Physics of Semiconductors (11)

Shingo Katsumoto Institute for Solid State Physics, University of Tokyo

2013/6/25

Double barrier diode

 $\epsilon = E/V_0$ (a) (b)

Collision of a wave packet to a potential barrier

Collision of a wave packet to a double barrier

Aharonov-Bohm ring and phase rigidity

Experiment on phase rigidity

A. Yacoby et al. PRB **53**, 9583 ('96).

Exercise

1. Let M_T be a transfer matrix of a potential barrier with a complex transmission coefficient *t* and a complex reflection coefficient *r*. Show that MT can be expressed as follows.

$$M_T = \begin{pmatrix} 1/t^* & -r^*/t^* \\ -r/t & 1/t \end{pmatrix}$$

2. If an AB ring is a double slit system, the probability amplitude of outgoing wavefunction is written as

$$|\psi|^2 = |\psi_1|^2 + |\psi_2|^2 + 2|\psi_1||\psi_2|\cos\theta,$$

which gives if we put $|\psi_1| = |\psi_2|$ and $\theta = -\pi$, zero. The result is apparently against the requirement of unitarity. Also in $\theta = \frac{e\Phi}{\hbar} + \theta_0$, if $\theta_0 \neq 0$, Onsagar reciprocity is also broken (Φ is magnetic flux piercing through the ring). Discuss what is wrong in the above "double slit model".