are applied to the devices for electronic circuits or light emission/detection. And also
see how they can be used for quantum structures.

1 PN junctions

1.1 Equilibrium condition

E

p NA

x

n ND
-wp wn

+
+

+
+

+ + + +

+

+ +
+

+

+

-
-

-

- -
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-
-
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ee

np wNwN +

-

Ec

Ev
EF

(a)

(b)

(c)

eVbi

Figure 6.4: (a) Schematic cross section of an
abrupt pn junction. (b) Electric fieldE(x)
across the depletion layer corresponding to
the above. (c) Band diagram of the above pn
junction.

Connected structure of p-type and n-type semiconductors is a pn
junction. Here we only consider homo-junctions, in which the
same species semiconductor is used for p and n layers. As we
saw in Appendix1, an n-type layer has many electrons, while
a p-type has many holes, there should be some driving forces
in entropy part of the free energy that the diffusion of electrons
from n to p, the inverse for holes. In equilibrium, the diffusion
should be balanced with the force from the electric field driven
by the electric polarization at the interface caused by the diffu-
sions. In other words, the free energy which is the sum of the
internal energyU and the negative product of the temperatureT
and the entropyS (U − TS) takes the minimum and hence the
amount of diffusion is determined.

Below we use symbols introduced in Appendix1. In the
simple model adopted here for an abrupt junction (Fig.6.4), the
carrier density in the “depletion layer” caused by the diffusion-
Coulomb force balance, is as low asni. Let the net voltage
between the p and n layersVbi, then the energy increase due
to the transfer of an electron from the n layer to the p layer is
eVbi. As in eq.(3.19), the electron and the hole concentrations
arenn ∼ ND in the n layer, from eq.(2.23)np ∼ n2

i /NA in
the p layer respectively. The number of cases for puttingN1,2

electrons into two boxes with the site numberN for each, is
W =N CN1NCN2 . If the transfer of electrons is limited be-
tween the two boxes,dN1 = −dN2 and in case ofN ≫ N1,2,
d(lnW ) ≈ ln(N2/N1)dN1, which is well known as the entropy
due to mixing of gases. We apply this general discussion to the above n- and p-layers, that is,dN1 = −1,
N1 = nn, N2 = np. From the condition for the free energy to take a extremumd(U − TS)/dnn = 0, we
obtain

eVbi = kBT ln
nn

np
∼ kBT ln

NDNA

n2
i

= Eg − kBT ln
NcNv

NDNA
, (6.31)

where we putnn ∼ ND andpp ∼ NA.
In equilibrium, the chemical potential (the Fermi level) should be constant throughout the junction, and

that should be at the same level with that of bulk when we look at a very far point from the junction in n- or
p-layer. From the above we can draw a schematic diagram as Fig.6.4(c). Let the widths of depletion layerswp,
wn respectively for p and n layers, then the electric fieldE(x) inside the depletion layers is

−ϵϵ0E(x) = NA(2x+ wp) +NDwn (x < 0), NAwp +ND(wn − 2x) (x ≥ 0). (6.32)

Hereϵ is the dielectric constant andVbi is expressed as

Vbi =

∫ wn

−wp

(−E(x))dx =
e

ϵϵ0
(ND +NA)wnwp =

e

ϵϵ0
(ND +NA)

ND

NA
w2
n ∵ wnND = wpNA. (6.33)
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The relation between the doping concentration and the width of the depletion layer is obtained from eq.(6.31)
and eq.(6.33).
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